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Abstract: Cannabis (Cannabis sativa L.) plants from the family Cannabidaceae have been used since ancient
times, to produce fibers, oil, and for medicinal purposes. Psychoactive delta-9-tetrahydrocannabinol
(THC) and nonpsychoactive cannabidiol (CBD) are the main pharmacologically active compounds of
Cannabis sativa. These compounds have, for a long time, been under extensive investigation, and their
potent antioxidant and inflammatory properties have been reported, although the detailed mechanisms
of their actions have not been fully clarified. CB1 receptors are suggested to be responsible for the
analgesic effect of THC, while CB2 receptors may account for its immunomodulatory properties. Unlike
THC, CBD has a very low affinity for both CB1 and CB2 receptors, and behaves as their negative
allosteric modulator. CBD activity, as a CB2 receptor inverse agonist, could be important for CBD
anti-inflammatory properties. In this review, we discuss the chemical properties and bioavailability of
THC and CBD, their main mechanisms of action, and their role in oxidative stress and inflammation.
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1. Introduction

Cannabis (Cannabis sativa L.) plants, from the family Cannabidaceae, originate from
Central Asia, where they were grown to produce fibers, oil, and for medicinal purposes, as
probably the oldest psychotropic drug used since ancient times. Archeological discoveries
have shown that cannabis has been known in China since around 4000 BC [1]. Cannabis is
an annual, dioecious, flowering herb, with characteristic palmate leaves with a venation
pattern (Figure 1). There are three known subspecies —Cannabis sativa ssp. sativa (L.),
Cannabis sativa ssp. indica (Lam.), and Cannabis sativa ssp. ruderalis (Janisch), although,
in some studies, these plants are classified as distinct species [2–4]. Cannabis sativa is the
most widely spread variety, growing in both tropical and temperate climates. The two
main preparations derived from cannabis are marijuana and hashish. The name marijuana
originates from Mexica, where it was used to describe cheap tobacco. Today, marijuana
is the name for the dried leaves and flowers of the cannabis plant. Hashish is the Arabic
name for Indian hemp, now used for the viscous resin of the plant [1].
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Figure 1. Chemical structures of main Cannabis sativa active compounds.

The Emperor of China, Shen Nung, first described the properties and therapeutic
uses of cannabis in his book of Chinese medicinal herbs, written in 2737 BC [5,6]. Soon
afterwards, the plant was cultivated for its fibers, seeds, recreational consumption, and
use in medicine. It then spread to India from China [5,6]. In 1839, William O’Shaughnessy,
who worked in India, described the analgesic, appetite stimulant, antiemetic, muscle
relaxant, and anticonvulsant properties of cannabis, and, thus, the medical use of cannabis
began [1,5,6]. In 1854, cannabis was included in the United States Dispensatory [7], and
was freely available in pharmacies in western countries; it was also included in the British
Pharmacopoeia, as an extract and tincture, for over 100 years [6]. After the implementation
of the Marihuana Tax Act in 1937, it became impossible to prescribe any preparation
containing cannabis in the US, and, in 1942, cannabis was removed from the United States
Pharmacopoeia [1,5,6]. The ban on cannabis was introduced by Great Britain and most
European countries after adopting the Convention on Psychotropic Substances, issued
by the United Nations in 1971 [1]. Since then, many studies have reported beneficial
effects of cannabis use for various chronic and debilitating disorders, such as cancer,
Alzheimer’s disease, and AIDS [1,5]. Therefore, currently, there are ongoing debates about
the legalization of Cannabis sativa use for medical and recreational purposes in many
countries [8].

The aim of this narrative review is to provide an overview of the chemical properties
and bioavailability of THC and CBD, and their main mechanisms of action, with a focus
on their role in oxidative stress and inflammation. The summary figures in this review
were prepared with the aid of Serif DrawPlus X8 (Serif (Europe) Ltd., Nottingham, United
Kingdom) and MS PowerPoint programs.

2. Chemical Properties of Cannabis sativa Bioactive Compounds

More than 538 known chemical compounds are present in cannabis, around 100 of
which are classified as cannabinoids, which are aryl-substituted meroterpenes [8,9]. There
are also eighteen different chemical classes of substances, such as nitrogen compounds,
amino acids, hydrocarbons, carbohydrates, terpenes, organics, and fatty acids [8,10]. The
most important active compounds in cannabis are the psychoactive cannabinoid [11,12]
delta-9-tetrahydrocannabinol (THC) [13,14], due to its lipophilic structure, enabling it to
cross the blood–brain barrier, and nonpsychoactive cannabidiol (CBD) [15,16] (Figure 1).

The highest amount of THC is found in female inflorescences of cannabis [17,18].
Depending on the THC content, the following three types of cannabis are defined: drug
type, with a high THC/CBD ratio (above 1), which is psychoactive (chemotype I), used
to make drugs such as marijuana and hashish; medium type (chemotype II), with a
medium THC/CBD ratio (close to 1), which is nonpsychoactive or has a low activity;
fiber type (chemotype III), called hemp, which has <0.3 percent THC and is character-
ized by a low THC/CBD ratio (below 1)—it is nonpsychoactive, and is used to make
fiber and edible oil [9,19]. The cannabinoids of fiber-type cannabis are mainly cannabi-
noid acids, as follows: cannabidiolic acid, cannabigerolic acid, and their decarboxylated
derivatives—cannabidiol and cannabigerol. Cannabichromenic acid, cannabichromene,
and THC degradation products—cannabinolic acid and cannabinol—are found in lesser
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amounts in hemp [1,9,19]. The THC content of industrial hemp preparations is limited to
not exceed 0.2%.

3. Bioavailability of Cannabis sativa Main Active Compounds

Following administration of THC or CBD by inhalation, the peak plasma concentra-
tions are reached rapidly, within 3 to 10 min, and remain higher than after oral administra-
tion of cannabinoids [20,21]. The mean systemic bioavailability after inhalation is 10–30%
for THC and about 31% for CBD [20,21].

Inhalation or oral absorption reduces the first-pass metabolism of cannabinoids. Both
THC and CBD are highly lipophilic substances with low oral bioavailability (only about 6%).
In addition, the peak oral plasma concentrations are reached in approximately 120 min,
resulting in a higher dose of THC or CBD oral formulations, requiring long-term systemic
exposure [20,21].

Transdermal administration of THC or CBD helps to prevent first-pass metabolism,
but the lipophilicity of cannabinoids complicates the ability of the substance to penetrate
through the skin [20,21]. In vitro studies of CBD penetration through human skin have
shown that the permeability of CBD through the skin is about 10 times higher than THC,
as CBD is a less lipophilic substance than THC [22]. The bioavailability of THC after the
administration of rectal suppositories was about 13.5% [23,24]; furthermore, THC did not
accumulate in the blood of patients at a daily dose of 10–15 mg [25]. Following the rectal
administration of 2.5–5 mg of active substance, the peak plasma concentrations ranged from
1.1 to 4.1 ng/mL over 2 to 8 h [21,25]. When administered rectally, the bioavailability was
approximately two-fold higher than when administered orally, due to higher absorption
and lower first-pass metabolism [21,25].

Cannabinoids are rapidly distributed in tissues with a developed vascular system
(e.g., lung, heart, liver, and brain), depending on body weight and structure [20,21]. After
prolonged use, cannabinoids may accumulate in adipose tissue. The volume of distribution
(Vd) of CBD and THC is high, at 32 L/kg after intravenous administration and 3.4 L/kg
after inhalation [20,21].

Both THC and CBD are metabolized in the liver. The most important enzymes for THC
metabolism are cytochrome P450 (CYP 450) and isozymes CYP2C9, CYP2C19, and CYP3A4.
THC is converted to 11-hydroxyTHC and 11-carboxy-THC, and subsequently undergoes
glucuronidation [20,21]. Excretion of THC is mainly via the feces and urine. Other tissues
that express CYP450—the brain and small intestine—can also metabolize THC [20,21]. Due
to its lipophilic properties, THC can cross the placenta, and can be excreted in human
breast milk [20,21]. CBD is metabolized in the liver, and the major enzymes involved in
this process are CYP2C19 and CYP3A4, and, in addition, CYP1A1, CYP1A2, CYP2C9, and
CYP2D6 [20,21]. After hydroxylation to 7-hydroxycannabidiol (7-OH-CBD), the products
formed are excreted in the gut during further metabolization, or a lesser amount of the
metabolites may be excreted in the urine [20,21]. The activity of CBD metabolites in humans
has not been extensively investigated yet.

A fast initial half-life of about 6 min and long terminal half-life of about 22 h, related to
accumulation of the substance in lipid-rich tissues, have been reported for THC [20,21]. The
elimination half-life of CBD is long, approximately 24 ± 6 h after intravenous administration
or 31 ± 4 h after inhalation [20,21]. After prolonged administration of CBD, the elimination
half-life is 2 to 5 days [20,21].

THC can aggravate psychotic disorders [26,27], and its chronic use can cause depres-
sion, anxiety, and decreased motivation [28,29]. Furthermore, THC can cause an acute
increase in blood pressure and heart rate in a dose-dependent manner [30]. In contrast to
THC, CBD is well tolerated and has relatively few serious adverse effects [31]; however,
drug–drug interactions, diarrhea, fatigue, vomiting, somnolence, and hepatic abnormali-
ties have been reported in several studies [32,33]. Due to adverse reactions, cannabinoid
therapy should not be used for patients with severe psychiatric, cardiac, renal, or hepatic
disorders [20,21].
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4. Main Mechanisms of Action of Cannabis sativa Bioactive Compounds

During extensive studies on the effects of THC, a receptor for THC in the central
nervous system (now known as the CB1 receptor) was cloned in 1990 [34], and, in 1992,
a major natural ligand of CB1 was identified and named anandamide [35]. Another
cannabinoid receptor, the peripheral or CB2 receptor, was cloned from macrophages and
the spleen in 1993 [36]. Later, other components of the endocannabinoid signaling system
were discovered [9,37] (Figure 2).

Figure 2. The composition and role of the endocannabinoid system.

The endocannabinoid system comprises natural endocannabinoids—happiness
molecules—N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, the
enzymes that participate in their synthesis and metabolism, CB1 and CB2 receptors, endo-
cannabinoid membrane transporters, and CB1 interacting protein 1a, capable of controlling
CB1 receptor signal transduction [37,38]. The endocannabinoid system modulates memory,
new neuron formation, immune and inflammatory responses, and fetal cell differentiation,
and regulates pain strength, emotions, appetite, thermogenesis, metabolism, sleep, motility,
response to stress, and addiction processes [39] (Figure 2).

The cannabinoid receptors CB1 and CB2 are members of the G-protein-coupled recep-
tor (GPCR) family [38]. They regulate important intracellular signal transduction pathways,
comprising activation of the phosphorylation of mitogen-activated protein kinases (MAPK)
and A-type potassium channels, and suppression of adenylyl cyclase activity, D-type
potassium, and calcium channels [38]. CB1 receptors are widespread in neuron terminals
throughout the nervous system, mainly in the brain, but also in the spinal cord and pe-
ripheral sensory nerve endings [12,40,41]. In the central nervous system, CB1 receptors
in the amygdala, thalamus, and midbrain periaqueductal grey matter modulate nocicep-
tion. The abundance of CB1 receptors in other regions of the brain accounts for the other
effects of cannabinoids. For example, CB1 receptors in the basal ganglia, cerebellum, and
hypothalamus modulate motor activity, motor coordination, and appetite and sedation,
respectively [7]. The stimulation of CB1 receptors reduces neuronal excitability and the
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release of the neurotransmitters c-aminobutyric acid and glutamate in the cortical, limbic,
and other regions involved in nociception [12,40,41].

In contrast, CB2 receptors are mainly found in immune tissues (e.g., spleen and tonsils)
and immune cells (e.g., monocytes, and B and T cells), although some are also located
in the brain. The stimulation of peripheral CB2 receptors results in anti-inflammatory
and immunomodulating effects, and, thus, plays a role in alleviating inflammatory types
of pain, as well as neuropathic pain [42,43]. CB2 receptors are also important in bone
remodeling [44] and atherosclerosis [45].

THC is a potent partial agonist that binds with high affinity to both the CB1 and
CB2 cannabinoid receptors [46], with dissociation constants (Ki) of 10 and 24 nM, re-
spectively [47]. The main psychoactive effects of THC, as well as its analgesic effect,
are mediated by CB1 receptors [47] (Figure 3). CB2 receptors are responsible for the im-
munomodulatory properties of THC [38,47]. In addition, THC can act as an agonist of
G-protein-coupled receptors (GPR55 and GPR18), the peroxisome proliferator-activated
receptor (PPARγ), and transient receptor potential channels (TRPA1, TRPV2, TRPV3, and
TRPV4), and as an antagonist of transient receptor potential channel TRPM8 and 5-HT3
receptor A, and can increase anandamide and adenosine levels [38,48].

Figure 3. The main effects of THC and CBD.

Numerous studies have shown that CBD possesses analgesic [16,49], neuroprotective [40],
anticonvulsant [11], antiemetic [50], spasmolytic [51], and anti-inflammatory [11,12,52] proper-
ties (Figure 3). Unlike THC, CBD has a very low affinity for both CB1 and CB2 receptors, with
Ki of 4359 and 2860 nM, respectively [47]. CBD is a potent antagonist of CB1 and CB2 receptor
agonists [38,46,47]. The action of CBD, as a CB2 receptor inverse agonist, may be responsible
for its anti-inflammatory properties [38]. CBD behaves as a negative allosteric modulator of
both CB receptors [53,54]. CBD could act as an agonist of transient receptor potential channels
(TRPA1, TRPV1, TRPV2, and TRPV3), the peroxisome proliferator-activated receptor (PPARγ),
5-HT1A (serotonine 1A) receptor, and adenosine A1 and A2 receptors, and as an antagonist of
G-protein-coupled receptors (GPR55 and GPR18) and 5-HT3 receptor A [38,55–57]. CBD is
also an inverse agonist of G-protein-coupled receptors (GPR3, GPR6, and GPR12) and elevates
anandamide levels [55–57].
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5. Effects of Cannabis sativa Bioactive Compounds on Oxidative Stress
and Inflammation

Both THC and CBD exhibit antioxidant activity comparable to that of vitamins E and
C, being capable of scavenging free radicals, reducing metal ions, and protecting oxidation
processes [58,59] (Figure 4). The phenolic groups readily oxidized to quinoid forms [60] and
unsaturated bonds found in non-olivetolic fragments of THC and CBD could be responsible
for their antioxidant properties [58]. THC and CBD protected rat neuronal cell cultures
against hydroperoxide-induced oxidative damage (EC50 of 2–4 µM) at a degree comparable
to that of ascorbate and tocopherol [40]. Moreover, both cannabinoids were effective as
direct antioxidants, protecting rat cortical neuron cultures against the damage of toxic
levels of the neurotransmitter glutamate [61].

Figure 4. The effects of THC and CBD on oxidative stress.

THC and CBD, at submicromolar concentrations, prevented the oxidative cell death of
B lymphoblastoid cells and fibroblasts in serum-deprived medium, via direct antioxidant
action [62]. CBD, as a direct antioxidant, provided protection against brain injuries at a dose
of 2 mL i.p. bolus, which supplied either 20 or 40 mg/kg CBD, in the rat models of ethanol-
induced neurotoxicity [63], and at a dose of 3 mg/kg for two weeks of 6-hydroxydopamine-
induced neurotoxicity [64] and Parkinson’s disease [65]. A Cannabis sativa extract rich
in THC and CBD, at a dose of 15 or 30 mg/kg for 8 days, provided protection against
oxidative damage, due to its antioxidant activity, thus alleviating diabetic neuropathic
pain in streptozotocin-induced diabetic rats [66]. THC and CBD provided protection
against oxidative neuronal cell death in the mouse hippocampal HT22 cell line and rat
primary cerebellar cell culture models, proving that CB1 has not been involved in these
neuroprotective effects [67]. THC and CBD, at logarithmic concentrations of 0.1, 1, 10, and
100 µM, increased insulin release, and Pdx1, Glut2, and thiol molecule expression, due
to the significant reduction in ROS, while the oxidative stress parameters were decreased
in the aged pancreatic islets [68]. In addition, THC (3 µM) provided protection against
N-methyl-D-aspartate-induced apoptosis in AF5 cells, by blocking ROS generation [69].

Cannabinoids also act as indirect antioxidants, capable of modulating the redox bal-
ance via regulation of the GSH level, activation of antioxidant enzymes, and suppression of
pro-oxidant enzymes [70–73] (Figure 4). CBD, 1, 10, or 20 mg/kg i.p. for 8 weeks, increased
the mRNA level, as well as the activity of superoxide dismutase, in the mouse model of di-
abetic cardiomyopathy type I and in human cardiomyocytes treated with 3-nitropropionic
acid or streptozotocin [74]. In neuropathic and inflammatory pain models in rats, CBD
(2.5–20 mg/kg for a week) decreased lipid peroxide and nitric oxide levels and modulated
the activity of glutathione-related enzymes [75]. CBD (120 mg/kg of body weight; 2.5%
w/w in petrolatum, applied topically (20 min) every 12 h for 4 weeks) increased the levels of
glutathione, and suppressed the activities of phospholipase A2 and cyclooxygenases in the
skin of nude rats chronically irradiated with UVA/UVB [76]. CBD (injected at 50, 100, and
200 ng/rat for five consecutive days) reduced the infarction volume and malondialdehyde
level in cortical and striatal areas of the rat brain, and elevated the activity of superoxide
dismutase and catalase enzymes in the cortex and striatum [77].
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Cannabinoids have demonstrated strong anti-inflammatory properties in numerous
in vitro and in vivo studies [1,8,70,71] (Figure 5). THC exerts anti-inflammatory actions,
mainly due to CB2 receptor activation, suppressed cytokine production, inhibition of Th-1
cells, activation of Th-2 cells, induction of apoptosis, and suppression of cell prolifera-
tion [78–80]. The anti-inflammatory properties of CBD are due to interactions with CB1,
CB2, the CB2/5HT1A complex, TRPV1, and adenosine receptors, as well as the activation
of GPR55 and peroxisome proliferator-activated receptor gamma, and the inhibition of
fatty acid amide hydrolase [56,80,81]. CBD suppresses pro-inflammatory cytokines, such as
IL-1α, IL-1β, IL-6, and tissue necrosis factor α (TNF-α), in pre-clinical in vitro and in vivo
models of inflammation and cancer [81].

Figure 5. The effects of THC and CBD in inflammation.

THC diminished the levels of the following pro-inflammatory cytokines: tumor
necrosis factor alpha (TNF-α), granulocyte-macrophage colony-stimulating factor, and
interferon-c cytokine [82]. THC also inhibited lipopolysaccharide-induced mRNA expres-
sion for interleukins IL-1a, IL-1b, IL-6, and TNF-α in a rat microglia culture [83]. THC
(15 mg/kg/d) suppressed the mammalian target of rapamycin complex 1, activated apop-
tosis and autophagy [84], suppressed cell proliferation [85], down-regulated vascular
endothelial growth factor signaling, and inhibited metalloproteinase 2 [86,87].

CBD is able to activate the PPAR-c receptor, thus mediating important anti-inflammatory
and antioxidant effects in Parkinson’s disease models [88]. Many studies suggest that the
activation of both cannabinoid receptors, CB1 and CB2, alleviates intestinal inflammation in
a variety of mouse colitis models [89]. Cannabinoids reduce the hypersensitivity of internal
organs and abdominal pain, as well as intestinal peristalsis and diarrhea, associated with
colitis [90–93]. In addition, CB1 receptors inhibit secretory processes and also modulate the
barrier functions of the intestinal epithelium. Thus, the endocannabinoid system is a promising
target in the treatment of inflammatory bowel diseases [89]. Due to their complex anti-
inflammatory effects, cannabinoids are effective in inhibiting the development of colitis [89].
CBD was effective in reducing intestinal inflammation in a CD1 mouse model, when intestinal
inflammation was induced by trinitrobenzene sulfonic acid and was treated with CBD, either
administered orally (10 mg/kg) or rectally (20 mg/kg) [94]. The study concluded that
rectal administration of CBD preparations is also effective in the treatment of intestinal
inflammation [94]. The efficacy and tolerability of CBD-containing oral cannabis extract
capsules have been studied in patients with ulcerative colitis, and the patients’ conditions
have been shown to improve [95]. Thus, due to its anti-inflammatory and analgesic effects,
CBD can be used for the topical treatment of inflammatory bowel disease [89,93].
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Gut signaling can influence brain function, and recent research revealed that the gut–
brain axis may play a key role in the common link between gastrointestinal and neurological
diseases [96,97]. In the murine model of multiple sclerosis—an experimental autoimmune
encephalomyelitis—C57BL/6 mice were treated with an i.p. injection of 10 mg/kg each of
THC + CBD (1:1 ratio) or a vehicle (2% dimethylsulfoxide, DMSO; 20% ethanol diluted in
PBS) daily, for 10 days following induction of the disease [98]. The treatment reduced mucin-
degrading bacterial species, such as Akkermansia muciniphila, reduced disease symptoms, and
caused a significant decrease in inflammatory cytokines [98]. However, clinical research on
the role of THC and CBD in modulating human microbiota is still limited, but several studies
have demonstrated the importance of the endocannabinoid system in the regulation of gut
microbiota, the gut–brain axis, inflammatory diseases, and obesity [96,97,99–104]. Changes
in intestinal permeability and disruption of the intestinal microbiota are responsible for the
inflammation processes in obesity [105]. Lipopolysaccharides from the intestinal microbiota
can trigger chronic inflammation, leading to insulin resistance, through activation of Toll-like
receptor 4 [106]. The triple interactions between the gut microbiota, host immune system,
and metabolism are important factors in obesity and diabetes [101,107]. Cellular energy
turnover, insulin resistance, fat deposition, and inflammation are affected by obesity-related
microbiota [108]. In addition, the microbiota in the gut can influence metabolism, adiposity,
homoeostasis, and energy balance, as well as appetite regulation [108]. Furthermore, some
bacteria strains and their metabolites may directly alter vagal stimulation, thus affecting
the brain, or indirectly regulate brain activity via immune-neuroendocrine processes [108].
The interplay between the microbiome gut–brain axis and the endocannabinoid system is
very important in the development of Alzheimer’s disease and other neurodegenerative
disorders that have recently been linked to dysbiosis [100,109]. Moreover, the interactions
between the gut microbiota and the immune system can be perceived through regulation by
the endocannabinoid system [109]; thus, the modulators of this system could be the potential
precursors of drugs or a part of alternative complimentary therapy for the treatment of
metabolic and neurodegenerative diseases.

6. Conclusions and Future Perspectives

Cannabinoids exhibit interesting therapeutic potential as antiemetics, appetite stimu-
lants in debilitating diseases (cancer and AIDS), analgesics, and anti-inflammatory remedies
in the treatment of multiple sclerosis, spinal cord injuries, Tourette’s syndrome, epilepsy,
and glaucoma [1,39]. Further well-controlled trials are needed to elucidate the potential of
cannabinoids in clinical practice.

Cannabinoids might be prospective future drugs in the treatment of cancer-related
chronic pain conditions and inflammation. They could even replace opiates, which are
highly addictive and have much more serious side effects.
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