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Sharp wave-ripple complexes (SWRs) are hippocampal network phenomena involved in memory consolidation. To date, the
mechanisms underlying their occurrence remain obscure. Here, we show how the interactions between pyramidal cells, par-
valbumin-positive (PV1) basket cells, and an unidentified class of anti-SWR interneurons can contribute to the initiation and
termination of SWRs. Using a biophysically constrained model of a network of spiking neurons and a rate-model approxima-
tion, we demonstrate that SWRs emerge as a result of the competition between two interneuron populations and the result-
ing disinhibition of pyramidal cells. Our models explain how the activation of pyramidal cells or PV1 cells can trigger SWRs,
as shown in vitro, and suggests that PV1 cell-mediated short-term synaptic depression influences the experimentally reported
dynamics of SWR events. Furthermore, we predict that the silencing of anti-SWR interneurons can trigger SWRs. These
results broaden our understanding of the microcircuits supporting the generation of memory-related network dynamics.
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Significance Statement

The hippocampus is a part of the mammalian brain that is crucial for episodic memories. During periods of sleep and inactive
waking, the extracellular activity of the hippocampus is dominated by sharp wave-ripple events (SWRs), which have been
shown to be important for memory consolidation. The mechanisms regulating the emergence of these events are still unclear.
We developed a computational model to study the emergence of SWRs and to explain the roles of different cell types in regu-
lating them. The model accounts for several previously unexplained features of SWRs and thus advances the understanding of
memory-related dynamics.

Introduction
Sharp wave-ripple complexes (SWRs) are brief (50–100ms)
events of elevated and synchronized network activity originating

in the CA3 region of the mammalian hippocampus. They occur
during periods of awake rest and slow-wave sleep (Buzsáki, 1986,
2015) and have been shown to be critically involved in the pro-
cess of episodic memory consolidation (Axmacher et al., 2008;
Eschenko et al., 2008; Dupret et al., 2010; Girardeau et al., 2014).
Sequences of active cells encoding a specific memory are prefer-
entially replayed during SWRs (Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996), and their selective blockage
impairs memory performance (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010). The spontaneous emergence of
SWRs in vitro (Maier et al., 2002, 2003; Hájos et al., 2009) and
their persistence after cortical lesions in vivo (Buzsáki et al., 1983;
Suzuki and Smith, 1988; Bragin et al., 1995) suggest that SWRs
are an intrinsic hippocampal phenomenon. Furthermore, in vitro
SWRs share many properties of in vivo SWRs (for review, see
Maier and Kempter, 2017), a feature that provides the opportu-
nity to study the hippocampal microcircuit supporting the emer-
gence of SWRs in vitro.

Hippocampal cell populations express characteristic activity
patterns during SWRs. Pyramidal cells fire sparsely outside
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SWRs and increase their firing (;6-fold) dur-
ing a SWR event (Csicsvari et al., 1999a; Stark
et al., 2014). Parvalbumin-positive basket cells
(PV1 BCs) have been shown to increase
their firing activity (;3-fold) during SWRs
(Csicsvari et al., 1999b), while remaining
almost silent in non-SWR periods (Csicsvari
et al., 1999b; Klausberger and Somogyi,
2008). Bistratified interneurons, oriens-lacu-
nosum-moleculare interneurons, and axo-
axonic cells have been shown to increase their
firing at different phases of SWR events
(Klausberger et al., 2003; Varga et al., 2012,
2014; Hájos et al., 2013; Pangalos et al., 2013;
Katona et al., 2014, 2017), whereas other types
of interneurons, such as cholecystokinin-posi-
tive BCs and ivy cells, seem to be weakly modu-
lated by SWRs (Klausberger et al., 2005;
Lasztoczi et al., 2011).

The dynamics of SWR generation is not well understood. It was
proposed that SWRs are generated by a buildup of activity in the
CA3 area (Buzsáki et al., 1983; de la Prida et al., 2006); this hypothe-
sis was supported by strong recurrent connectivity among CA3 py-
ramidal neurons (Miles and Wong, 1986; Amaral andWitter, 1989;
Ishizuka et al., 1990; Witter, 2007), a result that has been, however,
recently challenged (Guzman et al., 2016).

Recent studies have emphasized the involvement of inter-
neurons in the initial phase of SWRs (Ellender et al., 2010; Sasaki
et al., 2014; Schlingloff et al., 2014; Bazelot et al., 2016).
Schlingloff et al. (2014) specifically showed that a brief (whole-
slice) optogenetic activation of PV1 cells in vitro triggered events
identical to spontaneous SWRs, regardless of stimulation length.
Additionally, optogenetic silencing of PV1 cells interrupted
SWR events and strongly decreased the likelihood of observing
spontaneous SWRs. How can the early involvement of PV1

interneurons be linked to the initiation of a SWR? In this study,
we address this question and explain various other features of
SWRs using a theoretical approach.

We propose disinhibition as a mechanism that controls the
emergence of SWRs in CA3. Disinhibition has been shown to be
a ubiquitous feature of cortical circuits (Silberberg and Markram,
2007; Pfeffer et al., 2013; Karnani et al., 2016; Pelkey et al., 2017;
for review, see Letzkus et al., 2015). Disinhibitory motifs could
also play an important role in the hippocampus (for review, see
Chamberland and Topolnik, 2012), for example, in establishing
long-lasting memory traces in an object-recognition task
(Donato et al., 2013), and in spatial memory tasks in CA1 (Turi
et al., 2019). In the context of SWR generation, a disinhibitory
mechanism could reconcile, for example, the counterintuitive
results of Schlingloff et al. (2014) by hypothesizing that pyrami-
dal cells are disinhibited as a result of PV1 cell activation and
consequent suppression of another interneuron class.

To evaluate this disinhibition hypothesis, we simulate and an-
alyze minimal computational models of CA3, which reproduce
the basic microcircuitry. We first show that SWRs can emerge
spontaneously, and that the simulated dynamics mimics the ex-
perimental one: SWRs can be elicited by pyramidal or PV1 cell
stimulation (Schlingloff et al., 2014; Bazelot et al., 2016), and the
SWR amplitude is correlated to the intervals between successive
SWRs (Kohus et al., 2016; Jiang et al., 2018), which can be
explained by short-term depression in the connections emerging
from interneurons. Finally, we show that the existence of a bistable
configuration in the network is a useful property to better

understand the principles governing SWR generation in this type of
disinhibitory network. Overall, this study establishes disinhibition
as a key network motif in CA3 and sheds light on the possible roles
of interneurons in controlling network activity during SWRs.

Materials and Methods
We consider a computational model comprising a population of pyrami-
dal cells (P in what follows) and two populations of different types of
interneurons: PV1 BCs (called B in the model) and a class of yet uniden-
tified anti-SWR cells (A in what follows). We model neurons as popula-
tions of spiking neurons that are recurrently connected as depicted in
Figure 1A. Furthermore, to be able to perform a mathematical analysis,
we also consider a simpler model in which the activity of each of the
three populations is described by a firing rate.

As we will show in detail below, in both types of models (spike-based
and rate-based), the coexistence of two classes of interneurons in the net-
work (the B and A cells) allows us to explain, for example, the experi-
mentally observed increase of pyramidal cell firing on activation of B
cells (Schlingloff et al., 2014): when B cells are activated, A cells are
inhibited, and thus release the inhibition of P cells. This interaction can
result in an increase in the firing of P and B cells and a decrease in the
firing of A cells. We interpret this pattern of activation, in which P, B,
and A simultaneously change their firing rates (from low activity to high
activity for P and B cells, and from high activity to low activity for A
cells), as a signature of the initiation of a SWR event. A SWR terminates
when the high activity of A cells is restored, and the activity of P and B
cells is low; this firing pattern is characteristic of the non-SWR state.

In what follows in Materials and Methods, we first describe networks
of spiking neurons and then define and analyze rate models.

Spiking model
Neuron model
To keep models of spiking networks as simple as possible, neurons are
described as conductance-based leaky integrate-and-fire units. The sub-
threshold membrane potential ViðtÞ of cell i obeys

C
dVi

dt
¼ gLðVrest � ViÞ � ½gPi ðtÞðVi � EP

revÞ1 gAi ðtÞðVi � EA
revÞ

1 gBi ðtÞðVi � EB
revÞ�1 Iext (1)

where C= 200 pF is the membrane capacitance and gL = 10 nS is the leak
conductance, resulting in a membrane time constant t = 20ms. Vrest =
�60mV is the resting membrane potential, EPrev ¼ 0 mV, EBrev ¼ �70
mV, and EArev ¼ �70 mV are the reversal potentials of excitation and in-
hibition (of B and A cells, respectively), and Iext ¼ IBG 1 Ii is the sum of
external currents. To elicit activity in the network, a constant back-
ground current IBG = 200 pA is injected to all neurons. Only if explicitly

Figure 1. Network structure. A, The network model comprises a population of pyramidal cells (P) and two groups of inter-
neurons (PV1 BCs and anti-SWR cells, B and A, respectively). Arrows ending with a triangle indicate excitatory connections
(Exc.). Arrows ending with a circle indicate inhibitory connections (Inh.). The connection from PV1 BCs to anti-SWR cells
includes a short-term synaptic depression mechanism (syn. depr.). B, Schematic representation of network behavior through a
particle (gray circle) moving in a potential landscape. The dynamics is characterized by the alternation between non-SWR and
SWR states. Text color represents the dominant interneuron type in either state. External factors (current injection or dynamic
synaptic depression) can be used to trigger transitions between the two states.
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mentioned, neurons receive additional time-dependent currents Ii. Every
time a neuron’s membrane potential reaches the threshold Vthr =
–50mV, a spike is emitted and Vi is reset to the reset potential (for sim-
plicity, it equals Vrest), where it is clamped for a refractory period of length
tIrefr ¼ 1 ms, I 2 fP;B;Ag. These and further neuronal parameters are
summarized in Table 1.

The outgoing synapses from pyramidal cells are modeled as fast
AMPA-type synapses, and the synapses originating from B or A cells
are modeled as GABAA-type synapses (for motivation, see, e.g.,
Ellender et al., 2010). The time-dependent variables gPi ðtÞ; gBi ðtÞ, and
gAi ðtÞ describe the total synaptic conductances resulting from incom-
ing synaptic inputs to neuron i. To simplify the notation, the explicit
time dependence is dropped. The conductance dynamics are
described by the following:

dgPi
dt

¼ � gPi
t P
syn

1
X

f ;j

d ðt � tðf Þj � t IPÞgIPij
dgBi
dt

¼ � gBi
tB
syn

1
X

f ;j

d ðt � tðf Þj � t IBÞgIBij
dgAi
dt

¼ � gAi
tA
syn

1
X

f ;j

d ðt � tðf Þj � t IAÞgIAij ; I 2 fP;B;Ag

(2)

where d ðt � tðf Þj � t IJÞ is the contribution of the f-th incoming spike
(from neuron j at time tðf Þj ); d is the Dirac d function. The quantities
gIPij ; g

IB
ij , and g

IA
ij describe the unitary conductance increases resulting from

a single spike. For example, gIPij is the conductance increase by presynaptic
neuron j in population P connected to postsynaptic neuron i in population
I 2 fP;B;Ag (i.e., these values depend on the synapse type). There is a
delay between a presynaptic spike and the postsynaptic response onset
defined as t IJ ¼ 1 ms for all synapse types. The conductances decay expo-
nentially with time constants tPsyn ¼ 2 ms, tBsyn ¼ 1:5 ms, and tAsyn ¼ 4
ms (Geiger et al., 1995; Bartos et al., 2002; Taxidis et al., 2012). For sim-
plicity, time constants only depend on the presynaptic but not the postsy-
naptic type. The values of the unitary conductance increases are assumed
to be the same for all synapse pairs i, j from population J to population I.
They range from 0.05 to 8 nS; these values and further synaptic parame-
ters are listed in Table 2.

Numbers of cells
We model a network comprising NP = 8200 pyramidal cells (P), NB =
135 PV1 BCs (B in the model), and NA = 50 anti-SWR cells (A) cells.

These numbers are chosen to mimic the number of P and B cells present in
CA3 in a 400-mm-thick rat slice. It has been estimated that the entire rat
hippocampus contains 204,700 pyramidal cells and 25,300 interneurons in
the CA3 region (Bezaire and Soltesz, 2013). Given that a 400-mm-thick slice
represents ;4% of the volume of the rat hippocampus, we estimate that
;8200 pyramidal cells are present in a slice. In CA1, PV1 BCs are thought
to account for ;14% of all interneurons. As we do not have a closer esti-
mate for CA3, we assume the same holds in CA3, yielding;135 PV1 BCs
in a CA3 slice. Given that the identity of anti-SWR cells is unknown, no
such data are available for these cells; we decided to include 50 anti-SWR
cells in the network. In our model, the P, B, and A cells are assumed to be
homogeneous groups, which tremendously facilitates the model setup and
makes an analysis practicable. Thus, here we do not distinguish between
cells that are participating in a SWR and those that are not.

Connectivities
Neurons are randomly connected with connection probability pIJ for
connection J ! I. In contrast to the dominant view of CA3 as a strongly
recurrent region, it was recently shown that CA3 pyramidal cells are, at
least in vitro, only sparsely connected (Guzman et al., 2016). We thus
choose pPP = 0.01. Recurrent connectivity among PV1 BCs is usually
estimated to be;20% in rat CA1 (Sik et al., 1995; Donoso, 2016) and in
mouse CA3 (Schlingloff et al., 2014); a recent study (Kohus et al., 2016)
suggested that connectivity could be as high as 66% (in mouse CA3, in
vitro); nevertheless, we consider the conservative estimate of 20% and
thus set pBB = 0.2. A large body of work studies the bidirectional connec-
tivity between pyramidal cells and interneurons; however, only few stud-
ies are specific for PV1 cells (possibly BCs); and, to our knowledge,
none of these addresses CA3. Mouse CA1 studies (Lee et al., 2014) sug-
gest that the connectivity from PV1 BCs to pyramidal cells could be in
the range of 45%-50%, and the one from pyramidal cells to PV1 BCs is
;16%-48%. We choose pPB = 0.5 and pBP = 0.2.

For the connectivity from and to anti-SWR cells, we choose the val-
ues: pAP ¼ 0:01; pPA ¼ 0:6; pAA ¼ 0:6; pAB ¼ 0:2, and pBA = 0.6. These
values are in line with experiments showing that the connectivities
between principal cells and interneurons, as well as connectivities among
interneurons, are distributed in the range 0%-90%: for hippocampus
(Böhm et al., 2015; Kohus et al., 2016; Pelkey et al., 2017; Booker and
Vida, 2018); for neocortex (Kwan and Dan, 2012; Walker et al., 2016;
Riedemann, 2019). Future information about the identity of anti-SWR
cells will help refining the connectivity values. The value chosen for con-
nectivities from the population of 50 A cells to the other populations
(pPA ¼ pBA ¼ pAA ¼ 0:6) imply that each neuron in the postsynaptic
population receives, on average, 50� 0.6 = 30 synapses from the presyn-
aptic A population. In general, it has been shown that as long as this
number of synapses is much larger than 5, the behavior of a network
does not critically depend on connectivity, but more on the product of
connectivity and efficacy of the synapses (Chenkov et al., 2017). These
results and our numerical analysis of the network dynamics of rate mod-
els indicate that a large number of parameter combinations reproduces
the desired network behavior, suggesting that the exact values of the con-
nectivities do not impact the main model outcomes. All connectivity pa-
rameters are listed in Table 2.

Table 1. Intrinsic neuronal parameters for the spiking network (used in Figs.
2-4, 9, 11, 13-15)

Parameter Value Definition

NP 8200 No. of pyramidal cells (P)
NB 135 No. of PV1 BCs (B)
NA 50 No. of anti-SWR cells (A)
t Psyn 2 ms Glutamatergic synaptic time constant

t Asyn 4 ms GABAergic synaptic time constant (A cells)

t Bsyn 1.5 ms GABAergic synaptic time constant (B cells)
gL 10 nS Leak conductance
Vrest �60 mV Resting potential
Vthr �50 mV Voltage threshold
EPrev 0 mV Excitatory reversal potential

EArev �70 mV Inhibitory (A) reversal potential

EBrev �70 mV Inhibitory (B) reversal potential
C 200 pF Membrane capacitance
tPrefr 1 ms Refractory period P

tBrefr 1 ms Refractory period B

tArefr 1 ms Refractory period A

IBG 200 pA Constant background current

Table 2. Synaptic and connectivity parameters for the spiking network (used
in Figs. 2-4, 9, 11, 13-15)a

Connection Connection probability Conductance increase (nS) Synaptic delay (ms)

P ! P pPP ¼ 0:01 gPP ¼ 0:2 t PP ¼ 1
P ! A pAP ¼ 0:01 gAP ¼ 0:2 t AP ¼ 1
A ! A pAA ¼ 0:6 gAA ¼ 4 t AA ¼ 1
A ! P pPA ¼ 0:6 gPA ¼ 6 t PA ¼ 1
P ! B pBP ¼ 0:2 gBP ¼ 0:05 t BP ¼ 1
B ! B pBB ¼ 0:2 gBB ¼ 5 t BB ¼ 1
B ! P pPB ¼ 0:5 gPB ¼ 0:7 t PB ¼ 1
A ! B pBA ¼ 0:6 gBA ¼ 7 t BA ¼ 1
B ! A pAB ¼ 0:2 gAB ¼ 8 t AB ¼ 1
aMore details are provided in Spiking model. gAB does not include the contribution of short-term synaptic
depression.
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Short-term plasticity
A short-term synaptic depression mechanism is assumed to be present
at the B ! A connections, which modulates the strength of the unitary
synaptic conductance increases. The synaptic increases gABij from neuron
j in population B to neuron i in population A are scaled by a factor eABij
describing the synaptic efficacy, which evolves over time as follows:

deABij
dt

¼ 1� eABij
tD

�
X

f

d ðt � tðf Þj ÞeABij hD: (3)

Every time a cell j in population B spikes, the gBi conductance for the
connected postsynaptic cells i is increased by the product eABij gABij (instead
of only gABij as in the nondepressed case, see Eq. 2), and the eABij variables
of all synapses starting from the spiking cell j are decreased by an
amount eABij hD. Hence, higher activity (i.e., more spikes per second) of
one cell in population B results, on average, in a lower efficacy of synap-
tic transmission to its connected cells in population A. To prevent
the emergence of negative conductance changes, eABij is restricted to the
interval [0, 1] through the dynamics described in Equation 3. The
depression mechanism, with values chosen as hD = 0.18 and tD =
250ms (see also Table 3), is responsible for the termination of a SWR
event and, more in general, for driving the system back to the non-SWR
state. In Results, the synaptic efficacy variable eAB defines the averaged
value of eABij across all B ! A synapses.

If not explicitly mentioned, all other conductance increases gIJij are
kept fixed. In specific cases (see Additional short-term plasticity mecha-
nisms), the P ! A connection is considered to be plastic, with a short-
term facilitation mechanism, and the B ! P has a short-term depression
mechanism analogous to the one described above. For the latter case, the
gPBij conductance is scaled by a synaptic efficacy variable analogous to
what is described by Equation 3. For the simulations with additional
B ! P synaptic depression, we choose hD = 0.18 and tD = 250ms, anal-
ogous to the B ! A depression. All other parameters are unchanged.

The facilitation at the synapses P ! A in Additional short-term plas-
ticity mechanisms is modeled as follows: the variable zij � 0 describes
the synapse-specific effect of facilitation. In the case of no facilitation,
zij = 0. The facilitation variables evolve over time as follows:

dzij
dt

¼ � zij
t F

1
X

f

d ðt � tðf Þj Þðzmax � zijÞh F: (4)

Every time a cell j in the P population spikes, the AMPA conductance
gAPij of a connected cell i (see Eq. 2) is scaled by a factor ð11zijÞ, and the
zij variables of all synapses i whose presynaptic cell is j are increased by
an amount ðzmax � zijÞh F . The value zmax is a constant defining an
upper bound for the increase in facilitation. When the system is in
the non-SWR state, zij decays exponentially to the average value

znon�SWR ¼ P0zmaxhFt F
11P0hFtF

, where P0 is the firing rate of P cells in the non-

SWR state (;2 spikes/s; see Fig. 2A). To be able to better compare the
default network (with only B ! A depression) to the case where extra
facilitation is added, we additionally normalize gAPij by dividing it by

ð11znon�SWRÞ. This assures that when the facilitation is active, but has
reached znon�SWR, the P ! A synapses have the same average strength
(i.e., the same conductances) as in the model with no facilitation. For the

simulations with additional P ! A synaptic facilitation, we choose
h F ¼ 0:15; tF ¼ 250 ms, zmax = 1. All the other parameters are as in
the default model. For the simulation where P ! A facilitation is the
only plastic mechanism, we need to adjust the parameters for the net-
work to be in a regimen where the non-SWR state is destabilized and
events can start spontaneously with a large enough incidence (if the inci-
dence is too low, we cannot observe correlation between interevent
interval [IEI] and event amplitude). To this end, we choose gAB = 4.5 nS,
gBA = 5.5 nS, tF = 230ms, hF = 0.32, zmax = 1, and do not normalize gAP

by its non-SWR state value (znon�SWR). g
AB and gBA have to be decreased

in the P ! A facilitation-only scenario: with default values and fixed
B ! A synaptic efficacy at eAB ¼ 0:5, the system would stay in the SWR
state because the facilitation effect would be counterbalanced by a too
strong B ! A connection.

Desired firing rates
To construct the spiking network (Fig. 1A), whose dynamics is shown in
Figure 2 and in Results, we aim to set the connections among the differ-
ent populations such that the simulated firing rates of P, B, and A cells
match the desired firing rates of pyramidal cells, PV1 BCs, and anti-
SWR cells, respectively. Briefly, experimentally observed firing rates for
pyramidal cells in non-SWR periods are in the range of 0.03-3 spikes/s,
and in the range of 1-13 spikes/s for SWR periods (Ylinen et al., 1995;
Klausberger et al., 2003; Lapray et al., 2012; Hájos et al., 2013; English et
al., 2014), although they can reach 40 spikes/s (English et al., 2014).
Firing rates of PV1 BCs are in the range of 2–20 spikes/s in non-SWR
periods and up to ;120 spikes/s during SWRs (Klausberger et al., 2003;
Lapray et al., 2012; Varga et al., 2012; Hájos et al., 2013). We assume that
anti-SWR cells fire;12 spikes/s in non-SWR states and are almost silent
during SWRs (firing rate;1 spike/s).

The network is constructed such that, in the non-SWR state, the P
and A populations are in an asynchronous irregular (AI) regimen, which
could reflect the state of CA3 at rest (Ikegaya et al., 2013). In this state,
population firing rates are tuned to have P cells firing at;2 spikes/s (i.e.,
;16,400 spikes/s in total for the whole population), A cells at ;12
spikes/s (i.e., ;600 spikes/s in total), and B cells to be almost inactive,
with average firing rates at ;1 spike/s (i.e., ;135 spikes/s in total). The
SWR state is dominated by a strongly active P-B subnetwork, where P
cells fire at 43 spikes/s, B cells fire at;90 spikes/s, and A cells are almost
inactive, with average firing rates at ;1 spike/s. Because we have
assumed that P cells are a homogeneous population, the chosen average
firing rate of 43 spikes/s in the SWR state is larger than what is observed
as an average value in experiments. However, as motivated further below
in this section, the particular value of the firing rate is not important as
long as it is well above the spontaneous rate. We nevertheless use the
value of 43 spikes/s here to accentuate the highly active SWR state.

Requirements on pathway strengths
As also discussed in Rate model and in Results, the relative strengths of
the incoming pathways to a given population need to be adjusted to
guarantee that cell stimulation yields SWR events that are similar to
experimentally recorded SWRs.

Crucially, the disynaptic pathway B ! A ! P should be stronger
than the direct connection B ! P for the activation of B cells to result in
an increase of pyramidal cells firing. In summary, requirements on con-
verging pathways in the network of Figure 1 are as follows:

1. Pathway P ! B ! A should be stronger than P ! A. This guarantees
that the activation of P decreases A firing.

2. Pathway P ! B should be stronger than P ! A ! B. This guarantees
that the activation of P increases B firing.

3. Pathway B ! A ! P should be stronger than B ! P. This guarantees
that the activation of B increases P firing (i.e., it activates the disinhibi-
tion mechanism).

4. Pathway A ! P should be stronger than A ! B ! P. This guarantees
that the inactivation of A increases P firing.

The enforcement of the requirements 1-4 guarantees that, on cell
stimulation, the firing rates of all populations change as desired. Two
additional sets of converging pathways exist in the network: (1) the

Table 3. Synaptic depression and facilitation parameters used to simulate the
spiking model (Figs. 2-4, 9, 11, 13, 14)a

Parameter Value Definition

h D 0.18 Depression rate of connection B ! A
t D 0.25 s Synaptic depression time constant of connection B ! A
h F 0.15 Facilitation rate of connection P ! A
t F 0.25 s Synaptic facilitation time constant of connection P ! A
zmax 1 Upper bound for increase in facilitation of connection P ! A
aFor the simulations in Figure 15, we use h F ¼ 0:32 and t F ¼ 230 ms. For details, see Eqs. 3, 4.
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pathways B ! A and B ! P ! A; and (2) the pathways A ! B and
A ! P ! B. However, pathways in (1) collaborate to decrease the acti-
vation of A, and pathways in (2) collaborate to increase the activation of
B on inactivation of A; thus, no requirements need to be enforced.
Indeed, these conditions demand that at least one of two pathways
(B ! A and B ! P ! A, and A ! B and A ! P ! B, respectively) is
strong enough for a current injection to elicit the desired response, but
these requisites are already included in the requirements 1-4 (e.g., a suffi-
ciently strong B ! A is included in requirements 1 and 3).

The strength of a pathway is a combination of the average connection
strength (which in turn depends on the connection probability, the size of
the presynaptic population, and the contribution of a single incoming post-
synaptic potential) and the input-output relation of the postsynaptic popula-
tion (for a more formal way of defining these pathway strengths, see
Bifurcation analysis of rate model). In formulating these requirements, we
are implicitly incorporating the recurrences of the populations (e.g., the
recurrentA connection in the pathway B ! A ! P), and we are neglecting
any temporal structure (delays) in the network.

Constructing the spiking network
To construct a network, we start by fixing the numbers of cells and the
connection probabilities of P, B, and A cells using the values already
introduced (Tables 1 and 2). To tune the values of the unitary conduct-
ance increases gIJij , for I; J 2 fP;B;Ag, we rely on the observation that
the two groups of interneurons B and A should be active at different
stages. B cells should be almost inactive in non-SWR states, and have
high firing rates during SWRs, whereas A cells should be tonically active
throughout the non-SWR state and stop firing during the SWR-state.
Thus, both the non-SWR and SWR states are dominated by a subnet-
work of active cells: the pyramidal cells, and only one type of inter-
neuron. On a first approximation, we consider the firing rate of the
other, nondominant interneuron type as being close to 0 spikes/s.

For this reason, we first construct the network starting from the P-A
subnetwork in isolation. We assume that the unitary conductance
increases gIJij are the same across each i, j combination (i.e., they only
depend on the synapse type), and choose the values gPPij ; g

AP
ij ; g

PA
ij , and

gAAij such that the neurons in both populations fire asynchronously
and irregularly (AI regimen), with mean firing rates P � 2 spikes/s and

A � 12 spikes/s. These firing rates have been chosen to be close to exper-
imental values, but the exact choice of the target values does not impact
the results presented here. We choose conductance increases values
gAPij ¼ 0:2 nS, gPAij ¼ 6 nS, gAAij ¼ 4 nS, and gPPij ¼ 0:2 nS. While choos-
ing these values, we enforce the conditions on the pathway strengths by
selecting a small enough gAPij (requirements 1 and 2) and a large enough
gPAij (requirements 3 and 4). These requests are relatively easy to fulfill
because gPAij is expected to be large for the inhibition to stabilize the P-A
subnetwork; and, vice versa, A cells should not receive too much excita-
tion. The chosen values of the conductance increases also give rise to
irregular and asynchronous firing (AI state), as can be seen by monitor-
ing the coefficient of variation (CV) and the SD of the instantaneous
population rates (Gaussian filter time constant is 3ms) (Vogels et al.,
2011): in the P-A network, neurons fire fairly irregularly (CV. 0.5) and
asynchronously (SD, 1 spike/s).

Similarly to the P-A subnetwork, we then focus on the isolated P-B
subnetwork and tune the conductance-increase values gPBij ; g

BP
ij , and gBBij

such that P cells fire close to P � 43 spikes/s, and B cells close to B� 90
spikes/s. We use the value of gPPij defined in the subnetwork P-A. Also in
this case, firing rates have been chosen to be close to experiments, but
other choices are also possible. Nevertheless, the firing rates of P, B, and
A cells should be sufficiently different in the SWR and non-SWR states
(at least ; 5 spikes/s difference) for the system to jump between clearly
distinguishable states. As a result, conductance increase values are
gBPij ¼ 0:05 nS, gPBij ¼ 0:7 nS, and gBBij ¼ 5 nS. Requirements on the
strengths of pathways are enforced by selecting a sufficiently large gBPij
(requirements 1 and 2) and a small gPBij (requirements 3 and 4). Actually,
the choice of gPBij is a compromise between these requirements and the
fact that the connection B ! P should be strong enough for the inter-
neurons to control the spiking of P cells. As a result, it is difficult to
obtain a network in an AI state: the units are firing regularly (CV, 0.1)
and in synchrony (SD. 1 spike/s). The synchronicity of unit firing is
clearly visible in the power spectrum (the peak oscillation frequency is
135Hz) and results in the ripple-like oscillations in the simulations
described in SWRs can be generated in a CA3-like spiking network. The
strength and the delay of the recurrency among interneurons as well as
the feedback loop between interneurons and excitatory cells regulate the
frequency of oscillation (Brunel andWang, 2003; Donoso et al., 2018).

Figure 2. The spiking network is bistable for intermediate, fixed synaptic efficacy. A, Simulation results as synaptic efficacy is clamped at different values. For eAB = 0.5 (average value of syn-
aptic efficacies of synapses B ! A), two stable states exist. Depolarizing-current injection to P cells can switch the system from the non-SWR state to the SWR state. Hyperpolarizing current
to P cells restores the non-SWR state. Population rates for the non-SWR state are as follows: P= 1.94 spikes/s, B= 1.32 spikes/s, A= 12.56 spikes/s; and during the SWR state as follows:
P= 43.60 spikes/s, B= 91.87 spikes/s, A= 1.12 spikes/s. After a switch of eAB from 0.5 to 0.8, the network jumps to the SWR state because of internal fluctuations. There is a small delay with
respect to simulation start (right black dashed line), compared with the nearly instantaneous jump in the case of current injection and eAB = 0.5 (left black dashed line). The non-SWR state is
restored for eAB = 0.2. Parameters used to simulate the spiking network are listed in Tables 1–3. B, Schematic of the dominant subnetworks in non-SWR and SWR states (annotations as in
Fig. 1A). Top, non-SWR state: the interaction between P and A cells governs the network, whereas B cells are almost inactive. Despite the low firing rate of P cells, their inputs to A cells are
needed to keep A cells active. Bottom, SWR state: active P and B cells dominate the network, whereas A cells are almost inactive.
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Up to this point, we have built two subnetworks that display clearly
distinguishable states of stable firing of P and A, and P and B cells,
respectively. We now wish to connect the two subnetworks by defining
the reciprocal connections between the interneurons. First, we add A
cells to the highly active P-B subnetwork, with the connections A ! A
and P ! A from the P-A subnetwork simulations, and define a new
connection B ! A with gABij ¼ 8 nS, such that A cells fire at ;1 spike/s
(i.e., are almost inactive in this state). The “disinhibitory” connection
B ! A is expected to be strong to control the firing of A cells and to
comply with requirements 1 and 3. This scenario is constructed to repre-
sent the SWR state, where we assume that the neglected connection
A ! P and the not yet defined connection A ! B play a negligible role
because A cells are almost inactive.

As a next step, we simulate a network with all the connections
defined in the previous steps, add the new connection A ! B, and
choose gBAij ¼ 7 nS, such that B cells fire close to 1 spike/s when the P-A
subnetwork is highly active. This value of the conductance increase is a
compromise between the requirements 2 and 4 (which suggest that the
connection A ! B should be weak enough) and the fact the connection
A ! B should be strong enough for B cells to be inhibited. This scenario
corresponds to the non-SWR state.

The full network constructed with this procedure has two embedded
stable states: one dominated by the P-A subnetwork (non-SWR state)
and one dominated by the P-B subnetwork (SWR state). Thus, there is
an intrinsic bistability structure in the network: external mechanisms
(e.g., current injection) can be used to switch between the two states.
The conductance increase values gABij and gBAij regulate the stability of the
two states. They are chosen to be large enough to inhibit the inactive
interneuron type in each state, but should not be too large, so as to guar-
antee that both states are stable. For example, even when initialized to be
in the non-SWR state, a network with a too strong B ! A connection
would spontaneously jump to the SWR state. This is because the low ac-
tivity of the B cells is amplified by a strong enough B ! A connection
that suffices to inhibit the A cells.

To generate a network exhibiting spontaneous SWRs, we destabilize
the two stable states by modifying the conductance-increase value gABij :
increasing the strength of the B ! A connection promotes the inhibi-
tion of A cells by B cells and thus favors the initiation of spontaneous
events. Moreover, to allow for spontaneous jumps from the SWR to the
non-SWR state, we add a synaptic depression mechanism at the B ! A
synapses (with dynamics described by Eq. 3), which is responsible for
the termination of the SWR state.

Together with the choice of the reciprocal connections among inter-
neurons, the depression parameters tD and hD allow fluctuations in the
activity of B cells to start a SWR event. In particular, tD should be larger
than the duration of a SWR event (tD � 100 ms), but smaller than the
average IEI between SWRs (tD � 1000 ms), and hD should be such that
multiple spikes of the B cells are needed to terminate a SWR. As B cells
fire at;90 spikes/s, we expect a B cell to fire, on average, 5 spikes/SWR.
Furthermore, the existence of spontaneous SWRs with a correlation
structure as shown in Features of spontaneous and evoked SWRs match
experimental results is controlled by the interplay of the parameters
gABij ; gBAij , tD, and hD. We took these aspects into account to choose the
values of tD and hD (tD = 250ms, hD = 0.18). In summary, the synaptic
parameters used to simulate the default spiking network are listed in
Tables 2 and 3.

Simulation analysis
All simulations are performed in Brian (Goodman and Brette, 2009),
and data analysis is performed in Python (www.python.org). Population
firing rates are computed by averaging the instantaneous firing rates,
averaged across neurons, with a Gaussian smoothing window with width
3ms.

We use the modulation of population firing rates as a signature
of a SWR event: an increase of P cells firing to� 43 spikes/s, an
increase of B cells firing to� 90 spikes/s, and a decrease of A cells to
values ,2 spikes/s mark the start of a SWR event. All conditions
have to be simultaneously fulfilled for a SWR event to be detected.

To trigger a SWR event, we randomly select 60% of the cells in a
given population and stimulate them with currents uniformly distrib-
uted between I=0 pA and a maximal value IP = 300 pA, IB = 500 pA, or
IA = –500 pA for intervals of length 10ms. The short stimulation times
are comparable with the duration of optogenetic stimulation used in
experiments (Schlingloff et al., 2014; Kohus et al., 2016). Stimulation
results are hardly affected by differences in the stimulation parameters,
as long as the stimulation paradigm is sufficient to initiate a SWR event.

In all simulations shown in this article, the dynamic variables of
Equations 1 and 2 (Vi, gPi ; g

B
i ; g

A
i ) are initialized for the system to be in

the non-SWR state.

Defining the local field potential (LFP) signal
To define the LFP in stratum pyramidale, we assume that the main con-
tribution to the field is provided by perisomatically targeting interneur-
ons (Beyeler et al., 2013; Schönberger et al., 2014), namely, PV1 BCs,
targeting the cell bodies of pyramidal cells. A main criticism to this
approach is that the cell morphology and nonperisomatic (e.g., dendri-
tic) inputs might also contribute (Einevoll et al., 2013; Chizhov et al.,
2015). However, a detailed description of the LFP (see e.g., Schomburg
et al., 2012; Ramirez-Villegas et al., 2018) is beyond the scope of the
simplified point neuron scenario considered here because of its compu-
tational complexity (only 150 CA3 cells were simulated in Ramirez-
Villegas et al., 2018). Therefore, we resort to this simple approach to
define an approximated LFP trace. We believe that multicompartmental
models, which would critically rely on the unknown dendritic locations
of synapses from A cells, would not improve the description of the LFP.

We implicitly assume that anti-SWR cells do not contribute to the
LFP. This assumption could hold if anti-SWR cells target pyramidal cells
at the distal dendrites, so that their contribution at the pyramidal cells
somata can possibly be neglected. Notably, Figure 3 shows that there are
almost no anti-SWR-cell-related currents impinging onto pyramidal
cells during SWRs (our events of interest) because most A cells are inac-
tive. Thus, we entirely focus on the contribution from PV1 BCs to define
the LFP.

In summary, we define the LFP as a filtered version of the synaptic
input current from B to P cells, sign-reversed and averaged over all
B ! P synapses. To obtain the sharp wave and ripple components of a
SWR event, we filter the sign-reversed mean B input current to P cells in
two different frequency bands, using a Butterworth filter of order 2. The
sharp wave component is obtained by low-pass filtering the signal up to
5Hz. The cutoff frequency is chosen for the filter to cover the whole du-
ration of a postsynaptic event. The ripple component is obtained by
bandpass filtering the signal in the range 90-180Hz, around the peak fre-
quency of 135Hz (the peak is computed in the power spectrum).

Quantification of SWR properties
For spontaneous and evoked SWR events, we define the following prop-
erties: IEI, amplitude, and the full width at half maximum (FWHM).
The amplitude is the peak value of the sharp wave (SW) component,
that is, the low-pass filtered LFP signal; peaks are detected using a script
available at Duarte (2015). To compute the FWHM, we first define the
mean baseline value as the mean across all events of the average value of
the low-pass filtered signal in periods preceding a sharp wave by 200-
100ms. Then, we calculate the half maximum by finding the mean value
of the event amplitude and the mean baseline value, for each event. We
define the start of a sharp wave event as the time of the sharp wave signal
at half maximum preceding the peak, and the event end as the time of
the sharp wave signal at half maximum following the peak. The IEI is
defined as the distance between the end of an event and the start of the
following event. Events in the sharp wave component whose peaks are
smaller than 30pA or separated by ,100ms are discarded from the
analysis. As the IEIs are defined based on the FWHM, IEIs,100ms are
possible (see Results), although the peaks are separated by .100ms. To
study the properties of evoked events in Features of spontaneous and
evoked SWRs match experimental results, we inject an extra current to
randomly selected 60% of B cells, at intervals of;2 s. For each B neuron,
the injected current is uniformly sampled from the interval [0, 600] pA
and is injected for T=10ms. To avoid artifacts because of rhythmic
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stimulation, each stimulation time is shifted by a delay value uniformly
sampled from the interval [0, 90] ms. The results of these simula-
tions and those presented in Results do not qualitatively change
when current injection to B cells is replaced with a depolarizing cur-
rent injection to P cells, or a hyperpolarizing current injection to A
cells, as long as the stimulation paradigm is strong enough to start a
SWR event. Pearson correlation coefficients are computed to esti-
mate the correlation between event amplitude and previous IEI
and between event amplitude and next IEI, in both spontaneous
and evoked scenarios. Only the properties of evoked events and
the interval to the next (or previous) spontaneous SWR events are
shown in the analysis of evoked events. The distribution of previ-
ous IEI-amplitude pairs is fitted to an exponential function
f ðxÞ ¼ að1� expð�bxÞÞ1c with parameters a, b, and c using a
nonlinear least-squares method.

In the simulations with B ! P depression and P ! A facilitation
(shown in Additional short-term plasticity mechanisms), we monitor
the system for 10min and analyze the activity as described above. For
the detection of spontaneous events in the scenario where P ! A facili-
tation is the only plastic mechanism, the threshold to detect sharp wave
peaks is adjusted to 40pA and the minimal distance between peaks to
200ms to account for noisier events.

Definition of mean f-I curves in the spiking network
To define the spiking neurons’ f-I curves shown in Figure 4, we ran-
domly select 50 neurons in each population, and add new neurons to the
network with the same neuronal properties and incoming connectivity
structure. However, we do not connect these neurons back to the net-
work, i.e., we create copies of the selected neurons in order to study how
their activity depends on the input level. To do so, we stimulate these
neurons with additional constant currents of different intensities (from
�100 to 200 pA, in steps of 5 pA), for T = 20 seconds. We distinguish
periods during which the network is in either the non-SWR or the SWR
state; in the latter case, depolarizing current is transiently injected to the
B cells in the beginning of the simulation for the system to jump to the
SWR state. All neurons in the network also receive a background current
of 200 pA, as in all other simulations. We record the mean number of
spikes per second, and plot this quantity against the total average input

current that the neurons receive. This total current is the sum of the
external injected current, the background current, and the synaptic cur-
rents caused by incoming presynaptic activity. The gray lines in Fig. 4
depict single neurons’ f-I curves. Additionally, the colored lines describe
the mean f-I curves, averaged across neurons for each input current
value. Finally, to estimate which part of the input range is more relevant
to the populations in each state, we define the shaded area. The darker
part represents the mean input current value (across time and neurons)
seen by a neuron in a given state. The color becomes lighter until it fades
at values of mean input 6 one SD (value computed by averaging across
time and neurons).

Rate model
Motivation
So far, we have introduced a spiking model that reproduces experimental
features of SWR generation. As also demonstrated in Results, the spiking
model exhibits SWR events spontaneously and in response to current
injection, and the SWR dynamics match those seen experimentally.
Thus, the spiking model is able, despite its simplicity, to capture the
main features of the biological network of interest and to make testable
experimental predictions. Additionally, it has the advantage of being
defined by variables that are close to experimentally measurable
quantities.

However, the large number of parameters makes the system difficult
to tune and impedes an understanding of the network dynamics. Why,
and for which combination of parameters, does the system reproduce
the experimentally observed behavior?What is the impact of one specific
parameter on the dynamics of the whole system? How robust is the net-
work to changes of parameters? Answers to such questions remain elu-
sive without a thorough mathematical analysis, that is almost impossible
to perform in a spiking network like the one presented above.

This motivates the quest for a simpler network description, where
only the average population behavior, and not the single cells’ activity, is
considered. To this end, we show in what follows how to define a rate
approximation of the spiking model. Rate models (Wilson and Cowan,
1972; Breakspear, 2017) provide an accurate representation of the as-
ymptotic behavior of the network under the assumption of describing
large and homogeneous populations of neurons (i.e., all neurons share

Figure 3. Definition of approximated LFP. A, Raster plot showing the population rate (pop. rate) of P cells during a spontaneous and an evoked SWR event. Yellow bars represent the inter-
val of length 10ms during which current is injected to B cells. B, Average population firing rate of P cells. C, Input current from P (red), B (blue), and A (green) cells impinging onto pyramidal
cells, averaged across all neurons. The averaged input current from B to P cells is sign-reversed and used as an approximation of the LFP. D, LFP signal shown is low-pass filtered up to 5 Hz to
extract the sharp wave component. E, LFP is bandpass filtered in the 90-180 Hz range to extract the ripple component.
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similar intrinsic neuronal properties, receive the same
amount of external input, and are coupled by statisti-
cally homogeneous connectivity). Similar to Wilson and
Cowan (1972), we model the dynamics of the interac-
tions between populations using ordinary differential
equations, with an explicit formulation of the popula-
tions’ input-output transfer functions to allow for the
computation of the system’s stationary states. The varia-
bles P, B, and A describe the average firing rates of the
neurons in the three different populations of spiking cells.

Rate-model equations
We define the rate model as a set of ordinary differential
equations as follows:

t P
@P
@t

¼ �P1fPðWPPP�WPBB�WPAAÞ

tB
@B
@t

¼ �B1fBðWBPP�WBBB�WBAAÞ

tA
@A
@t

¼ �A1fAðWAPP�WABBe�WAAAÞ
@e
@t

¼ 1� e
t d

� h dBe;

(5)

where the first three equations describe the dynamics of
the populations P, B, and A, and the fourth equation the
synaptic depression mechanism, which corresponds
to the synaptic depression in the spiking case. e modu-
lates the strength of the connection B ! A (third equa-
tion). The transfer functions (also called activation
curves) fI, with I 2 fP;B;Ag, describe how a population I responds to
its incoming inputs. The variables WIJ are positive and represent the av-
erage strength of the synaptic connections from population
J 2 fP;B;Ag to population I, and td and hd are the depression time
constant and rate, respectively. In what follows, we briefly sketch how a
rate network can be derived starting from the spiking network presented
in the previous section.

Activation functions
First, we focus on the definition of the activation functions fI. For asyn-
chronously firing neurons, single neurons’ f-I curves are sufficient to
define the populations’ activation curves (Brunel, 2000; Brunel and
Wang, 2003; Gerstner et al., 2014). However, as we have argued in
Constructing the spiking network, the spiking network displays bistabil-
ity for fixed, intermediate values of synaptic depression (see also Figs. 1,
2). For this reason, we need to consider the stationary f-I curves for each
population in both SWR and non-SWR states.

In each of the states, the neurons receive a synaptic input that
depends on the firing rate of all presynaptically connected neurons in
the network. As the firing rates of the populations are drastically differ-
ent in the two states, we expect the input levels to be also different in ei-
ther state. To better visualize this effect, Figure 4 shows the mean f-I
curves for each population in each stable state (for eAB ¼ 0:5: average
synaptic efficacy in the spiking model). The shaded areas describe the
distribution of input currents arriving, on average, to a neuron of a given
population in either state; indeed, we can see that they are quite different.
Furthermore, the different input levels characteristic of either state also
affect the shape of the f-I curves. Indeed, the f-I curve of a neuron receiving
noisy inputs from other cells in the network can deviate quite strongly from
the f-I curve of the neuron considered in isolation for constant input
(Fellous et al., 2003; Gerstner et al., 2014; Shomali et al., 2018).

How can we nevertheless describe a population with a single activa-
tion curve? For example, for the B population, fBðIÞ should describe
accurately the input-output relation for lower input currents in the non-
SWR state (when the synaptic input is I � 57678 pA, mean6 SD), and
for higher input currents in the SWR state (where the input is
I � 2776173 pA). Thus, we define an empirical f-I curve by taking the
mean f-I curve of the spiking network in the non-SWR state below a

given threshold current, and the mean f-I curve of the SWR state above
this threshold. The threshold is defined as the current where the mean
input current minus 1 SD arrives to the B population in the SWR state.
This state can be considered as the “active” state for B cells because they
are almost silent in the non-SWR state.

We then fit this empirical f-I curve to a softplus function
f ðIÞ ¼ Flnf11 exp½kðI1 sÞ�g (Dugas et al., 2001; Glorot et al., 2011)
(F=1 spike/s), where the parameters k and s are optimized via least-
square error minimization. The softplus function shows a convex
increase for small I and grows linearly as kðI1sÞ for large I. For the fit-
ting, k [in units of 1/pA] is constrained to the interval [0, 2]; and s (in
units of pA) is constrained to the interval [–100, 0]. Optimal values for fB
are kB = 0.41 and sB = –68.04.

Because the “active” state of the P population is the SWR state, the
exact same procedure described above applies to the f-I curves of P. In
the case of the A population, whose “active” state is the non-SWR state,
the only difference is that the empirical f-I curve is defined by consider-
ing the mean f-I curve of the SWR state below threshold (defined as
the current value where the mean input current minus 1 SD arrives to
the A population in the non-SWR state), and the mean f-I curve
of the non-SWR state above threshold. Optimal values for the fitted
softplus functions fP and fA are kP ¼ 0:47; sP ¼ �68:34; kA ¼ 0:48,
and sA ¼ �68:91.

To define the three activation functions fPðIÞ; fBðIÞ, and fAðIÞ, we
additionally include in the input of the rate model the IBG = 200pA back-
ground current that all neurons in the spiking network receive. In other
words, we define tI ¼ sI1200 as the threshold of fIðIÞ; no extra back-
ground current is injected to the populations in the rate model. Thus, the
softplus functions used in the rate-model simulations are as follows:

fIðxÞ ¼ F lnf11 exp½kIðx1 tIÞ�g; I 2 fP;B;Ag (6)

with F=1 spike/s. The parameter values for the rate model are also sum-
marized in Table 5.

Time constants
The parameters tP, tB, and tA in Equation 5 set the time constants of
the population dynamics. No correspondence can be drawn between the

Figure 4. Stationary f-I curves for the bistable spiking network with clamped synaptic efficacy. Displayed are f-I
curves of the spiking network as synaptic efficacy is clamped at eAB = 0.5 (average value of synaptic efficacies of
synapses B ! A). As shown in Figure 2A, a SWR and a non-SWR state coexist in this scenario. Each row indicates
the f-I curves for P, B, and A cells (from left to right) in each stationary state (A: non-SWR state, top; B: SWR
state, bottom). Gray lines indicate the f-I curves of single cells driven by external currents of different intensities.
The curves are shifted on the x axis to account for average current from incoming synaptic inputs (see Definition
of mean f-I curves in the spiking network). Colored solid lines indicate mean curves. Shaded areas represent the
regions where most inputs arrive (mean input current6 1 SD).
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membrane time constants of the spiking network and the population
time constants (Abbott, 1994; Dayan and Abbott, 2001; Gerstner et al.,
2014). As a result, using the rate model as an approximation of the spik-
ing model can at most hold in the stationary, but not in the transient,
case (but for recent approaches that address this problem, see Montbrió
et al., 2015; Schwalger et al., 2017). We set the population time constants
in Equation 5 to tP ¼ 3 ms, tB = 2 ms, and tA = 6 ms. These values are
biologically plausible (Wilson and Cowan, 1972; Chenkov et al., 2017)
and account for the fact that B cells are assumed to be fast interneurons;
we additionally assume that A cells are slower interneurons. However,
the asymptotic dynamics is largely independent on the choice of the
time constants.

Connection strengths
The average strength WIJ of the connection from population J to every
neuron in population I should depend on the size NJ of the presynaptic
population, the connection probability pIJ, the average unitary conduct-
ance increase gIJ when a presynaptic spike occurs, the average synaptic
reversal potential EIrev, the average mean membrane potential VI, and the
average conductance decay time constant t Isyn in the postsynaptic popu-
lation (Gerstner et al., 2014). More formally, we can define the WIJ as
follows:

WIP ¼ NPpIPgIPt P
synðEP

rev � VIÞ; I 2 fP;B;Ag
WIB ¼ �NBpIBgIBtB

synðEB
rev � VIÞ; I 2 fP;B;Ag

WIA ¼ �NApIAgIAtA
synðEA

rev � VIÞ; I 2 fP;B;Ag
(7)

For simplicity, we neglect the synaptic delays in this approximation.
The connection strength WAB is modulated by the synaptic efficacy e,
which, similarly to the spiking network, is fixed at an intermediate value
(in the spiking model: eAB = 0.5, in the rate model: e=0.5) to ensure bist-
ability. The terms VI should describe the average membrane potential
values of cells in the postsynaptic population I. However, in our bistable
scenario, the average population membrane potentials differ across the
two stable states (because the inputs each cell is receiving change across
states). For example, for the A population, the mean membrane potential
in the non-SWR state is �53:046 2:10 mV (mean 6 SD), whereas it is
�54:916 1:65 mV in the SWR state. Thus, there is no predetermined
way of defining the VI values. For this reason, we decided to keep VP,
VB, and VA as free parameters and run an optimization procedure that
searches for values that minimize the distance between the target popu-
lation firing rates in the spiking model (see Fig. 2A) and the population
rates of the rate model. More in detail, VI (I 2 fP;B;Ag) can range from
the reset to the threshold potential. For each possible combination of VI

in this range ([–60, –50] mV, using a step size of 0.5mV), we run a rate-
model simulation for e=0.5 (clamped synaptic efficacy), using the fitted
softplus activation functions. The system is initialized to start from the
non-SWR state. Current is injected to the P and B populations (positive
current) and to the A population (negative current) to let the system
jump to the SWR state. We store the population rates in both states if
the stimulation is successful, that is, (1) the same two stable states coexist
in all three stimulation paradigms; and (2) the firing rate of the stable
states are confined to a “biological” range (close to experimental results;
Table 4). We note here that most of the combinations of VP, VB, and VA

result in rate models with biologically realistic firing rates. Finally, we
minimize the Euclidean norm between the vector of target firing rate
values in the spiking model and the vector of firing rates in the rate
model to find the optimal combination of VI. In this way, the firing rates
in the “active” state of each population (SWR state for P, B, non-SWR
state for A) are better matched than the ones for the “inactive” state,
which are close to zero. This is a reasonable choice, as the “active” states
are the ones that better characterize the firing of a population.

For the network configuration presented here, the optimized values
are VP = –52.5mV, VB = –54.0mV, and VA = –52.5mV. For B and A,
these values are close to their mean membrane potential values in the
“active” state (–54.316 2.94mV and –53.046 2.10mV, mean6 SD, for
B and A, respectively). For the P population, the optimal value is an aver-
age of the peaks of the distributions of membrane potentials in the two

states (–54.06mV and –51.00mV for non-SWR and SWR state, respec-
tively). This suggests that the optimization yields meaningful results. We
use the optimal values of VI to define the connections WIJ as described
by Equation 7, and use these values to define the rate model used for
simulations, an example of which can be seen in Figure 5.

Short-term plasticity in the rate model
The last ingredient needed to create the rate model envisioned in
Equation 5 is the definition of the synaptic depression equation. It can
be directly derived from the spiking case (Eq. 3 with parameters tD and
hD) by averaging over realizations (i.e., e ¼ eAB , where eAB is the average
of the synaptic efficacies eABij of synapses j ! i, and the bar represents
the average over realizations), under the assumption of considering a
large number of presynaptic spikes. In this scenario, the synaptic efficacy
evolves as described in Equation 5, with hd ¼ hD and td ¼ tD.

In Additional short-term plasticity mechanisms, we model a synaptic
facilitation mechanism on the P ! A connection. We describe the effect of

Table 4. Summary table for “biological” population firing rates in non-SWR
and SWR states

P (s–1) B (s–1) A (s–1)

Non-SWR state ,5 ,5 .8
SWR state .8 .30 ,5

Figure 5. Rate network with fitted softplus f-I curves is bistable for clamped depression
values. Top to bottom, Population rates of P, B, and A cells, injected current, and value of
synaptic efficacy. When the synaptic efficacy is clamped at e= 0.5, two stable states are
present in the network (left). Positive current injection to the P population (I= 100 pA for a
duration of 10 ms) triggers the switch to the SWR state, whereas negative current (I = –
100 pA for a duration of 10ms) terminates it. These results are comparable to what has
been shown in Figure 2A for the spiking model. The population firing rate values are
matched in both networks because of the optimization of the mean membrane voltages VI
(for details, see Connection strengths). Population rates in the non-SWR state are as follows:
P= 0 s�1, B= 0 s�1, A= 12.5 s�1; and in the SWR state as follows: P= 44.0 s�1, B= 92.2
s�1, A= 0 s�1 (for comparison with spiking values, see Fig. 2A). Differently from the spiking
model, the rate model does not jump to the SWR state for e= 0.8 because of its noise-free
nature: as the system is fully deterministic, no jumps are expected as far as the change in
synaptic efficacy preserves the network bistability. Thus, the rate network is not able to
reproduce, in absence of external inputs, fluctuation-driven spontaneous SWRs observed in
the spiking network and in experiments. However, when a positive current is injected (so
that the system jumps to the SWR state), the event can be terminated by lowering the syn-
aptic efficacy to e= 0.2. In this scenario, the A population receives too little inhibition from
the B population and can thus restore its firing rate to non-SWR levels. Network parameters
are summarized in Table 5.
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facilitation by multiplying the connection strengthWAP by a factor (11 z),
where the variable z is described by @z=@t ¼ �z=t f1h f Pðzmax � zÞ. This
mechanism is derived from the spiking model (see Eq. 4), with z represent-
ing the average of zij of j ! i synapses and over realizations. As done in the
spiking model when P ! A facilitation is the only short-term plasticity
mechanism, we choose h f ¼ 0:32; t f ¼ 230 ms, and zmax = 1.

Rate-model noise
To evaluate how well the rate model could capture the transition dynam-
ics between SWR and non-SWR states, we added noise to the current
input of the three neuronal populations. Noisy inputs are created to
resemble the fluctuations of the spiking model in the non-SWR state, by
estimating the currents experienced by a postsynaptic neuron. To obtain
noise that resembles the properties of input currents in the spiking
model, we separately model the inputs from each of the three presynap-
tic populations J (i.e., P, B, or A) into a postsynaptic neuron (representa-
tive of a rate-model population) belonging to population I (i.e., P, B, or
A). For simplicity, we assume that these nine J ! I currents are mutu-
ally independent. Each of them is modeled as a homogeneous Poisson
process representing the spike times of presynaptic neurons in popula-
tion J. Its frequency is defined by multiplying the spiking network pa-
rameters NJ (number of neurons in presynaptic population; Table 1), pIJ

(connection probability for connection J ! I; Table 2), and the mean
population rate of the presynaptic population in the non-SWR state (see
Fig. 2A). This spike train is then convolved with an exponentially decay-
ing kernel representing the synaptic current updates; the kernel’s time
constant is t Jsyn (Table 1), and its amplitude is estimated to be
gIJðEJrev � VIÞ, where gIJ is the synaptic conductance increase (Table 2),
EJrev is the reversal potential of the presynaptic population (Table 1), and
VI is the estimated mean membrane potential of neurons in the spiking
network in the non-SWR state (see Connection strengths). From the
noisy input current of a neuron, we subtract the mean because the rate
model description of the network already includes the mean currents.

We note that this procedure to generate noise neglects all correla-
tions in the spiking activities, which are considerable in such balanced
networks. In order to compensate for this lack of correlations, we heuris-
tically scale down the amplitude of the rate-model noise. We find that
scaling down the noise by a factor of 8 allows us to generate SWR events
with a similar frequency to those of the spiking model simulations.

In the simulations with additional plasticity mechanisms (in
Additional short-term plasticity mechanisms), we perform short simula-
tions of the noisy rate model with extra B ! P depression and with
P ! A facilitation only. For the simulation with extra B ! P depression,
the noise and rate model parameters are the same as the ones used for
the default network (Table 5). For the case with P ! A facilitation only,
we keep the default rate model parameters but slightly increase the noise
amplitude (scaled down by a factor of 7), to be able to trigger spontane-
ous events.

Quantification of SWR properties in the noisy rate model
To quantify the properties of SWR events in the noisy rate model, we
perform 10 min simulations with noise injection (see Rate-model noise),
triggering both spontaneous and evoked events, as in the spiking net-
work. To detect events, we apply the script available at Duarte (2015) to
a low-pass filtered (up to 10Hz, which allows for reliable isolation of
peaks in the rate model) trace of the B population rate. Events whose
peaks are ,45 s�1 or are separated by ,100ms are discarded. We con-
sider a peak’s start and end points, from which we calculate the width of
an event and the IEI, to be the times at which the half maximum is
reached. To evoke events, we inject to the B population additional 10ms
square pulses with amplitude 150 pA (sufficient to trigger SWRs, as seen
in SWRs can be generated in a CA3-like spiking network) with a perio-
dicity of;2 s, with a random additional delay of [0, 90] ms, drawn from
a uniform distribution (for a comparison with spiking model simula-
tions, see Quantification of SWR properties).

Comparison between spiking and rate model simulations
Now that all the components of the rate model have been defined, we
can compare the behavior of the rate model to that of the spiking model

presented in Results. Numerical simulations of both models show that
there is a qualitative match in the population firing rates (compare, e.g.,
Figs. 2A, 5). Thus, the rate model seems to be a suitable tool to approxi-
mate the population dynamics of the spiking model. However, the two
models cannot be considered equivalent. First, the rate model is unsuited
for describing the transient dynamics of the spiking network, as it can be
noted, for example, from the lack of fast (.100Hz) oscillations in the
rate-model simulations (see SWRs can be generated in a CA3-like spik-
ing network). Second, some of the rate-model assumptions are violated:
the number of cells in each population is not sufficiently large (as few as
50 cells belong to the A population), and the SWR state is not asynchro-
nous (see, e.g., Fig. 3). Third, the process of approximating the spiking
network with a rate model is not unequivocal, as it depends on the
choice of tP, tB, and tA (population time constants) and VP, VB, and VA

(mean membrane potential values used to define the connection
strengthsWIJ).

Despite these limitations, the crucial advantage of the rate model
over its spiking formulation is that it can be used to predict, as a function
of the rate-model parameters, when the network exhibits bistability. In
this way, we can understand the influence of each parameter on the
behavior of the system and extend the range of bistable solutions to pa-
rameters yet untested in the spiking network. The analysis is presented
in the next section.

Bifurcation analysis of rate model
To provide some understanding on the dynamics of the rate model, we
used the software XPPAUT (Ermentrout, 2002) to perform a numerical
bifurcation analysis. The general aim was to determine how modifying
model parameters affected the qualitative model behavior.

Key parameters
Key parameters of the rate model (Eq. 5) are the connection strengths
WIJ (Eq. 7; default values in Fig. 6A). Furthermore, we consider the pa-
rameters kI and tI of the activation functions fI in Equation 6. To simplify
the analysis, we note that the efficacy e is a slow variable. We thus
assume that e is constant and treat it as another parameter of the model.
Because in the bifurcation analysis we evaluate the stability of fixed
points of the dynamics, the time constants t I can be neglected.

Nullclines and fixed points
The method for obtaining fixed points is illustrated in Figure 6B in
which the efficacy e is set to 0.4. The top panel (P-B plane) shows the P-
and B-nullclines assuming A at steady state. The intersection of the null-
clines at P=B= 0 indicates the steady state of the system. In the A-P
plane (bottom, assuming B at steady state), the P- and A-nullclines inter-
sect at P = 0 and A=12.5 spikes/s. Together, for e= 0.4, there is only one
fixed point of the system. In Figure 6C, we considered a slightly higher
efficacy (i.e., e=0.5). In this case, the intersections of the nullclines show
the existence of three steady states, indicating a qualitative change of the
dynamics as a function of e.

Bifurcation diagrams
The dependence of the steady-state rates of P, B, and A on e as well as
the stability of these fixed points are summarized in Figure 6D, which

Table 5. Summary of parameters for the rate modela

Connection strength (pA·s) fI slope (1/pA) fI threshold (pA) Time constants (s)

WPP = 1.72 kP ¼ 0:47 tP ¼ 131:66 t P ¼ 0:003
WBP = 8.86 kB ¼ 0:41 tB ¼ 131:96 t B ¼ 0:002
WAP = 1.72 kA ¼ 0:48 tA ¼ 131:09 t A ¼ 0:006
WPB = 1.24
WBB = 3.24 Synaptic depression Synaptic facilitation

WAB = 5.67 h d ¼ 0:18 h f = 0.32
WPA = 12.60 t d ¼ 0:250 s t f = 0.230 s
WBA = 13.44 zmax = 1
WAA = 8.40
aThe synaptic facilitation parameters are used only in the simulations of Figure 15D.
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reveals the existence of a bifurcation at the critical value ecrit. For e,ecrit,
there is only a single fixed point, which we associate with the non-SWR
state (P=B= 0, A. 0). On the other hand, for e. ecrit, the network is
bistable: there is an additional stable state in which P and B have positive
firing rates but A= 0, which we associate with the SWR state. The unsta-
ble branch (Fig. 6D, dashed lines) can be interpreted as a threshold for
transitions between the two stable states. The threshold is closer to the
non-SWR state for larger e values, which suggests that a smaller pertur-
bation (or favorable stochastic fluctuation in a corresponding spiking
model) can evoke a transition to a SWR state.

Fast-slow analysis
Figure 6D allows also a “fast-slow” interpretation of the dynamics of
SWRs. So far, we have assumed that e is a slow variable, and treated it as
a parameter in the rate model (see Eq. 5), but the efficacy e does change,
and the change is different in the SWR state and the non-SWR state. To
see how e drifts, we added in Figure 6D the e-nullcline (solid gray curve),
which is in between the middle (threshold) branch and above the lower
branch (non-SWR state) for e.ecrit; thus, e is increasing in the non-
SWR state and decreasing in SWR state.

When the system is initialized in the SWR state, a slowly decreasing e
leads to a transition to the non-SWR state at ecrit. The time needed to
reach the transition point explains the duration of a SWR. In the non-
SWR state, e increases, and the time needed until a fluctuation can
induce a transition to the SWR state determines the interval between
SWRs. Because we have attributed the change of e to a B-dependent syn-
aptic depression mechanism, the speed of decrease of e is determined by
the firing rate of B during the SWR state and the depression parameter
hd = 0.18; in contrast, the speed of increase is determined only by the

time constant td = 250ms of recovery from
depression (Eq. 5). This distinction enables
SWRs to have durations much shorter than the
intervals between successive SWRs. Further-
more, the need for a recovery of e predicts some
refractoriness after a SWR. The network can
therefore be classified, according to the termi-
nology in Levenstein et al. (2019), as being in
an excitableDOWN regimen.

Dependence of bistability on weights
The particular type of bistability of the network
is thus a key feature of the rate network, and in
Figure 6 we have investigated this property as a
function of the efficacy e. Figure 7 extends this
analysis and illustrates the dependence of fixed
points on the nine connection strengths (for the
efficacy fixed to e=0.5). The nine panels in
Figure 7 are similar in structure to Figure 6D,
which is partly identical to the panel for the
connection from B ! A (weight WAB) because
this connection strength is equal to the product
e 	WAB. This panel is also similar to all other
panels (except the one for WPP) in that there
exists a critical weight that separates bistable
and monostable regions.

For largeWPP, the P and B firing rates in the
SWR state can reach infinitely high values.
Indeed, we found numerical continuation of
this steady state to be impossible for WPP .
3.8 pA · s. Although the non-SWR steady state
remains unchanged in this region, any small
perturbation that brings the system over the
threshold would lead to an unbounded growth
in P and B. For this reason, in Figure 7, we only
show these steady states in the region WPP ,
3.8 pA · s.

Robustness of the model
Figure 7 highlights the robustness of the rate
model: for each weight, there is a wide range of

values in which the system is bistable. Moreover, the firing rates (i.e., the
values of stable fixed points in the bistable regimen) are constant for
large ranges of some weights. To intuitively understand this feature, let
us first focus on the SWR state, which was defined to have A= 0, P. 0,
and B. 0. Because of A= 0, the rates of P and B are independent of the
weights of the three connections emerging from A (i.e., WPA, WBA, and
WAA; Fig. 7, right column). Moreover, the values of the firing rates of P
and B are independent of WAB if this inhibition is beyond its critical
value such that A is silenced. P and B are also independent ofWAP if this
excitation is below its critical value so that A is not active. The other four
weights, which involve the connections to and from the P and B popula-
tions (i.e., WPP, WBP, WPB, and WBB) could be used to regulate the
desired values of firing rates of P and B in the SWR state. Similar argu-
ments supporting the robustness of the rate model hold for the non-
SWR state, which was defined to have P=B=0 and A. 0. Because of
P=B=0, the rate of A is independent of the weights of the six connec-
tions emerging from P and B (i.e.,WPP,WBP,WAP;WPB,WBB,WAB; Fig.
7, first and second columns). The three inhibitory connections emerging
from A constitute a special case: the value ofWPA is irrelevant only if it is
large enough (above some threshold) so that P = 0. Similarly, WBA is
uncritical if it is large enough such that B=0. The recurrent weightWAA

(if below some critical value) can be used to set the firing rate of A. 0,
which involves, however, an additional excitatory input (parameter tA in
our model, see also Fig. 8).

Essential connections and minimal network
Figure 7 helps to identify essential connections in the rate network. For
example,WAP is not critical, that is, the system is bistable as long asWAP

Figure 6. A rate-model approximation of the spiking model reveals its underlying dynamics. A, Circuit with connection
strengths, similar to Figure 1A. Line width is proportional to the value of the connection strength WIJ (associated value is
near the line) in units of pA · s (for definition, see Eq. 7). B, Nullclines (colored) in the P-B plane (top) assuming A at steady
state, and in the P-A plane (bottom) assuming B at steady state for the rate network with softplus activation functions (Eq.
6) and synaptic efficacy e= 0.4, just below the bifurcation point ecrit = 0.404 of the connection B ! A. Intersections of null-
clines are the steady states of the system. C, Same as in B, but for e= 0.5. D, Steady-state rates of P (top), B (middle), and
A (bottom) as a function of e. Solid and dashed colored curves indicate stable and unstable fixed points, respectively. The
three bifurcation diagrams show the bistability of the system for e.ecrit (coexistence of SWR and non-SWR states). Vertical
dashed lines indicate values of e in B and C. Middle, Solid gray curve indicates the e-nullcline of the last line in Equation 5.
All parameters are summarized in Table 5.
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is sufficiently small, and it can be even set to
zero. Furthermore, WPB and all recurrent con-
nections (WAA, WBB, WPP) should be weak
enough, and could, in principle, be eliminated
from the rate network without changing its
qualitative behavior.

These observations raise the question
regarding the identity of the minimal circuit
that would support bistability in the rate model.
Further simulations in which we simultane-
ously varied several weights confirmed that
it is indeed possible to set WAP ¼ WPB ¼
WBB ¼ WPP ¼ WAA ¼ 0 and retain bistability,
that is, two stable steady states separated by a
threshold (the unstable steady state). However,
it is not enough for the system to be simply
bistable; rather, we want it to allow for transi-
tions between both stable states, corresponding
to the initiation and termination of SWR events
(as explained in Fast-slow analysis). For a
small perturbation to be able to carry the sys-
tem from the non-SWR to the SWR state, we
require that the distance between the thresh-
old and non-SWR branch is relatively small.
For WAP ¼ WPB ¼ WBB ¼ WPP ¼ 0, we found
that decreasing WAA had the effect of bringing
the threshold farther and farther away from the
non-SWR state (the same happens on the default
network, as seen in Fig. 7, A ! A), requiring a
larger and larger perturbation to trigger a SWR
event; forWAA = 0 it became virtually impossible
to start an event. Furthermore, we found that it
was necessary to decrease the value of WAB to
terminate an event through B ! A synaptic
depression in the minimal network. Setting
WAP ¼ WPB ¼ WBB ¼ WPP ¼ 0 brought the
value of ecrit (see Fig. 6D) so close to zero that
transition from the SWR to the non-SWR branch
could never happen. By decreasing the value of
this connection strength (e.g.,WAB = 4pA · s), we
were able to increase ecrit enough to recover the
ability of the depression mechanism to terminate
the event (to see howWAB directly influences ecrit,
compare Fig. 6 with Fig. 7, B ! A).

Dependence of the threshold on parameters
A favorable condition for evoking a SWR by
weak stimulation (or by a fluctuation in the
spiking model) is one in which the threshold
(the unstable branch) is close to the stable
branch of the non-SWR state; that is, the dis-
tance between stable and unstable branches is
small. So, how does this distance depend on pa-
rameters? The bifurcation diagrams in Figure 7
indicate that, in addition to WAA, which we
have discussed in the previous paragraph, many other weights can regu-
late the threshold. Let us classify the weights according to their values at
which the threshold is closest to the non-SWR state. First, the three
weights emerging from A (i.e., WPA, WBA, WAA) show that the distance
between the stable (non-SWR state) and unstable branches is the small-
est close to the bifurcation point; thus, those weights are not suited for a
robust regulation of the threshold. Second, for the three “nonessential”
weights WPB, WBB, and WAP, the distance between threshold and the
non-SWR stable branch is smallest at zero weight, which further indi-
cates their minor importance in this model. Third, the three weights
WPP,WBP, andWAB give rise to smaller distances between threshold and
the non-SWR branch for larger weights. WPP is special because the net-
work becomes unstable for recurrent excitation which is too large
(“empty space”, Fig. 7, top left). The most interesting candidates for a

(dynamic) control of the threshold are WBP and WAB. In what follows,
we focus on WAB because this connection can be dynamically regulated
by synaptic short-term depression, which we have described by the efficacy
e. In contrast, experimental evidence indicates that the connection WBP is
governed by facilitation (Nanou et al., 2018) and thus cannot give rise to the
envisioned fast-slow dynamics of SWRs in the proposed setup.

To understand how the threshold depends on WAB in Figure 7, we
note that, even for large weight values (equivalent to e. 1 in Fig. 6D),
the threshold state is very close to (but does not merge with) the stable
non-SWR state: for larger WAB the impact of B on A is stronger, but
only if B. 0. In contrast, for B= 0 the impact on A is independent of
WAB. Thus, the threshold remains always at firing rates B. 0. We again
note that the proximity of the (unstable) threshold branch and the stable
non-SWR is key for eliciting SWRs by small current pulses (and fluctua-
tion-induced SWRs in the spiking model).

Figure 7. Bistability in dependence on connection strengths reveals the robustness of the model. Steady-state rates of P
(top), B (middle), and A (bottom), for each of the nine connection strengths WIJ in the rate model. All weights are varied
from 0 to 15 pA · s. Solid and dashed colored curves indicate stable and unstable fixed points, respectively. Vertical dashed
lines indicate the default values stated in Figure 6A. For all calculations, we have fixed e= 0.5. Further parameters are sum-
marized in Table 5. Since the upper stable branches of P and B in the P ! P connection grow to infinitely high values for a
large weight, we show WPP only in the range from 0 to 3.7 pA · s, above which the numerical continuation of the steady
state cannot be made. Except for WPP, all weights have a critical value separating monostable and bistable regions.
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Predictions derived from the rate model
Finally, we summarize the predictions (obtained from Figs. 6, 7) about
the properties of the proposed population A of interneurons: Large
enough inhibitory connections A ! P and A ! B are required; the
strength of the connections should ideally be well above some critical
values. Moreover, the existence of a sufficiently strong inhibitory con-
nection from B ! A is required (the larger the connection strength, the
smaller the threshold). The interpretation of these constraints is twofold:
(1) mutual inhibition between B and A is key for bistability; and (2) the
connection A ! P mediates disinhibition (together with a strong enough
pathway B ! A ! P). These predictions are in line with the four require-
ments on pathway strengths that we postulated in Requirements on path-
way strengths.

Two-parameter bifurcation analysis and parameter sensitivity
To further illustrate the robustness of the rate model with respect to
parameter values, we show two-parameter bifurcation diagrams in
Figure 8. The dark gray regions depict the range of bistability with
default parameter values marked by crosses. Figure 8A–D shows vari-
ous combinations of pairs of weights WIJ, and Figure 8E–G shows
pairs of threshold (tI) and slope (kI) parameters of the activation func-
tions. Parameter sensitivity is indicated by wide ranges (i.e., large gray
areas) of combinations of pairs of connection strengths (Fig. 8A–D),

which extends the insights obtained from varying
single weights in Figure 6. There is also a wide range
of parameter combinations of thresholds and slopes
allowed (Fig. 8E–G). To evaluate, for example, the
requirements regarding the properties of population
A, Figure 8G shows that tA should be large enough
so that A is spontaneously active in non-SWR state,
and that the particular value of kA.0 is uncritical.

Pathway strengths and quantification of requirements
The particular combinations of weights and their
arrangement in the four rows Figure 8A–D are chosen
for comparison of the rate model with the four
requirements for pathway strengths that were elabo-
rated for the spiking model. For example, Figure 8A
has the title ½P ! A�1½P ! B ! A�, 0, which sum-
marizes our requirement 1: “pathway P ! B ! A
should be stronger than P ! A ”, which guarantees
that the activation of P decreases A (expressed by “, 0”
in the inequality). We thus need to consider here that
the strength of the excitatory pathway ½P ! A� is posi-
tive and that of the inhibitory pathway ½P ! B ! A� is
negative. Major players for the strengths of the two
compared pathways are the weights displayed in
Figure 8A.

To enable a quantitative comparison between the
prediction of a requirement and the results of a (nu-
merical) bifurcation analysis in Figure 8A–D, we for-
mally define the pathway strength as the partial
derivative @I=@JjK where J is the rate of the presynap-
tic population, I is the rate of the postsynaptic popula-
tion, and K is the (constant) rate of the “third”
population. We then use the definition of the rate
model in Equation 5 in steady state and the definition
of the activation function in Equation 6 in its linear
approximation (i.e., fIðxÞ ¼ FkIðx1 tIÞ with F= 1
spike/s); the latter considerably simplifies the approach
and enables an explicit formulation of the pathway
strengths (which would otherwise depend on the
state). For example, the strength of the direct pathway
P ! A is then as follows:

@A
@P

����
B

¼ kA WAP

1� kA ð�WAAÞ : (8)

Moreover, an indirect pathway I ! J ! K (i.e., from I to K via J)
can be defined as the product of strengths of the pathways I ! J and
J ! K. For example, the strength of the indirect pathway P ! B ! A is
as follows:

@B
@P

����
A

	 @A
@B

����
P

¼ kB WBP

1� kB ð�WBBÞ 	
kA ð�WABÞ

1� kA ð�WAAÞ : (9)

We defineWIJ . 0 for both excitatory and inhibitory weights; more-
over, the fact that A and B are inhibitory enters the equation via minus
signs in front of WAA, WAB, and WBB. We thus can derive inequalities
from the four requirements, which are visualized in Figure 8 (green
hatched regions). For example, requirement 1 in Figure 8A can be
expressed as follows:

WAP 	 ð1þ kB WBBÞ, kB WBP WAB : (10)

The overlap of hatched and gray regions in Figure 8 indicates a good
match between the requirements derived from the (linear) approxima-
tion of the pathway strengths and the numerical bifurcation analysis of
the (nonlinear) rate model, which supports the intuition about the net-
work behavior that we have developed earlier.

Figure 8. Bistable regions in two-dimensional slices of parameter space. Each plot represents the network behav-
ior with respect to a pair of parameters of the rate model. Black lines indicate a numerical continuation of the bifur-
cation point separating the bistable and monostable regions along two model parameters. Dark gray areas
represent the bistable region where both SWR and non-SWR states coexist. Black crosses represent the standard
chosen parameter values for the rate model (summarized in Table 5). A-D, Bistability with respect to connection
strengths WIJ (in units pA · s) that contribute to the four pathway-strength requirements. For comparison, the
hatched green areas represent the region where the requirements are met in their linear approximation (see
Pathway strengths and quantification of requirements). E-G, Bistability with respect to slopes kI (in units 1/pA) and
thresholds tI (in units pA) of the softplus activation functions (Eq. 6) for P, B, and A.
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Statistical analysis
To test the existence of a linear correlation between SWR amplitude and
length of previous and next IEIs, we have used the Pearson correlation
coefficient and reported the corresponding p values in Results. Data are
mean6 SD.

Code accessibility
Sample code to reproduce all figures of this manuscript is available in
the GitHub repository (https://github.com/robyeva/SWR_generation_
disinhibition).

Results
To test the hypothesis of disinhibition-mediated generation of
SWR events, we consider a computational model comprising a
population of pyramidal cells (P in the model) and two popula-
tions of different types of interneurons: PV1 BCs (B in the model)
and a class of yet unidentified anti-SWR cells (A in the model).
Neurons are recurrently connected as depicted in Figure 1A.

As SWRs have been shown to originate in isolated CA3 slices
(Maier et al., 2003; Nimmrich et al., 2005), we constrain the
model to reproduce the basic features of the CA3 microcircuit in
a rodent slice. Details of the approach are outlined in Materials
and Methods. Briefly, we include 8200 P (pyramidal cells) and
135 B cells (PV1 BCs). Additionally, we include 50 A cells (anti-
SWR cells) in the network. Neurons are randomly connected
with connection probabilities that have been chosen to repro-
duce, if available, experimentally verified connectivity in CA3.
The proposed connections from and to anti-SWR cells are such
that the population firing activities of P and B cells in non-SWR
periods and during SWR events are close to experimental values.

As demonstrated below (and in Materials and Methods), the
model is governed by disinhibition: when B cells are activated,
tonically active A cells are inhibited, and thus release the P cells
from inhibition. This pattern of activity (increased firing rate of
P and B cells, decreased firing of A cells) is characteristic of a
SWR event. A SWR terminates when the high activity of A cells
is restored, and the activity of P and B cells is low.

The disinhibition mechanism suggests that the two different
interneuron populations could be active at different stages: in the
non-SWR state, highly active A cells control the firing of P cells
and B cells, which are almost inactive. In the SWR state,
increased activity of B cells inhibits A cells; thus, B cells are the
dominant interneuron class controlling the firing of P cells dur-
ing SWRs. The competition between the interneurons is the
mechanism that effectively regulates the alternation between
SWR and non-SWR states (Fig. 1B).

To construct the network by adjusting synaptic conductances
within and across homogeneous populations, we assume for sim-
plicity that the inactive interneuron population in either state is
silent, and focus on the two subnetworks P-A and P-B. Once the
connections are chosen for the subnetworks to represent the
non-SWR and SWR states, respectively, we create the full net-
work by adding the reciprocal connections between B and A
cells. The inhibitory connection B ! A is equipped with a short-
term synaptic depression mechanism, which is progressively
reducing the efficacy of the B ! A synapses as the firing of B
cells is high. Thus, depression provides a mechanism to termi-
nate SWRs by releasing the inhibition of A cells in SWR states,
when B cells are highly active. All the other connections are static
(but see Additional short-term plasticity mechanisms). The exis-
tence of synaptic depression at the B ! A synapses is inspired
by the results of Kohus et al. (2016), who showed that a PV1 BC-
mediated depression mechanism could influence the timing
between successive SWR events in vitro. The details on how to

construct the network are provided in Materials and Methods.
All model parameters are listed in Tables 1–3.

The spiking network as a perturbed bistable system
To illustrate basic features of the spiking network, we first discuss
simulations in which the synaptic depression is artificially fixed.
In this way, we show that the network can be described as a bista-
ble system.

Figure 2A shows that the system switches between non-SWR
and SWR states on current injection; there the synaptic efficacy
variables eABij (regulating the depression strength of the synapse
between neuron j in population B to neuron i in population A;
see Eq. 3) are artificially clamped at an intermediate value of
eABij ¼ 0:5 for all B ! A synapses, so that the average synaptic ef-
ficacy is eAB ¼ 0:5. The SWR state is initiated via a depolarizing-
current injection to the P cells (60% of cells are stimulated, mean
injected current is Imean ¼ 150 pA for a period of 10ms; see
Materials and Methods). The SWR state is characterized by high
activity of P and B cells (P� 43 spikes/s and B� 92 spikes/s) and
almost silent A cells (A� 1 spike/s). This state is sustained until a
hyperpolarizing current is applied to P cells (Imean ¼ �150 pA
on average injected to 60% of cells), which brings the system
back to the non-SWR state. The non-SWR state is characterized
by intermediate and low activity of P and B cells (P� 2 spikes/s
and B� 1 spike/s), and tonic activity of A cells (A� 12 spikes/s).
Thus, the network is in a bistable configuration, in which two
stable states (non-SWR and SWR states) can be observed. As
depicted in Figure 2B, each of the two states is characterized by a
dominant subnetwork formed by the pyramidal cells and the
active interneuron type (A and B cells in non-SWR and SWR
states, respectively). External stimulation (in this example, cur-
rent injection to P cells) can induce transitions between the two
states. A transition can also be induced by varying the synaptic
efficacy (without current injection). For example, increasing the
synaptic efficacy to large values (from eAB = 0.5 to eAB = 0.8 in
Fig. 2A) can result in a jump to a (long-lasting) SWR state. The
transition to the SWR state is induced by intrinsic fluctuations
present in the network, caused by the random connectivity and
the finite size of the network. We observed a small delay
(;25ms) between the clamping of the synaptic efficacy to eAB =
0.8 (Fig. 2A, right dashed line) and the start of the SWR state; the
length of the delay decreases with increasing synaptic efficacy
value and strength of fluctuations, and the delay varies across tri-
als (not shown) because noise kicks the network from the non-
SWR to the SWR state. The value of the population firing rates
in the SWR states depends weakly on the value at which the syn-
aptic efficacy is clamped, and the level of fluctuations changes for
different eAB values (compare SWR states in Fig. 2A). Finally,
Figure 2A shows that, when the synaptic efficacy is decreased to
eAB = 0.2, the non-SWR state is restored, and the system rests in
this state in absence of further network modifications.

To better understand the bistable nature of the network, we
approximated the spiking model to a rate model, in which only
the average population activity of P, B, and A cells, and not the
behavior of each single neuron, is considered. The steps required
to reduce the spiking model to a rate-model formulation are pre-
sented in Rate model. The key advantage of the rate model is that
it allows to explicitly study the existence of bistability as a func-
tion of few essential network parameters. For example, in Figure
6D, we use bifurcation analysis to show that the existence of bist-
ability critically depends on the value of e (eAB in the spiking
model). This analysis thus supports the results presented in
Figure 2A for the spiking model. Additionally, in Figures 7 and
8, we summarize how bistability depends on the strength of
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mutual connections among populations and on their input-out-
put functions. These results show that the bistable configuration
is a general property of such networks with fixed synaptic
depression (constant e, eAB) and is thus robust to changes in
model parameters.

A synaptic depression mechanism that is not fixed, but can
evolve dynamically (see Eq. 3), can be tuned to induce the termi-
nation of the SWR states after 50-100ms. This mechanism
assures that SWRs emerge in the network as brief perturbations
of the default non-SWR state, as shown below.

SWRs can be generated in a CA3-like spiking network
Spontaneous SWRs
In vitro, SWRs occur spontaneously in CA3 (Maier et al., 2003;
Ellender et al., 2010). In Figure 9A, we show that a spiking net-
work with dynamically evolving B ! A depression produces a
spontaneously occurring SWR event. The network has been
initialized to start in the non-SWR state, characterized by low ac-
tivity of P and B cells, and tonic activity of A cells (same as non-
SWR state in Fig. 2). In this setup, the SWR state is characterized
by high activity of P and B cells and almost silent A cells (corre-
sponds to SWR state in Fig. 2). The initiation of a SWR event is
triggered by the intrinsic fluctuations present in the network (no
current is injected). For example, an increase in the firing of B
cells decreases the activity of A cells, which in turn increases fir-
ing of P cells, which increases the activity of B cells and could
even overrule the inhibition from A to B cells. When the activity
of B cells is high, the synaptic efficacies of the connection B ! A
decrease (orange trace in Fig. 9 is the mean synaptic efficacy

eAB). As a result, the A cells are progressively less inhibited by B
cells and thus increase their firing and, consequently, their inhib-
itory drive onto P cells. Thus, the depression at the B ! A syn-
apses terminates the SWR event, and the population firing rates
are reset to their non-SWR values. The orange trace in Figure 9A
shows that the synaptic efficacy is restored more slowly than the
population activities. We note that the value eAB ¼ 0:5 is linked
to both the SWR state (descending part of the synaptic efficacy
trace) and the non-SWR state (ascending part of the trace), con-
firming the existence of bistability for intermediate values of syn-
aptic efficacy (see also the bifurcation analysis of the rate model
in Fig. 6).

To be able to better compare our results to experimental
SWRs, which are usually recorded as the LFP of stratum pyrami-
dale, we need to define a measure for the LFP in our setting. The
exact origin and cellular contribution to the LFP remain elusive,
and the subject is a matter of intense debate (see, e.g., Einevoll et
al., 2013). We decided to approximate the stratum pyramidale
LFP as a filtered version of the average input current from B cells
to P cells (Beyeler et al., 2013; Schönberger et al., 2014) (see Fig.
3; and Defining the LFP). Interestingly, the last row of Figure 9A
shows that the bandpass filtered (90-180 Hz) LFP displays rip-
ple-like oscillations with a peak frequency of 135 Hz (peak of the
power spectrum). However, we note that our model, which
focuses on describing the dynamics of sharp waves, is not
intended to predict the frequency of ripple oscillations. The rip-
ple frequency may depend on axonal delays (Brunel and Wang,
2003; Donoso et al., 2018), which we have fixed here to 1 ms for
simplicity.

Figure 9. SWR events can be generated in the spiking network. Each column describes one simulation. A, Spontaneous SWR events can be generated in the network. Displayed are raster
plots for 50 cells of the P, B, and A populations (red, blue, and green, respectively; each row is one neuron), averaged population firing rates, the time course of the synaptic depression mecha-
nism, and the bandpass filtered (90-180 Hz) component of the LFP signal (see Materials and Methods and Fig. 3). B, C, A fraction of all P and B cells are stimulated with depolarizing current
for 10 ms (yellow areas, black arrows). The stimulation elicits SWR events comparable with the spontaneous ones, in agreement with experimental results. D, A fraction of A cells is stimulated
with hyperpolarizing current for 10 ms. The stimulation elicits SWR events comparable with the spontaneous ones; this is a prediction of the model. Parameters used to simulate the spiking
network are listed in Tables 1–3.
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Stimulation-induced SWRs
In addition to spontaneous SWRs, Ellender et al. (2010),
Schlingloff et al. (2014), Stark et al. (2014), Bazelot et al. (2016),
and Kohus et al. (2016) have shown that SWR events can be trig-
gered by cell stimulation. The model can reproduce these results.
Figure 9B shows that injecting a depolarizing current pulse
(Imean = 150 pA; see Materials and Methods) to a fraction (60%)
of P cells results in a SWR event (in line with experiments by
Stark et al., 2014; Bazelot et al., 2016). This induced SWR event is
qualitatively similar to the spontaneous SWR event in Figure 9A.
In addition, activating B cells (Fig. 9C) by injecting a depolariz-
ing current (Imean = 250 pA) to a fraction (60%) of cells results in
a SWR event, comparable to the experiments reported by
Schlingloff et al. (2014) and Kohus et al. (2016). Finally, the
model predicts that injecting a hyperpolarizing current to the A
cells (Imean = –250 pA injected to 60% of the cells) results in the
generation of a SWR event. Overall, the features of SWRs dis-
played in Figure 9B–D are comparable, although current is
injected to different groups of cells.

The results of current stimulation presented in Figure 9 cru-
cially depend on the average connectivity in the network: if, for
example, the connection B ! P is too strong, activating B cells
could result in a decrease of firing in P cells, and not in a disinhi-
bition-mediated increase of firing. Similarly, if the connection
P ! A is too strong, the activity of A cells could increase on acti-
vation of P cells (for a complete list of requirements, see
Materials and Methods). In Constructing the spiking network,
we explain how these requirements can be taken into account to
constrain the spiking model.

As already motivated at the end of the previous section of
Results, to better understand the dynamics of SWRs, we approxi-
mated the spiking model to a rate model (see also the Rate
model). First, Figure 10 shows that current stimulation (to P, B,

and A cells, from left to right) induces SWR events comparable
to the results in the spiking model. Additionally, the rate-model
approximation of the spiking model allows for a deeper under-
standing of these requirements and their impact on bistability. In
Pathway strengths and quantification of requirements, we show
that the rate-model approximation of the spiking model reveals
its underlying dynamics (Fig. 6). Furthermore, we derived an
explicit formulation of the conditions on the average connection
strengths among the three populations of neurons. As a result,
we were able to identify the dependence of bistability on the val-
ues of single connection strengths (Fig. 7). We could also show
parameter combinations for which the network is both bistable,
and with the expected behavior on current stimulation (increase
of P and B firing, decrease of A firing); in Figure 8, these regions
are shown as a function of pairs of parameters (green hatched
regions). The comparison with two-parameter bifurcation dia-
grams (dark gray regions) confirms the existence of bistable
networks with the desired effect of stimulation for multiple pa-
rameter combinations. Another main contribution of the bifur-
cation analysis displayed in Figures 6–8 is to demonstrate
that the desired network behavior does not require parameter
fine-tuning.

Features of spontaneous and evoked SWRs match
experimental results
A puzzling feature of spontaneously occurring SWRs is the coex-
istence of two different timescales: while a single event lasts
50-100ms, the incidence of events is in the range of 1-2/s
(depending on preparation and recording site, Buzsáki, 2015).
Interestingly, Kohus et al. (2016) reported a strong correlation
between the amplitude of SWR events and the interval to the pre-
vious SWR (IEI), recorded in the LFP of the CA3, in vitro (for
similar results in CA1, see Jiang et al., 2018).

Figure 10. Rate network simulations with fitted softplus f-I curves display SWR-like events. Top to bottom, P, B, and A firing rates, and level of synaptic efficacy. Plot represents the time-de-
pendent behavior on current injection when the synaptic efficacy dynamics is not clamped, but can evolve as stated in Equation 5. In each column, current is injected to a different population
(left to right, P, B, and A). Currents are injected for a duration of 10 ms and are chosen to minimize the transient effects, yielding IP = 60 pA, IB = 150 pA, and IA = 200 pA. In all
cases, switching on the current (yellow regions and arrows) makes the system switch to the SWR state (transient increase of P and B activity, and transient decrease of A activity). The depres-
sion mechanism (bottom) brings the system from a SWR state back to the non-SWR state. Results are comparable with the population firing rates of the spiking network presented in
Figure 9B–D. Network parameters are summarized in Table 5.
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To test whether the spiking network can reproduce these ex-
perimental results regarding the dynamics of SWR generation
and termination (including the correlation structure across con-
secutive events), we simulate many SWRs (approximately 10
min of simulated time); in this simulation, SWR events occur
spontaneously (incidence of ;1.3/s). We use the low-pass fil-
tered LFP signal (i.e., the average input current from B cells to P
cells filtered up to 5 Hz, see Materials and Methods for details) to
compare simulated SWRs to experimental SWRs. Examples of
the raw and low-pass filtered traces of input current from B to P
cells during spontaneous and evoked SWRs are shown in the
upper row of Figure 11. Properties of spontaneous SWRs in the
network are shown in Figure 11B1. The IEI distribution (mean:
0.65 s, SD: 0.28 s) is close to experimental results (Schlingloff et
al., 2014; Jiang et al., 2018), in which the IEIs are in the range of
0.5-1 s. The amplitude of the SW event (69.156 0.28 pA) and
the FWHM (107.206 1.73 ms) cannot be easily compared with
experiments because our measure of the LFP is only an approxi-
mation of the recorded extracellular signal (see Materials and
Methods). However, both SW amplitude and duration are quite
variable over the course of a recording (Davidson et al., 2009;
Ellender et al., 2010; Sullivan et al., 2011; Hofer et al., 2015;
Levenstein et al., 2019; Fernández-Ruiz et al., 2019), similar to
the results shown in Figure 11B1. Furthermore and in agreement
with others (Kohus et al., 2016; Chenkov, 2017; Jiang et al.,
2018), we observe a strong correlation (Pearson correlation coef-
ficient c=0.57, p ¼ 1:71 	 10�68) between the event amplitude
and the length of the previous IEI, as shown in Figure 11C1
(compare with Kohus et al., 2016, their Fig. 13A; as no correla-
tion coefficients are given, we rely on visual inspection).
Interestingly, the correlation between the event amplitude and
the length of the next IEI is low (Pearson correlation coefficient
c ¼ �0:06; p ¼ 0:079). The lack of correlation between event
amplitude and next IEI has been reported by Chenkov (2017, his

Fig. 3.5) in experimental data obtained in CA3 in vitro. Finally,
we also observe a correlation between the duration of a SWR
event and the length of the previous (but not next) IEI (Pearson
correlation coefficient c=0.168, p ¼ 2:18 	 10�6), as predicted by
theoretical results on noise-induced transitions to excitable states
(Lim and Rinzel, 2010). To the best of our knowledge, however,
the existence of this correlation has not been described in
experiments.

Optogenetic drive can elicit SWRs with shorter IEIs than the
spontaneous events, but with a similar correlation structure
between IEI and amplitude (Kohus et al., 2016). To simulate
such experiments, we additionally consider the case of evoked
events. The right column of Figure 11 shows that the spiking net-
work reproduces the experimentally observed behavior. In these
simulations, SWRs occur spontaneously but are additionally trig-
gered by stimulation of B cells (similar to Kohus et al., 2016, their
Fig. 13C). A short snapshot of the simulation is shown in Figure
11A2. Figure 11B2 shows the properties of evoked events.
Evoked SWRs are all-or-none events, with IEI distribution, am-
plitude, and FWHM similar but slightly more variable compared
with spontaneous events (compare with Fig. 11B1). Figure 11C2
shows the presence of a strong correlation between the amplitude
of evoked SWRs and the length of the previous IEI (Pearson cor-
relation coefficient c=0.77, p ¼ 7:75 	 10�43), but not with the
next IEI (Pearson correlation coefficient c=0.01, p= 0.889). Only
the amplitude of evoked events and the interval to the previous
or next SWRs are used in this analysis.

The simulations shown in Figure 11 also reveal the existence
of a refractory period following a spontaneous SWR event
(dashed line at ;188 ms in Fig. 11C1 indicates the smallest
observed IEI). A refractory period is in line with results obtained
by others (Schlingloff et al., 2014; Kohus et al., 2016; Jiang et al.,
2018). The duration of the refractory period is expected to corre-
late with the strength of the stimulation, which also explains why

Figure 11. Properties of spontaneous and evoked SWRs. Left, Analysis of spontaneous events. Right, Analysis of evoked events. A1, Mean B input current to P cells (sign-reversed, black
trace) and its low-pass filtered (up to 5 Hz) version (blue trace). B1, Properties of spontaneous SWRs: IEI (distance from end to start of events, where start and end points are calculated at half
maximum of the filtered signal), amplitude of filtered events, and FWHM (see Materials and Methods). C1, Left, Strong correlation between event amplitude and previous IEI. Each dot indicates
a pair. Red line indicates the best fit exponential function (fitted time constant: 203 ms). Dashed line indicates the smallest observed IEI (188 ms). Right, Weak correlation between amplitude
of event and length of the next IEI. A2, B2, C2, Same as in A1, B1, and C1, but for events evoked by current stimulation to B cells (as in Fig. 9C, current is injected for 10ms, black arrows and
yellow areas in A2). C2, Dashed line indicates the smallest observed IEI (82 ms), and the best fit exponential function has a time constant of 168 ms. Correlation results are in line with experi-
mental observations (Kohus et al., 2016; Chenkov, 2017; Jiang et al., 2018). Parameters used to simulate the spiking network are listed in Tables 1–3.
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evoked events can be triggered already at ;82 ms following the
previous event (Fig. 11C2, dashed line).

The results presented above for the spiking network can be
replicated in the rate-model approximation (Fig. 12). In these
simulations, noisy inputs have been added to the (otherwise
deterministic) rate model; this noise mimics the variability of the
inputs to each population in the non-SWR state (see Rate-model
noise). Figure 12A1 presents a short segment of the time course
of the B population activity and of the synaptic efficacy variable e
(out of a 10 min simulation). The noisy inputs are sufficient to
trigger spontaneous SWRs with an incidence of ;1.2/s. Figure
12B1 shows the same simulation in the e-B phase plane (similar
to the central plot in Fig. 6D), where we can observe that the
unstable fixed point (dashed branch) can be overcome at differ-
ent values of e. Figure 12C1 indicates that the IEI distribution of
the rate model is comparable to that of the spiking model
(mean= 0.76 s, SD=0.51 s; compare with Fig. 11B1). Finally,
Figure 12D1 shows that the correlation structure of SWR events
with previous and next IEI is preserved: the left plot reveals the
existence of a refractory period and a correlation between SWR
amplitude and the length of the previous IEI (Pearson correla-
tion coefficient c=0.47, p ¼ 7:36 	 10�41; compare with Fig.
11C1), whereas the right plot demonstrates that the SWR ampli-
tude does not correlate with the length of the next IEI (Pearson
correlation coefficient c = –0.05, p= 0.224). As in the spiking net-
work simulations, the duration of the events (given by the
FWHM of the filtered signal) is also correlated with the length of
the previous (but not next) IEI (Pearson correlation coefficient
c= 0.58, p ¼ 1:78 	 10�64; data not shown). In addition, we study
the structure of evoked SWRs in the rate model: Figure 12A2, B2
depicts a short segment of simulation in which SWRs can either
arise spontaneously (because of noisy inputs) or be elicited by
current injection to B cells (see Quantification of SWR properties
in the noisy rate model). Figure 12C2 shows that the IEI distribu-
tion of evoked SWRs is comparable to that of spontaneous events

in the rate model (mean= 0.62 s, SD =0.44 s). Finally, Figure
12D2 confirms the existence of a strong correlation between the
amplitude of evoked SWRs and the length of the previous IEI
(Pearson correlation coefficient c=0.57, p ¼ 1:93 	 10�20), but
not with the length of the next IEI (Pearson correlation coeffi-
cient c = –0.04, p=0.524). To summarize, simulations of the rate
model with noise can replicate the main features of simulations
of the spiking model, such as the high similarity of spontaneous
and evoked SWRs, their refractoriness, and a characteristic cor-
relation between IEI and event amplitude.

In the context of our models, the correlation structure
between IEIs and amplitudes of SWRs can be explained by the
dynamics of the synaptic depression at the B ! A connection.
During a SWR, high activity of B cells decreases the efficacy of
the B ! A connection (see Eq. 3). Whenever the synaptic effi-
cacy decreases to a critical minimal value (eAB ¼ 0:386 0:01,
range [0.35, 0.40] in the spiking simulations), the inhibition at
B ! A synapses becomes ineffective, and this induces the termi-
nation of a SWR event by restoring the high activity of A cells.
The existence of a critical value of synaptic efficacy below which
the SWR state disappears is confirmed by the bifurcation analysis
displayed in Figure 6D (see also Fig. 12B1, B2). As active A cells
successfully inhibit B cells in the non-SWR state, the synaptic ef-
ficacy recovers; once it is well above the critical value, fluctua-
tions in B cell activity can trigger a new SWR. The value of the
synaptic efficacy at the beginning of a SWR (eAB ¼ 0:8560:04,
range [0.70, 0.93] in the spiking simulations) depends on the
length of the recovery time, which in turn controls the number
of B spikes needed to reach the critical value during a new SWR.
Thus, longer recovery times mean that the synaptic efficacy at
the beginning of the SWR is large, and more B spikes are needed
to reach the critical termination value. As a result, we expect the
amplitude of a SWR event (mean B input current to P cells, see
Materials and Methods) to correlate with the length of the previ-
ous IEI. Conversely, the time to the next event is determined by

Figure 12. Properties of spontaneous and evoked events in the rate model with noise. Noisy inputs mimicking synaptic current updates are injected to each rate-model population (see
Materials and Methods). Left, Analysis of spontaneous events. Right, Analysis of evoked events. A1, B population rate (blue trace) and synaptic depression e (orange trace) displayed for 1.5 s of
simulation. B1, B-e phase-plane view of trajectories shown in A1, overlain by the corresponding bifurcation diagram (gray). C1, Histogram of IEI (distance from end to start of events, calculated
at half maximum) of spontaneous events. Events are calculated from the low-pass filtered (up to 10 Hz) B trace. D1, Amplitude (calculated from filtered signal) of each event with respect to
the IEI. Left, Strong correlation between event amplitude and previous IEI. Each dot indicates a pair. Red line indicates the best fit exponential function (fitted time constant: 119 ms). Dashed
line indicates the smallest observed IEI (74 ms). Right, Weak correlation between amplitude of event and length of the next IEI. A2, B2, C2, D2, Same as in A1, B1, C1, and D1, but for events
evoked by additional step-current stimulation to B population (as in Fig. 10, currents are injected for a duration of 10ms with amplitude IB = 150 pA; as in Fig. 11, currents are injected at
intervals of;2 s; black arrow and yellow line in A2). D2, Dashed line indicates the smallest observed IEI (55 ms), and the best fit exponential function has a time constant of 110 ms.
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the recovery of the synaptic efficacy variables, which starts from
a value that exhibits low variability. Thus, the amplitude of an
event should not influence the interval to the next spontaneous
SWR, suggesting a low correlation between the event amplitude
and the length of the next IEI. Finally, the recovery from depres-
sion also explains the existence of a refractory period during
which no SWRs are generated: shortly after a SWR, the synaptic
efficacy of B ! A connections is too weak for B cell activity to
suppress A cells and trigger a new SWR.

Additional short-term plasticity mechanisms
Up to this point, we have used a spiking model that includes a
minimal set of components, which were sufficient to reproduce
the experimental findings of interest. We are thus undoubtedly
neglecting many other phenomena, which might also contribute
to the modulation of SWR dynamics. For example, it is well
known that, both in the hippocampus and neocortex, synapses
from PV1 BCs to pyramidal cells are depressing (Galarreta and
Hestrin, 1998; Kraushaar and Jonas, 2000; Szabó et al., 2010;
Kohus et al., 2016). Another prominent plasticity mechanism is
the short-term facilitation at synapses connecting pyramidal cells
to different types of interneurons (Reyes et al., 1998; Wierenga
and Wadman, 2003; Silberberg and Markram, 2007; Pala and
Petersen, 2015; English et al., 2017; Nanou et al., 2018). In the
hippocampus, this mechanism has been mostly investigated for
oriens-lacunosum-moleculare cells (Ali and Thomson, 1998;
Losonczy et al., 2002; Böhm et al., 2015). Although the identity
of anti-SWR cells is currently unknown, this property could be
nevertheless interesting to consider in the network. To get a bet-
ter intuition of the impact of short-term plasticity on SWR dy-
namics, we thus investigate the effect of B ! P depression and
P ! A facilitation in the spiking network. The results presented
in Bifurcation analysis of rate model indicate that the other con-
nections are not well suited for a dynamic control of SWRs in
our model.

B ! P synaptic depression
First, we test the effect of an additional short-term B ! P synap-
tic depression in the model, and compare the results with the
default case (i.e., with the case in which the B ! A synapses are
the only plastic connections). For simplicity, we assume that the
properties of B ! P depression (time decay and plasticity rate)
are identical to those of the B ! A depression. This assumption
is motivated by the fact that both mechanisms share the same
presynaptic population (for details about how to model synaptic
depression, see Eq. 3).

As a result of B ! P synaptic depression, B inhibition onto
pyramidal cells is reduced. How does this impact SWRs in our
setup? As in the default scenario with plastic B ! A connection,
the depression gets markedly activated during a SWR event,
when B cells increase their firing rate. Hence, P cells receive less
inhibition while being already active. This suggests, for example,
that the population rate of P cells increases while the B ! P
depression is on. This behavior is confirmed in Figure 13, which
shows simulations of the spontaneous network when both
depression mechanisms are active. Figure 13A shows that the
approximated sharp wave signal has lower amplitude when the
B ! P depression is present. Given that the LFP is defined as a
low-pass filtered version of the mean B input to P cells (Materials
and Methods), this effect is not surprising. The reduced B input
to P cells also results in an increase of the population firing rate
of P cells (Fig. 13B, left). Because of this increased activity of P,
the activity of B is also increased (Fig. 13B, middle), but this

increase does not balance (in the LFP) the depression of B ! P.
The activity of A cells remains very low during the SWR, and is ba-
sically unchanged outside of the SWR (Fig. 13B, right). The bifurca-
tion analysis of the rate model shown in Figure 13E corroborates
the effects of the additional B ! P depression on the population
firing rates: in the SWR state, decreasing e increases P and B (pink
upper branches in left and middle plots) but does not change A
(pink lower branch in right plot). In the default scenario (Fig. 13E,
black traces), population rates in the SWR state are independent of
the exact value of e (inside the bistable region).

The properties of the approximated sharp wave signal are
quantified in Figure 13C. As discussed, B ! P depression decreases
event amplitudes, and the increased B activity does not compensate
for this. Interestingly, the IEIs remain largely unaffected. The
FWHM is slightly lower in the scenario with B ! P depression.
However, it is important to keep in mind that the FWHM is
intrinsically linked to the event amplitude; thus, it can be misleading
to compare it across conditions where events have different ampli-
tudes. Finally, Figure 13D shows that the correlation structure of
SW amplitude and previous or next IEI stays remarkably
unchanged when the B ! P depression is added (Pearson correla-
tion coefficient for case with B ! P depression: amplitude and pre-
vious IEI: c=0.81, p ¼ 2:85 	 10�204, amplitude and next IEI:
c=0.04, p=0.204). Overall, we conclude that the network properties
are largely preserved when a B ! P depression mechanism is
added to the default network with B ! A depression.

Could the B ! P depression replace the B ! A depression in
the network? In a network with B ! P depression alone (i.e.,
nonplastic B ! A connections), P cells receive less inhibition
when they are active (during a SWR), and thus persist in an
active state. Hence, the network cannot escape from the SWR
state, and events do not terminate. The bifurcation analysis of
the rate model can explain this (Fig. 7, B ! P): a decrease in
WPB alone cannot bring the system away from bistability). In this
sense, the B ! P depression can be thought of as an additional,
but not alternative, mechanism to the B ! A depression.

P ! A synaptic facilitation
To test the effect of P ! A facilitation, we compare the behavior
of the default network with the one of a network to which this
mechanism is added (for details about the implementation, see
Materials and Methods). Short-term facilitation at P ! A synapses
is expected to increase the excitation seen by theA cells when P cells
are active (i.e., during a SWR). Thus, this mechanism supports the
termination of SWRs by restoring the high firing rate of A cells.

The facilitation effects in the network are summarized in
Figure 14. The amplitude of the LFP signal is slightly reduced
(Fig. 14A,C), an effect that is related to a stronger A ! B inhibi-
tion caused by slightly more active A cells. Figure 14B shows that
the population firing rates of P and B cells are virtually
unchanged in the case with P ! A facilitation, in line with the
bifurcation analysis of the rate model (Fig. 7). Additionally, the
IEI distribution is slightly shifted to larger values in the case of
added P ! A facilitation because the recovery of both B ! A
depression and P ! A facilitation is needed to start a SWR
event. However, Figure 14D (dashed lines) shows that the refrac-
toriness is largely controlled by the B ! A depression.
Interestingly, the correlation structure in Figure 14D shows a
similar trend as the default scenario (Pearson correlation coeffi-
cient for case with facilitation: amplitude and previous IEI:
c=0.48, p ¼ 3:97 	 10�37, amplitude and next IEI: c = –0.02,
p= 0.567). Overall, we can conclude that the network is robust to
the addition of a P ! A facilitation mechanism.
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Figure 13. Effect of additional PV1 BC-to-pyramidal cell synaptic depression. A, Snapshot of spontaneous, low-pass (,5 Hz) filtered LFP activity in default setting (black, as Fig. 11) and in
the scenario where B ! P synaptic depression is added (pink). B, One event is isolated, and the corresponding population firing rates and cells’ raster plots are shown (for P, B, and A cells,
respectively). Events are aligned with respect to the peak of the LFP signal. C, Properties of spontaneous SWR events are summarized in histograms (IEI; amplitude; FWHM), in default (black)
and B ! P depression (pink) scenarios. D, Correlation structure of sharp wave amplitude and previous (left) and next (right) IEI are remarkably similar in the two scenarios. The shift along
the vertical axis is caused by the decreased event amplitude in the case with B ! P depression. Dashed lines indicate the smallest observed IEI for the default case (188ms, black) and the
case with additional B ! P depression (142ms, pink). Solid curves indicate best fit exponential functions (fitted time constants are t = 203 ms in default case and t = 214 ms in the case
with added B-to-P depression). Parameters used to simulate the spiking network are listed in Tables 1–3 and in Short-term plasticity. E, Rate-model bifurcation diagrams show the steady-state
rates of P, B, and A as a function of the synaptic efficacy e in default scenario (light gray) and with additional B ! P depression (light pink). Solid (dashed) light pink and light gray curves
indicate stable (unstable) fixed points. Middle, Solid dark gray curve indicates the e-nullcline, given by the last line in Equation 5. This synaptic depression mechanism causes e to increase in
the non-SWR state, which allows fluctuations to start a SWR event, and causes e to decrease in the SWR state, which terminates the SWR event. Overlain are traces of a 3 s simulation of the
rate model with noise (see Rate-model noise) for default case (black) and with additional B ! P depression (pink). During a SWR, the additional B ! P depression leads to increasing P and
B activity while e is decreasing (curved shape of the SWR state in the left and middle panels). Network parameters are summarized in Table 5.

7830 • J. Neurosci., October 7, 2020 • 40(41):7811–7836 Evangelista et al. · SharpWave-Ripple Events and Disinhibition



Could the P ! A facilitation replace the B ! A depression
in the network? To investigate this case, we simulate a network
where the P ! A facilitation is the only plastic mechanism in
the network (i.e., the synaptic efficacy of the B ! A connection
is clamped at eAB = 0.5 for the whole duration of the simulation).
Figure 15A shows that spontaneous events emerge in such a net-
work. Events have a much longer duration and larger variability
(as indicated by the FWHM) than the ones in the default net-
work (Fig. 15B, right); however, events can occur with much
shorter IEI than the default case (Fig. 15B, left, purple bars with
IEI, 100ms). This can be explained by recognizing that, in the
network with facilitation only, the initiation and termination
mechanisms are distinct. An event is initiated when fluctuations

at B cells are large enough to inhibit the activity of A cells. For
this, the B ! A connection needs to be strong (little or no
depression). After an event has started, the facilitation increases
the efficacy of the P ! A connection, which can move the net-
work out of the bistable regimen and thus terminate the SWR.
Meanwhile, fluctuations in B can still prompt the inhibition of
A cells. Thus, the A cells get a mixed signal (inhibition from B
and excitation from P), which can prolong the time required
for the facilitation to make the A cells fully active again, and
thus to terminate a SWR event. After a SWR is terminated, a
new SWR could be initiated with virtually no refractoriness
because the rate (and fluctuations) in B are strong straight-
away. Conversely, in the default scenario (B ! A depression

Figure 14. Effect of additional pyramidal-to-anti-SWR cell synaptic facilitation. A, Snapshot of spontaneous, low-pass filtered (,5 Hz) LFP activity in default setting (black, as Fig. 11) and
in the scenario where P ! A synaptic facilitation is added (green). B, One event is isolated, and the corresponding population firing rates and cells’ raster plots are shown (for P, B, and A cells,
respectively). Events are aligned with respect to the peak of the LFP signal. C, Properties of spontaneous SWR events are summarized in histograms (IEI; amplitude; FWHM), in default (black)
and P ! A facilitation (green) scenarios. D, Correlation structure of sharp wave amplitude and previous (left) and next (right) IEI are remarkably similar in the two scenarios. The shift along
the vertical axis is caused by the decreased event amplitude in the case with P ! A facilitation. Dashed lines indicate the smallest observed IEI for the default case (188 ms, black) and the
case with additional P ! A facilitation (209 ms, green). Solid curves indicate best fit exponential functions (fitted time constants are t = 203 ms in default case and t = 214 ms in the case
with added P-to-A facilitation). Parameters used to simulate the spiking network are listed in Tables 1–3 and in Short-term plasticity.
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only), the initiation and termination mechanisms are both de-
pendent on the B ! A connection, leading to a lower variabil-
ity of FWHM by preventing the occurrence of longer events
and giving rise to stronger refractoriness. In other words, in
the default case, the effect of possible fluctuations in the activ-
ity of B cells during and immediately after SWRs is suppressed
by the (depression-driven) lower efficacy of the B ! A con-
nection, and new events cannot be triggered before the depres-
sion has recovered.

A remarkable feature of the simulations with only P ! A
facilitation is that the network can still reproduce a strong
correlation between event amplitude and previous IEI as

experimentally observed by Kohus et al. (2016) (Fig. 15C;
Pearson correlation coefficient, amplitude and previous IEI:
c=0.41, p ¼ 7:45 	 10�38, amplitude and next IEI: c= 0.08,
p= 0.020). This result suggests that the SWR termination mecha-
nism is a main component influencing the existence of the corre-
lation between IEIs and SWR amplitude. Finally, the analysis of a
rate-model approximation of the spiking model (with fixed e=0.5
and dynamic P ! A facilitation) confirms the existence of bistabil-
ity in this scenario. Figure 15D shows that for a wide range of values
of the facilitation variable z, non-SWR and SWR states coexist,
which is similar to the default scenario with B ! A depression
(compare these plots with the black traces in Fig. 13E).

Figure 15. Pyramidal-to-anti-SWR cells synaptic facilitation can regulate SWR initiation and termination in the network. A, Snapshot of spontaneous, low-pass filtered (,5 Hz) LFP activity
in default setting (black, as Fig. 11) and in the scenario with P ! A synaptic facilitation alone (i.e., no B ! A depression, purple). B, Properties of spontaneous SWR events are summarized
in histograms (IEI; amplitude; FWHM), in default (black) and facilitation-only (purple) scenarios. Note the wider distribution of FWHM and the short IEIs (,100 ms) in the facilitation-only sce-
nario. C, Correlation structure of sharp wave amplitude and previous (left) and next (right) IEI is preserved in the scenario with P ! A facilitation alone. Dashed lines indicate the smallest
observed IEI for the default case (188ms, black) and the case with P ! A facilitation (19 ms, purple). Solid curves indicate best fit exponential functions (fitted time constants are t =
203 ms in default case and t = 200 ms in the P-to-A facilitation-only case). In the simulation with P ! A facilitation, the reciprocal connections among interneurons are adjusted to yield
enough events (see Short-term plasticity). All other parameters are listed in Tables 1–3. D, Rate-model bifurcation diagrams represent the steady-state rates of P, B, and A as a function of the
efficacy z of the connection P ! A (see Short-term plasticity in the rate model). Solid and dashed light pink curves indicate stable and unstable fixed points, respectively. The system is bistable
for z, 0.66. Left, Solid gray curve indicates the z-nullcline. This synaptic facilitation mechanism causes z to decrease in the non-SWR state, which enables fluctuations to start a SWR event,
and to increase in the SWR state, which terminates the SWR event. Overlain are traces of 8 s simulation of rate model with noise (see Rate-model noise) with P ! A facilitation only. For these
calculations, we fixed e= 0.5 in the B ! A connection. Further parameters are summarized in Table 5.
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To conclude, we have shown in this section how additional
short-term plasticity mechanisms affect the dynamics of SWRs.
We have focused on the depression B ! P and on the facilitation
P ! A, which were shown to preserve the main features of
SWRs. Moreover, we have shown that P ! A facilitation can
replace the default depression at the B ! A connection in gener-
ating spontaneous SWRs with the right correlation structure.
However, in the P ! A facilitation-only scenario, SWRs lack the
refractory period typically observed in experiments (Schlingloff
et al., 2014; Kohus et al., 2016; Jiang et al., 2018; Levenstein et al.,
2019). This suggests that the P ! A facilitation alone is not suffi-
cient to reproduce SWR-like activity.

Overall, if A cells are mediating disinhibition in CA3, our
results predict that the B ! A depression is a key mechanism
controlling the initiation and termination of SWRs.

Discussion
We have shown that a spiking network consisting of pyramidal
cells and two types of interneurons (PV1 BCs and a class of anti-
SWR cells), equipped with a short-term synaptic depression at the
synapses connecting PV1 BCs to anti-SWR cells, is able to generate
SWRs and to reproduce multiple features of experimentally
recorded SWRs. SWRs can emerge spontaneously in the network
or can be triggered by cell stimulation (activation of pyramidal or
PV1 BCs, or inactivation of anti-SWR cells). The crucial mecha-
nism underlying this behavior is the disinhibition of pyramidal cells
via suppression of anti-SWR cells by active PV1 BCs. The model
thus predicts strong connections in the disinhibitory pathway from
PV1 BCs to pyramidal cells via anti-SWR cells.

The model explains the paradoxical finding that PV1 cell
stimulation (Schlingloff et al., 2014; Kohus et al., 2016) can trig-
ger SWRs. In these studies, optogenetic activation acted on all
PV-expressing cell types. In the model, we have assumed that a
selective activation of PV1 BCs is sufficient to initiate a SWR
event. The recruitment of PV1 BCs for SWR generation in the
model is in line with experiments showing an involvement of in-
hibitory neurons during the initial phase of a SWR (Ellender et
al., 2010; Sasaki et al., 2014; Bazelot et al., 2016). The model also
reproduces the dynamics of spontaneous SWRs (Kohus et al.,
2016; Chenkov, 2017; Jiang et al., 2018), in particular the exis-
tence of a strong correlation between SW amplitude and length
of the previous (but not the next) IEI.

We predict the existence of a population of interneurons, the
anti-SWR cells, which are tonically active in non-SWR states and
stop firing during SWR events. We also predict that inactivating
these cells is sufficient to trigger a SWR event. Which cell types
could possibly represent anti-SWR cells? There are several possi-
ble candidates: interneurons recorded in vivo in the alveus and
stratum oriens of CA1 decreased their firing during SWRs (anti-
SPW cells in Csicsvari et al., 1999b). Fuentealba et al. (2008)
reported the existence of an enkephalin-expressing GABAergic
cell in CA1, in vivo, which seemed to be antimodulated with
SWRs. Additionally, Le Van Quyen et al. (2008) showed that a
subset of putative interneurons recorded in the human hippo-
campal formation stopped firing during the initial phase of a
SWR event. Finally, Viney et al. (2013) identified CA3 axo-
axonic cells that reduced their firing during SWRs (but see also
Klausberger et al., 2003; Varga et al., 2012, 2014; Hájos et al.,
2013). Despite these results, the identity of interneurons with
antimodulated discharge properties is still unclear.

We propose that the connection from PV1 BCs to anti-SWR
cells (B ! A synapses) plays an important role in regulating the
incidence of SWRs. PV1 BCs contact different classes of

inhibitory neurons (Sik et al., 1995; Cobb et al., 1997; Kohus et
al., 2016; Walker et al., 2016), but an experimental test of the ex-
istence and properties of the B ! A connection relies on the
identification of A cells. The choice of short-term synaptic
depression at B ! A synapses was inspired by Kohus et al.
(2016), in which it was shown that SWR occurrence correlates
with a depression mechanism from PV1 BCs to pyramidal cells.

Various other adaptation mechanisms could control the dynam-
ics of SWRs. Figures 13–15 demonstrate robustness with respect to
facilitation at P ! A and depression at P ! B, but these mecha-
nisms cannot replace the depression at B ! A. Aside from that, the
bifurcation analysis (Fig. 7) indicates that short-term depression at
P ! B would be suitable; however, this synapse is governed by
facilitation (Nanou et al., 2018). Alternatively, SWRs could be regu-
lated by spike frequency adaptation (Kneisler and Dingledine, 1995;
Povysheva et al., 2013; Ha and Cheong, 2017; Levenstein et al.,
2019), for example, in the P or B cells, although it is currently
unclear whether PV1 BCs express this property. Moreover, English
et al. (2014) proposed that cellular hyperpolarization following a
SWR event could induce a period where pyramidal cells are silent.
This hyperpolarization could be the result of the activation of Ca21-
dependent or potassium currents (Zhang et al., 2006; Fano et al.,
2012). Such additional adaptation mechanisms could help to pre-
vent excessively long SWR-like activity, which could damage the bi-
ological network.

The model has been constructed such that, in the absence of
dynamic short-term plasticity, SWR and non-SWR states coexist.
Each state is dominated by an active pyramidal-interneuron sub-
network (see Fig. 2B). This bistable configuration relies on strong
mutual connections between the two interneuron populations A
and B, another critical model prediction. In a perfect bistable
configuration, that is, when short-term plasticity is clamped at
intermediate values (e.g., eAB = 0.5 in Fig. 2A), transitions
between SWR and non-SWR states can be induced only by cur-
rent injection but do not arise spontaneously. The addition of
short-term depression at B ! A synapses is sufficient to disrupt
bistability: for large values of the synaptic efficacy, small fluctua-
tions in the network activity can suffice to trigger a transient
SWR event, which is terminated by the decrease of synaptic effi-
cacy. This type of inhibitory networks, where noisy behavior and
slow adaptive mechanisms coexist, has been studied previously
(Moreno-Bote et al., 2007; Shpiro et al., 2007; Curtu et al., 2008;
Shpiro et al., 2009; Jercog et al., 2017; Levenstein et al., 2019), but
mostly in the scenario with only one or two populations.
According to the terminology in Levenstein et al. (2019), our
model corresponds to an excitableDOWN regimen; however,
our model complements this work by providing a more mecha-
nistic framework that can explain SWR generation and its de-
pendence on interneuron activation (Schlingloff et al., 2014;
Kohus et al., 2016).

In our approach, the network connectivity was set to have a
bistable configuration. The bifurcation analysis presented in
Materials and Methods shows that the studied networks are not the
result of parameter fine-tuning, but rather representatives of a broad
class of bistable disinhibitory networks. In biological networks, how
could the connections be tuned so that all desired properties of the
network are fulfilled? We propose that inhibitory spike timing-de-
pendent plasticity (seeWoodin et al., 2003; Vogels et al., 2011, 2013;
Luz and Shamir, 2012) could be used to set the inhibitory-to-excita-
tory connections in each subnetwork. Future theoretical work could
explore the feasibility of this approach.

The model presented in this study illustrates in great detail
the complex interplay of three homogeneous neuron popu-
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lations. To be able to illustrate key principles of disinhibitory net-
works, we have made several simplifying assumptions that were
necessary to keep the number of free model parameters as low as
possible. First, we have assumed that all cells in a population
share the same properties (e.g., spiking thresholds, reset poten-
tials, etc.). It would be interesting to test the impact of a larger
cell-to-cell variability, and to include different subpopulations of
P, B, and A cells. For example, it has recently been shown by
Hunt et al. (2018) that the population of CA3 pyramidal cells can
be divided into two groups of preferentially regular spiking and
bursting neurons, and it has been hypothesized that the two
classes play different roles in SWR initiation. This feature could
be incorporated in the model once more is known about the
embedding of these and other cells in the local circuit.
Furthermore, we have used the standard assumption of random
connectivity in the spiking network, which does not take into
account distance-dependent connection probabilities and con-
nectivity motifs that have been observed in biological networks
(Song et al., 2005; Perin et al., 2011; Rieubland et al., 2014;
Guzman et al., 2016; English et al., 2017). Such structured con-
nectivities could be used to explain a number of experimental
features. Bazelot et al. (2016) showed that SWR events can be
triggered by driving a single pyramidal cell to spike (even a single
action potential can be sufficient). This result cannot be repli-
cated in the model, where the activation of at least ;20-30 py-
ramidal cells is needed to elicit a SWR event. This limitation of
the current model is because of the large size of the homogene-
ous pyramidal cell population, in which each neuron contributes
little to the depolarization of connected cells. However, if cells
were connected in a nonrandom fashion, it could be possible for
a pyramidal cell with a large number of postsynaptic targets to be
the initiator of a SWR. Inhomogeneous networks could also rep-
licate the experimental finding that only up to 50% (Ylinen et al.,
1995; Ellender et al., 2010) or� 17% (Hájos et al., 2013) of py-
ramidal cells are involved in a single SWR event. In our homoge-
neous network, virtually all pyramidal cells participate in every
SWR event. Depending on the differential embedding of cells in
the network, fewer cells could be recruited in each event. This as-
pect of cell participation is linked to sequence replay during
SWRs in vivo. If cells were organized in small-size clusters (cell
assemblies) of strongly connected cells coding for a specific
memory, only the assemblies related to the currently reactivated
memory would be active in a given SWR event, thus lowering
the proportion of recruited cells during a single event. This
approach has been investigated by Chenkov et al. (2017) in CA3
networks comprising one excitatory and one inhibitory popula-
tion, but a replication of this approach using inhomogeneous
three-population disinhibitory networks is far beyond the scope
of the work presented here.

Overall, our model contributes to a fundamental understanding
of the role of interneurons in SWR generation. Although in this
study we focused on the CA3 region to create a biologically realistic
network, our model can be used to test the mechanisms underlying
SWR generation in other areas (as CA1, CA2, subiculum, etc.). We
predict that the disinhibitory motif is a general principle that gov-
erns the organization of hippocampal microcircuits.

References
Abbott LF (1994) Decoding neuronal firing and modeling neural networks.

Q Rev Biophys 27:291–331.
Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus

interneurone inputs: dual intracellular recordings in slices of rat hippo-
campus. J Physiol 507:185–199.

Amaral DG, Witter MP (1989) The three-dimensional organization of the
hippocampal formation: a review of anatomical data. Neuroscience
31:571–591.

Axmacher N, Elger CE, Fell J (2008) Ripples in the medial temporal lobe are
relevant for human memory consolidation. Brain 131:1806–1817.

Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger RP, Jonas P
(2002) Fast synaptic inhibition promotes synchronized gamma oscilla-
tions in hippocampal interneuron networks. Proc Natl Acad Sci USA
99:13222–13227.

Bazelot M, Tele�nczuk MT, Miles R (2016) Single CA3 pyramidal cells trigger
sharp waves in vitro by exciting interneurones. J Physiol 594:2565–2577.

Beyeler A, Retailleau A, Molter C, Mehidi A, Szabadics J, Leinekugel X
(2013) Recruitment of perisomatic inhibition during spontaneous hippo-
campal activity in vitro. PLoS One 8:e66509.

Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits:
knowledge base for interneuron-pyramidal cell connectivity. Hippocampus
23:751–785.

Böhm C, Pangalos M, Schmitz D, Winterer J (2015) Serotonin attenuates feed-
back excitation onto O-LM interneurons. Cereb Cortex 25:4572–4583.

Booker SA, Vida I (2018) Morphological diversity and connectivity of hippo-
campal interneurons. Cell Tissue Res 373:619–641.

Bragin A, Jando G, Nadasdy Z, van LandeghemM, Buzsaki G (1995) Dentate
EEG spikes and associated interneuronal population bursts in the hippo-
campal hilar region of the rat. J Neurophysiol 73:1691–1705.

Breakspear M (2017) Dynamic models of large-scale brain activity. Nat
Neurosci 20:340–352.

Brunel N (2000) Persistent activity and the single-cell frequency-current
curve in a cortical network model. Network 11:261–280.

Brunel N, Wang XJ (2003) What determines the frequency of fast network
oscillations with irregular neural discharges? I. Synaptic dynamics and
excitation-inhibition balance. J Neurophysiol 90:415–430.

Buzsáki G (1986) Hippocampal sharp waves: their origin and significance.
Brain Res 398:242–252.

Buzsáki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for
episodic memory and planning. Hippocampus 25:1073–1188.

Buzsáki G, Lai-Wo SL, Vanderwolf CH (1983) Cellular bases of hippocampal
EEG in the behaving rat. Brain Res Rev 6:139–171.

Chamberland S, Topolnik L (2012) Inhibitory control of hippocampal inhibi-
tory neurons. Front Neurosci 6:165–113.

Chenkov N (2017) Network mechanisms underlying sharp-wave ripples
and memory replay. PhD thesis, Humboldt-Universität zu Berlin,
Lebenswissenschaftliche Fakultät.

Chenkov N, Sprekeler H, Kempter R (2017) Memory replay in balanced
recurrent networks. PLoS Comput Biol 13:e1005359.

Chizhov AV, Sanchez-Aguilera A, Rodrigues S, de La Prida LM (2015)
Simplest relationship between local field potential and intracellular sig-
nals in layered neural tissue. Phys Rev E Stat Nonlin Soft Matter Phys
92:062704.

Cobb SR, Halasy K, Vida I, Nyiri G, Tamás G, Buhl EH, Somogyi P (1997)
Synaptic effects of identified interneurons innervating both interneurons
and pyramidal cells in the rat hippocampus. Neuroscience 79:629–648.

Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G (1999a) Fast network
oscillations in the hippocampal CA1 region of the behaving rat. J
Neurosci 19:RC20–RC24.

Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G (1999b) Oscillatory
coupling of hippocampal pyramidal cells and interneurons in the behav-
ing rat. J Neurosci 19:274–287.

Curtu R, Shpiro A, Rubin N, Rinzel J (2008) Mechanisms for frequency con-
trol in neuronal competition models. SIAM J Appl Dyn Syst 7:609–649.

Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of
extended experience. Neuron 63:497–507.

Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. Cambridge, MA: Massachusetts
Institute of Technology.

de la Prida LM, Huberfeld G, Cohen I, Miles R (2006) Threshold behavior in
the initiation of hippocampal population bursts. Neuron 49:131–142.

Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell
network plasticity induced by experience regulates adult learning. Nature
504:272–276.

Donoso JR (2016) The role of interneuronal networks in hippocampal ripple oscil-
lations. PhD thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche
Fakultät.

Donoso JR, Schmitz D, Maier N, Kempter R (2018) Hippocampal ripple
oscillations and inhibition-first network models: frequency dynamics and
response to GABAmodulators. J Neurosci 38:3124–3146.

7834 • J. Neurosci., October 7, 2020 • 40(41):7811–7836 Evangelista et al. · SharpWave-Ripple Events and Disinhibition

http://dx.doi.org/10.1017/s0033583500003024
https://www.ncbi.nlm.nih.gov/pubmed/7899551
http://dx.doi.org/10.1111/j.1469-7793.1998.185bu.x
http://dx.doi.org/10.1016/0306-4522(89)90424-7
https://www.ncbi.nlm.nih.gov/pubmed/2687721
http://dx.doi.org/10.1093/brain/awn103
https://www.ncbi.nlm.nih.gov/pubmed/18503077
http://dx.doi.org/10.1073/pnas.192233099
https://www.ncbi.nlm.nih.gov/pubmed/12235359
http://dx.doi.org/10.1113/JP271644
https://www.ncbi.nlm.nih.gov/pubmed/26728572
http://dx.doi.org/10.1371/journal.pone.0066509
https://www.ncbi.nlm.nih.gov/pubmed/23805227
http://dx.doi.org/10.1002/hipo.22141
https://www.ncbi.nlm.nih.gov/pubmed/23674373
http://dx.doi.org/10.1093/cercor/bhv098
https://www.ncbi.nlm.nih.gov/pubmed/26021702
http://dx.doi.org/10.1007/s00441-018-2882-2
https://www.ncbi.nlm.nih.gov/pubmed/30084021
http://dx.doi.org/10.1152/jn.1995.73.4.1691
http://dx.doi.org/10.1038/nn.4497
https://www.ncbi.nlm.nih.gov/pubmed/28230845
http://dx.doi.org/10.1088/0954-898X_11_4_302
http://dx.doi.org/10.1152/jn.01095.2002
https://www.ncbi.nlm.nih.gov/pubmed/12611969
http://dx.doi.org/10.1016/0006-8993(86)91483-6
https://www.ncbi.nlm.nih.gov/pubmed/3026567
http://dx.doi.org/10.1002/hipo.22488
https://www.ncbi.nlm.nih.gov/pubmed/26135716
http://dx.doi.org/10.1016/0165-0173(83)90037-1
http://dx.doi.org/10.3389/fnins.2012.00165
https://www.ncbi.nlm.nih.gov/pubmed/23162426
http://dx.doi.org/10.1371/journal.pcbi.1005359
https://www.ncbi.nlm.nih.gov/pubmed/28135266
http://dx.doi.org/10.1103/PhysRevE.92.062704
http://dx.doi.org/10.1016/S0306-4522(97)00055-9
https://www.ncbi.nlm.nih.gov/pubmed/9219929
http://dx.doi.org/10.1523/JNEUROSCI.19-16-j0001.1999
http://dx.doi.org/10.1523/JNEUROSCI.19-01-00274.1999
http://dx.doi.org/10.1137/070705842
https://www.ncbi.nlm.nih.gov/pubmed/20953287
http://dx.doi.org/10.1016/j.neuron.2009.07.027
https://www.ncbi.nlm.nih.gov/pubmed/19709631
http://dx.doi.org/10.1016/j.neuron.2005.10.034
https://www.ncbi.nlm.nih.gov/pubmed/16387645
http://dx.doi.org/10.1038/nature12866
https://www.ncbi.nlm.nih.gov/pubmed/24336286
http://dx.doi.org/10.1523/JNEUROSCI.0188-17.2018
https://www.ncbi.nlm.nih.gov/pubmed/29453207


Duarte M 2015. Notes on scientific computing for biomechanics and motor
control. Available at https://github.com/demotu/BMC.

Dugas C, Bengio Y, Belisle F (2001) Incorporating second-order functional
knowledge for better option pricing. NIPS 13:472.

Dupret D, O’Neill J, Pleydell-Bouverie B, Csicsvari J (2010) The reorganiza-
tion and reactivation of hippocampal maps predict spatial memory per-
formance. Nat Neurosci 13:995–1002.

Ego-Stengel V, WilsonMA (2010) Disruption of ripple-associated hippocam-
pal activity during rest impairs spatial learning in the rat. Hippocampus
20:1–10.

Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and anal-
ysis of local field potentials for studying the function of cortical circuits.
Nat Rev Neurosci 14:770–785.

Ellender TJ, Nissen W, Colgin LL, Mann EO, Paulsen O (2010) Priming of
hippocampal population bursts by individual perisomatic-targeting inter-
neurons. J Neurosci 30:5979–5991.

English DF, Peyrache A, Stark E, Roux L, Vallentin D, Long MA, Buzsáki G
(2014) Excitation and inhibition compete to control spiking during hip-
pocampal ripples: intracellular study in behaving mice. J Neurosci
34:16509–16517.

English DF, McKenzie S, Evans T, Kim K, Yoon E, Buzsáki G (2017)
Pyramidal cell-interneuron circuit architecture and dynamics in hippo-
campal networks. Neuron 96:505–520.

Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a
guide to XPPAUT for researchers and students. Philadelphia, PA:SIAM.

Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ (2008) Sustained increase
in hippocampal sharp-wave ripple activity during slow-wave sleep after
learning. Learn Mem 15:222–228.
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