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Recent studies have suggested that sperm mitochondrial DNA copy number (mtDNA-
CN), DNA fragmentation index (DFI), and reactive oxygen species (ROS) content are
crucial to sperm function. However, the associations between these measurements and
embryo development and pregnancy outcomes in assisted reproductive technology (ART)
remain unclear. Semen samples were collected from 401 participants, and seminal
quality, parameters of sperm concentration, motility, and morphology were analyzed by
a computer-assisted sperm analysis system. DFI, mtDNA-CN, and ROS levels were
measured using sperm chromatin structure assay, real-time quantitative polymerase
chain reaction, and ROS assay, respectively. Among the participants, 126 couples
underwent ART treatments, including in vitro fertilization (IVF) and intracytoplasmic
sperm injection (ICSI), and 79 of the couples had embryos transferred. In 401 semen
samples, elevated mtDNA-CN and DFI were associated with poor seminal quality. In 126
ART couples, only mtDNA-CN was negatively correlated with the fertilization rate, but this
correlation was not significant after adjusting for male age, female age, seminal quality,
ART strategy, number of retrieved oocytes, controlled stimulation protocols, and cycle
rank. Regarding pregnancy outcomes, sperm mtDNA-CN, ROS, and DFI were not
associated with the clinical pregnancy rate or live birth rate in 79 transferred cases. In
conclusion, increased mtDNA-CN and DFI in sperm jointly contributed to poor seminal
quality, but sperm mtDNA-CN, ROS, and DFI were not associated with clinical outcomes
in ART.
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INTRODUCTION

It is estimated that over 186 million people are affected by
infertility, and assisted reproductive technology (ART)
treatments are continuously increasing worldwide (1).
However, there is a challenge in that a large proportion of
embryos during ART end with adverse outcomes, such as
implantation failures and miscarriages (2). Abnormal gametes
from parents impact embryo quality, and the effect of paternal
factors has been increasingly explored in recent years (3, 4).

Previous studies have investigated the associations between
seminal quality, including parameters of sperm concentration,
motility, and morphology, and ART outcomes. It has been
reported that both sperm concentration and motility are
strongly correlated with the fertilization rate, and poor seminal
quality may lead to developmental failures of embryos, mainly
manifested as blastomere fragmentations (5). However, sperms
with normal morphology were selected for the intracytoplasmic
sperm injection (ICSI) process, and sperm concentration rarely
affects this treatment. Thus, sperm motility plays a more
significant role in embryo development in ICSI (6).

Researchers have investigated the relationship between sperm
structural abnormalities and adverse pregnancy outcomes (7–9).
As an indicator of sperm chromatin integrity, the DNA
fragmentation index (DFI) has been suggested to have a
negative correlation with embryo development and implantation
rates in ICSI cycles (9), while some studies have indicated contrary
results (10). Sperm mitochondria are essential to the normal
reproductive process, as they are involved in multiple functions,
including the production of adenine triphosphate and reactive
oxygen species (ROS) as well as the regulation of apoptosis (11).
Oxidative stress induced by excess ROS in sperm has been found
to impair DNA demethylation in the paternal pronucleus and
affects embryo development (8). A negative association has been
observed between seminal ROS and pregnancy rates after in vitro
fertilization (IVF) (12). Additionally, sperm mitochondrial DNA
copy number (mtDNA-CN), a relative measure of mtDNA
content, has also been reported to be negatively correlated with
the fertilization rate (13). Rosati et al. (14) found that higher sperm
mtDNA-CN is associated with lower pregnancy probability in
couples without contraception, suggesting that mtDNAmight be a
potential clinical biomarker to predict male fecundity.

It remains unclear whether the measurements mentioned
above, namely, DFI, mtDNA-CN, and ROS, are predictive of
ART outcomes. Therefore, the present study aimed to investigate
the correlations of sperm mtDNA-CN, ROS, and DFI with male
fertility, embryo viability, and pregnancy outcomes.
METHODS

Subjects
All participants were recruited from July 2020 to September 2020
from the Outpatient Department of the Reproductive Center at
the International Peace Maternity and Child Health Hospital
(IPMCH), Shanghai Jiao Tong University School of Medicine.
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The inclusion criteria were as follows: 1) 20–50 years of age; 2) no
AZF gene microdeletions; 3) no mycoplasma or chlamydia
infections; 4) no medication taken within 3 months; and
5) sperm concentration ≥1 million/ml. Semen samples were
collected by masturbation after 3–7 days of sexual abstinence.
The present study was approved by the IPMCH Ethics Review
Committee and performed according to the Declaration of
Helsinki. Written consent forms were obtained from
all participants.
Semen Analysis and Sperm Chromatin
Structure Assay
After liquefaction, sperm concentration and motility were
assessed by the computer-assisted sperm analysis (CASA)
system (Hamilton Thorne IVOS II, USA), and sperm
morphology was evaluated with Papanicolaou staining
according to the World Health Organization (WHO)
laboratory manual (15). Sperm DFI was determined by a
sperm chromatin structure assay (8). In detail, sperm samples
were first diluted to a concentration of 2 × 106/ml with TNE
buffer (0.01 M Tris–HCl, pH 7.4, 0.15 M NaCl, 1 mM EDTA).
Then, 100 µl of diluted sperm suspension was mixed with 200 µl
of acid-detergent solution (pH 1.2; 0.08 N HCl, 0.15 M NaCl,
0.1% Triton X-100) and incubated for 30 s on ice. After adding
600 µl of acridine orange, the sample was incubated for 3 min
and analyzed by the NovoCyte Flow Cytometer (Agilent,
CA, USA).
Sperm DNA Extraction
Semen samples were washed three times with 1× PBS and
centrifuged at 200 g for 5 min. Somatic cells were eliminated
with 0.1% sodium dodecyl sulfate (3250GR500, BioFroxx) and
0.5% Triton™-X100 (X100, Sigma) in diethypyrocarbonate
(DEPC)-treated water (AM9920, Invitrogen) at 4°C for 15 min.
The spermatozoa were then homogenized with 1-mm beads in
Tissue Lysis buffer (69504, Qiagen) containing 10 mg/ml
Proteinase K and 150 mM DL-dithiothreitol (A100281, Sangon
Biotech, China). Total sperm DNA was extracted using the
DNeasy Blood & Tissue Kit (69504, Qiagen) following the
manufacturer’s instructions.
Quantification of mtDNA Copy Number
The mtDNA-CN was measured by real-time quantitative
polymerase chain reaction (qPCR) using a QuantStudio™ 7
Flex real-time PCR machine (4485701, Applied Biosystems)
(16). Briefly, TaqMan primers were designed in a stable
segment in the minor arc of mtDNA (mtMinArc), and RNAse
P (4403326, ThermoFisher, USA) was used as the genomic DNA
reference. The detailed primer sequences are shown in
Supplementary Table S1. Real-time PCR with three technical
replicates was performed as previously described (16). The
mtDNA-CN was calculated using the following formula:
mtDNA-CN = 2△CT (mtDNA-CN), where △CT (mtDNA-CN) =
CTRNase P − CTmtMinArc.
March 2022 | Volume 13 | Article 849534
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Determination of Sperm Reactive Oxygen
Species Levels
Sperm ROS content was measured by a ROS assay kit (S0033M,
Beyotime Biotech, Shanghai, China) following the manufacturer’s
instructions. The collected sperm samples were washed three
times with 1× PBS (200 g, 5 min) and then incubated with 2’,7’-
dichlorodihydrofluorescein diacetate (DCFH-DA; 10 mmol/L) at
37°C for 20 min. The samples were then washed three times with
1× PBS (200 g, 5 min), and the fluorescent signals of DCFH-DA
oxidized products [2’,7’-dichlorofluorescein (DCF)] were detected
using a Synergy™ H1 Microplate Reader (BioTek Instruments,
Inc., Vermont, USA) under 488-nm excitation. To normalize the
ROS level, ROS per million sperm (ROS/MS) was used to
represent the average ROS content in each seminal sample.

Assisted Reproductive
Technology Procedure
Different protocols of controlled ovarian stimulation (COS),
including gonadotrophin-releasing hormone agonist (GnRH-a)
protocols (long, short, and ultra-long protocols), the GnRH
antagonist protocol, and mild ovarian stimulation, were
performed in 126 couples according to the women’s age,
ovarian reserve, and previous IVF outcomes (Supplementary
Table S2). IVF of oocytes was carried out through inseminating
oocytes with motile sperm or injecting a single sperm into the
cytoplasm of an oocyte. The zygotes were cultured to blastocysts
on Day 5 and freshly transferred into the uterus or cryopreserved
and thawed at a suitable time of embryo transfer.

Outcome Assessment
In terms of ART, only those IVF/ICSI cycles performed within 3
months after the semen analysis were included. The embryonic
outcomes included the fertilization rate, cleavage rate, and top-
quality embryo rate. The fertilization rate was defined as the
number of two pronuclear embryos devised by the retrieved
cumulus–oocyte complex. The cleavage rate was the percentage
of cleaving embryos on Day 3 in all fertilized oocytes. The
cleaving zygotes were classified into Grades 1–5 according to
the numbers and sizes of blastomeres and the percentage of
cytoplasmic fragments (17). The top-quality embryo rate was
calculated as the number of embryos evaluated as Grade 1 or 2
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divided by the number of total embryos. In terms of embryos
transferred into the uterus, pregnancy outcomes were evaluated
in every transfer cycle. Clinical pregnancy was defined as the
presence of an intrauterine gestational sac by ultrasound
examination at a gestational age of 7 weeks.

Statistical Analysis
The characteristics of the participants were summarized.
Continuous variables are presented as the median (interquartile
range) and were compared with the Mann–Whitney U test.
Categorical variables are presented as percentages and were
compared using the chi-square test. Seminal quality was
categorized as normal or abnormal sperm group. Sperm with at
least one parameter, including sperm concentration, motility, and
morphology, lower than the WHO criteria was categorized as
abnormal sperm (concentration ≥15 × 106 per ml; total motility
≥40%; normal forms ≥4%). The associations between the three
measurements (mtDNA-CN, ROS/MS, and DFI) and seminal
quality were analyzed by binary logistic regression. Embryonic
outcomes were analyzed with linear regression. The generalized
linear model (GLM) was performed to adjust the covariates,
including male age, female age, seminal quality, number of
retrieved oocytes, ART strategy, and cycle rank. Regarding
pregnancy outcomes, generalized estimating equations (GEEs)
were used to address the correlation of different transfer cycles in
the same patient. Odds ratios (ORs) and 95% confidence intervals
(CIs) were calculated for the variates in the model. All statistical
analyses were conducted with SPSS statistics 24 (IBM,
Chicago, USA).
RESULTS

Demographic and Biochemical
Characteristics of Participants
During the study period, 401 male participants who fulfilled the
inclusion criteria were included in our study. Among them, 126
with their spouses were subjected to ART within 3 months after
the semen analysis in our center. The demographic characteristics,
sperm parameters, and three measurements are summarized in
Table 1. Compared to the IVF cases, the ICSI cases showed lower
TABLE 1 | Sperm parameters and measurements in all participants and ART cases.

All participants (n = 401) IVF cases (n = 82) ICSI cases (n = 44) P*

Male age, years 33 (31, 37) 33 (30, 36) 35.5(32, 40) 0.009
Female age, years 33 (29, 36) 34 (31, 38) 0.080
Percentage of male with abnormal sperms 71% 55% 59% 0.708
Morphology, % 3 (2, 4) 3 (2, 4) 3 (1, 4) 0.244
Sperm concentration, million/ml 36.99 (21.48, 59.29) 40.62 (26.21, 60.11) 36.26 (18.85, 53.64) 0.250
Total motility, % 41.90 (26.85, 52.30) 42.95 (29.75, 51.60) 34 (17.65, 49.05) 0.014
mtDNA-CN 3.80 (2.10, 7.38) 3.30 (1.96, 8.36) 4.37 (2.39, 9.07) 0.321
ROS/MS 81.33 (48.65, 174.80) 74.15 (49.89, 146.10) 73.00 (47.23, 154.66) 0.976
DFI 9.92 (5.61, 15.86) 7.98 (5.16, 14.56) 11.83 (6.59, 22.71) 0.005
Ma
rch 2022 | Volume 13 | Article 8
The data were analyzed with the Mann–Whitney U test.
mtDNA-CN, mitochondrial DNA copy number; ROS/MS, reactive oxygen species per million sperm; DFI, DNA fragmentation index.
*P value indicates the comparison between IVF and ICSI cases.
ART, assisted reproductive technology; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection.
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total motility and higher DFI levels (P < 0.05). For controlled
ovarian stimulation, 80 cases underwent the GnRH antagonist
protocol, 27 cases underwent mild ovarian stimulation, and 19
cases underwent GnRH agonist protocols, including long, short,
and ultra-long protocols (Supplementary Table S2).

Associations of Sperm mtDNA-CN, DNA
Fragmentation Index, and Reactive
Oxygen Species With Seminal Quality
Univariate logistic regression showed that mtDNA-CN, ROS/
MS, and DFI were all negatively associated with seminal quality
(Supplementary Table S3). Based on the fifth WHO laboratory
manual (15), the seminal samples were divided into two groups
as follows: the normal sperm group (n = 116) and the abnormal
sperm group (n = 285). As shown in Figure 1, the multivariate
logistic regression suggested that only the mtDNA-CN (OR
1.102, 95% CI 1.042–1.166; P = 0.001) and DFI (OR 1.133,
95% CI 1.083–1.185; P = 6.768 × 10-8) were associated with
seminal quality.

Correlations of Sperm mtDNA-CN,
DNA Fragmentation Index, and
Reactive Oxygen Species With
Embryonic Outcomes
Regarding the three embryonic outcomes, a higher sperm mtDNA-
CN level was associated with a lower fertilization rate in all ART
cases (Table 2) (b = −0.629, 95%CI -1.175 to -0.083; P = 0.024). The
quartile analysis showed a similar trend that the fourth quartile
group of sperm mtDNA-CN had the lowest fertilization rate
Frontiers in Endocrinology | www.frontiersin.org 4
(Table 3). However, after adjustment for factors, including male
age, female age, seminal quality, number of retrieved oocytes, ART
strategy, COS protocols, and cycle rank, the adjusted model
indicated that the association between sperm mtDNA-CN and
fertilization rate was not significant (Table 3). There was no
significant correlation between sperm mtDNA-CN and cleavage
rate (b = 0.108, 95% CI -0.344 to 0.560; P = 0.637) or top-quality
embryo ra te (b = 0 .345 , 95% CI -0 .345 to 1 .034 ;
P = 0.325) (Table 2).

Moreover, neither ROS/MS nor DFI was associated with three
embryonic outcomes in all ART cases (Table 2). However, in 92
couples performed with the first ART cycle, there was a
statistically significant association between the DFI and
fertilization rate (Supplementary Table S4), which was not
observed after adjustment for male age, female age, seminal
FIGURE 1 | Associations of mtDNA-CN, DFI, ROS, and male age with seminal quality. mtDNA-CN, mitochondrial DNA copy number; ROS, reactive oxygen species;
DFI, DNA fragmentation index; OR, odds ratio; CI, confidence interval.
TABLE 2 | Embryonic outcomes of patients with ART.

Fertilization rate (%) Cleavage rate (%) Top-quality embryo rate (%)

Coefficients (95% CI) P Coefficients (95% CI) P Coefficients (95% CI) P

mtDNA-CN -0.629 (-1.175, -0.083) 0.024 0.108 (-0.344, 0.560) 0.637 0.345 (-0.345, 1.034) 0.325
DFI -0.128 (-0.567, 0.311) 0.564 0.127 (-0.229, 0.483) 0.482 0.377 (-0.165, 0.919) 0.171
ROS/MS -0.012 (-0.035, 0.012) 0.325 0.005 (-0.013, 0.024) 0.566 0.009 (-0.20, 0.038) 0.532
M
arch 2022 | Volume 13 | Article 8
The data were analyzed with linear regression (n = 126).
ART, assisted reproductive technology; mtDNA-CN, mitochondrial DNA copy number; ROS/MS, reactive oxygen species per million sperm; DFI, DNA fragmentation index; CI, confidence interval.
TABLE 3 | Association of mtDNA-CN with fertilization rate.

mtDNA-CN Fertilization rate

OR (95% CI) P Adj OR (95% CI) a P

Q1 Reference
Q2 0.919 (0.818, 1.033) 0.158 0.921 (0.826, 1.028) 0.144
Q3 0.928 (0.826, 1.043) 0.211 0.968 (0.868, 1.079) 0.553
Q4 0.870 (0.773, 0.979) 0.021 0.915 (0.817, 1.025) 0.125
The data were analyzed with quartile analysis.
Q1–4, quartiles 1–4; OR, odds ratio.
aAdj OR was adjusted for male age, female age, seminal quality, number of retrieved
oocytes, ART strategy (IVF/ICSI), COS protocols, and cycle rank.
CI, confidence interval.
49534
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quality, number of retrieved oocytes, ART strategy, and COS
protocols (Supplementary Table S5).

Pregnancy Outcomes
To date, 79 of 126 couples undergoing ART have undergone
embryo transfer. In total, 114 transfer cycles were conducted,
including 12 fresh embryo transfers and 102 frozen embryo
transfers (Supplementary Table S6). In all transfer cycles,
mtDNA-CN, DFI, and ROS/MS were not associated with
clinical pregnancy rate and live birth rate (Table 4), and this
lack of association remained after adjustment for male age,
female age, seminal quality, types of embryo transfer (frozen or
fresh), ART strategy, IVF cycle rank, COS protocols, and number
of retrieved oocytes (Supplementary Table S7).
DISCUSSION

In the present study, we found that three sperm measurements,
namely, mtDNA-CN, DFI, and ROS, were negatively associated
with seminal quality. In 92 cases conducted with the first ART
cycle, high levels of mtDNA-CN and DFI were correlated with a
poor fertilization rate. However, this correlation was not
significant after adjusting for male age, female age, seminal
quality, ART strategy, number of retrieved oocytes, COS
protocols, and cycle rank. Moreover, pregnancy outcomes were
summarized in 79 cases of transferred embryos, and no
associations were found between the three measurements and
the clinical pregnancy rate or the live birth rate.

During spermatogenesis, most of the cytoplasm is discarded,
while a proportion of mitochondria are retained in the midpiece of
mature sperm to provide energy for flagellar beating (18). The role
of mitochondria in sperm function, especially sperm motility, has
been widely noted. It has been reported that abnormal
mitochondrial structures and functions, such as short midpieces,
abnormal assemblies, and membranous defects, are associated
with poor seminal quality (19, 20). As an important component
of mitochondria, mtDNA encodes 22 tRNAs, two rRNAs, and 13
proteins that are crucial for oxidative phosphorylation (21).
Mutations and deletions of mtDNA have been reported in
asthenozoospermia and shown to be correlated with male
infertility when they present beyond a certain threshold level
(22). In addition, amplification of sperm mtDNA-CN has been
observed in sperm samples from infertile males (23).
Frontiers in Endocrinology | www.frontiersin.org 5
Consistent with previous studies in various species (23–26),
higher mtDNA-CN in abnormal sperm was observed in the
present study. Although the underlying mechanism remains
unclear, the elevated mtDNA-CN in abnormal sperm might be
explained by abnormal gene expression, mtDNA mutations/
deletions, and mitochondria per se. First, abnormal expression
of genes that regulate mtDNA transcription and replication, such
as mitochondrial transcription factor A (TFAM), may be
responsible for the elevated mtDNA-CN. Because TFAM
expression is positively associated with mtDNA-CN and
negatively correlated with sperm motility (27), increased
TFAM expression may lead to the aberrant replication of
mtDNA in abnormal sperm. Second, increased mtDNA-CN
may compensate for mitochondrial dysfunction caused by
mtDNA mutations or deletions (28–30). Moreover, mtDNA-
CN may accumulate due to the imbalance between
mitochondrial fusion and fission. In mitochondrial fission
factor (Mff) mutant mice, sperm mitochondria fail to divide
and mitochondrial sheaths are disjointed, resulting in abnormal
sperm morphology and motility, which ultimately cause reduced
fertility in mice (31).

ROS, a variety of oxygen-derived free radicals, is essential for
sperm maturation, capacitation, hyperactivation, and acrosome
reactions at low levels (32). However, excess ROS leads to
oxidative stress and DNA damage in sperm, including DNA
fragmentation, mtDNA damage, telomere attrition, epigenetic
abnormalities, and Y chromosome microdeletions (33). In the
present study, ROS/MS was correlated with mtDNA-CN in both
normal and abnormal sperm groups, while the association of
ROS/MS and DFI was not observed (Supplementary Figure S1),
indicating that the negative effects of ROS on mtDNA may be
more serious than those on nuclear DNA. Compared to nuclear
DNA, mtDNA is adjacent to the ROS source and more
susceptible to oxidative stress due to a lack of protective
histones and repair system. In the multivariate logistic
regression analysis, the association with ROS/MS was not
significant, yet mtDNA and DFI were still associated with
seminal quality, suggesting that mtDNA and DFI are more
predictive of seminal quality.

For embryo and pregnancy outcomes, it has been reported
that abnormal seminal quality has negative paternal effects in
IVF or ICSI procedures (5, 6, 34, 35). However, the effects of
sperm mtDNA-CN, DFI, and ROS on embryo quality are
ambiguous. In 2019, Wu et al. (13) found that sperm mtDNA-
CN, as well as mtDNA deletions, is inversely associated with the
odds of fertilization and high-quality embryos after adjusting for
male age and measurement batches. In addition, a prospective
study of couples discontinuing contraception has revealed that a
higher mtDNA-CN is associated with a lower pregnancy
probability (14). In contrast, it has been recently reported that
sperm mtDNA-CN is not a prognostic factor for fertilization,
usable blastocyst development, or live birth rates in couples who
undergo ICSI (36). In this study, mtDNA-CN is negatively
associated with the fertilization rate, but the association is not
significant after adjusting for male age, female age, seminal
quality, number of retrieved oocytes, ART strategy, and cycle
TABLE 4 | Pregnancy outcomes of patients with embryo transfer.

Clinical pregnancy Live birth

OR (95% CI) P OR (95% CI) P

mtDNA-CN 0.997 (0.943, 1.055) 0.927 1.014 (0.959, 1.071) 0.635
DFI 1.013 (0.969, 1.059) 0.575 1.011 (0.966, 1.058) 0.651
ROS/MS 1.001 (0.999, 1.004) 0.241 1.000 (0.998, 1.003) 0.784
The data were analyzed with generalized estimating equations.
mtDNA-CN, mitochondrial DNA copy number; ROS/MS, reactive oxygen species per
million sperm; DFI, DNA fragmentation index; CI, confidence interval; OR, odds ratio.
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rank. Thus, further studies on the role of mtDNA-CN in embryo
development are needed.

The role of DFI has been investigated over a longer time span,
and manymeta-analyses and systematic reviews have summarized
the effect of sperm DNA damage on clinical outcomes after IVF or
ICSI (37–41). Overall, these studies have suggested that there is a
difference between the outcomes of IVF and ICSI. Most studies
have reported no significant association of DFI and clinical
outcomes in ICSI. Nevertheless, increased DFI leads to a
negative impact on IVF outcomes, including fertilization rate,
embryo quality, implantation rate, pregnancy rate, and live birth
rate (41, 42). However, the correlation analysis of DFI and IVF
outcomes in these studies was not adjusted for factors, such as
seminal quality, COS protocols, and number of retrieved oocytes.
In the present study, the correlation of DFI with fertilization rate
was also observed in the first ART cycle of couples, but this
correlation was not statistically significant in the adjusted model.
Notably, in the study by Pregl Breznik et al. (42), washed sperm
samples during IVF procedures were analyzed for hyaluronan-
binding assays, DFI, and hyperactivity, which was a good strategy
to attenuate the impact of fluctuations in sperm measurements on
clinical outcomes.

Sperm ROS was reported to have a greater effect on embryo
development than the fertilization process (43). However,
negative associations of ROS with fertilization rate and
pregnancy rate have also been reported (12, 44). In the present
study, however, ROS/MS was not correlated with the fertilization
rate, cleavage rate, top-quality embryo rate, or clinical
pregnancy rate.

The present study prospectively investigated the relationships
between three sperm measurements and clinical outcomes
throughout the ART procedure, including seminal quality,
fertilization rate, cleavage rate, clinical pregnancy rate, and live
birth rate. A major limitation of this study was the limited sample
size for the analysis of embryonic/pregnancy outcomes.
Moreover, the sperm samples analyzed for the three
measurements and sperm quality were collected before the
ART procedure. Even though the analysis of IVF/ICSI cycles
was restricted to within 3 months after the semen analysis, the
fluctuations in sperm measurements and parameters could not
be ignored. Multicenter studies with a larger sample size are
warranted to validate these findings in the future.
CONCLUSIONS

In conclusion, sperm mtDNA-CN, ROS/MS, and DFI were
separately associated with sperm parameters, while elevated
sperm mtDNA-CN and DFI jointly contributed to poor
seminal quality. Moreover, mtDNA-CN was negatively
correlated with fertilization rate in ART cases, which was not
significant after adjusting for male age, female age, seminal
quality, ART strategy, number of retrieved oocytes, COS
protocols, and cycle rank. For pregnancy outcomes, sperm
Frontiers in Endocrinology | www.frontiersin.org 6
mtDNA-CN, ROS/MS, and DFI were not associated with
clinical pregnancy rate or live birth rate. Further studies are
necessary to determine the role of sperm mtDNA-CN, ROS/MS,
and DFI in embryonic and fetal development.
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