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The growing incidence of neurodegenerative disorders in our populations is leading

the research to identify potential biomarkers and targets for facilitating their early

management and treatments. Biomarkers represent the crucial indicators of both

physiological and pathological processes. Specific changes in molecular and cellular

mechanisms of physiological processes result in biochemical alterations at systemic

level, which can give us comprehensive information regarding the nature of any disease.

In addition, any disease biomarker should be specific and reliable, able to consent of

distinguishing the physiological condition of a tissue, organ, or system from disease,

and be diverse among the various diseases, or subgroups or phenotypes of them.

Accordingly, biomarkers can predict chances for diseases, facilitate their early diagnosis,

and set guidelines for the development of new therapies for treating diseases and

disease-making process. Here, we focus our attention on brain neurotrophic factor

(BDNF)–tropomyosin receptor kinase (Trk) pathway, describing its multiple roles in the

maintenance of central nervous system (CNS) health, as well as its implication in the

pathogenesis of multiple sclerosis (MS). In addition, we also evidence the features of

such pathway, which make of it a potential MS biomarker and therapeutic target.

Keywords: neurodegenerative disorders, multiple sclerosis, BDNF-Trk pathway, biomarkers, targets

INTRODUCTION

The increase in incidence of neurodegenerative disorders is leading to search potential biomarkers
and targets for facilitating their management and treatments. The particular focus on related
pathophysiological mechanisms and pathways can consent to achieve this important aim. Among
these, the alterations in expression of neurotrophins are emerging (1). Here, we report a brief
overview on brain neurotrophic factor (BDNF)–tropomyosin receptor kinase (Trk) pathway,
describing its numerous roles in the maintenance of central nervous system (CNS) health, as well as
its implication in the pathogenesis of multiple sclerosis (MS). Our aim was to provide an updated
and comprehensive evidence regarding the role of BDNF-Trk pathway in MS pathology with an
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emphasis on the probability that its expression and levels could
represent a potential biomarker and target.

BDNF: Molecular Characteristics and
Functions
Brain neurotrophic factor (BDNF) is a neurotrophin, a member
of a large family of neurotrophins, including the nerve growth
factor (NGF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4)
(2). BDNF plays an important role in maintaining the structural
integrity and function of neurons, influencing their growth,
survival, and differentiation. The expression of BDNF has been
documented both in the CNS—where it is the most abundant
neurotrophic factor (3)—and the peripheral nervous system
(PNS) (4). Furthermore, BDNF is produced by the neurons and
oligodendrocytes, but also platelets (4, 5), cells of the immune
system (i.e., T and B lymphocytes, monocytes/macrophages) (6),
and active muscles can release BDNF, therefore representing the
main reserve of BDNF at the peripheral level (7).

The BDNF gene is located on chromosome 11 (11p14.1),
between the loci of the FSHB and HVBS1 genes, in a region of
about 4Mb (7). In both humans and rodents, it contains nine
exons, each of which has its own promoter; because of this,
many kinds of transcripts are known, even if the final product
of the translation is then identical for all (8). The existence
of different promoters is, however, very important in terms of
temporal and spatial regulation since different promoters can be
used in different brain regions and cell types. Some variants of
transcripts, deriving from four coding exons, are expressed at
the cardiac and pulmonary level (9). Overall, the BDNF gene
can produce about 34 different transcripts in response to a
wide variety of stimuli (10), which are polyadenylated at the
level of two alternative sites, leading to the formation of two
populations of mRNA: one with a short untranslated region
(UTR) at the 3 “end, and the other with a long UTR at the
3” end (9). The two types of transcripts are also characterized
by a different localization: sequences with a short UTR at the
3 “end are restricted to the cell soma, and sequences with a
long UTR at the 3” end can also be found in dendrites for local
translation (11).

Likewise, the synthesis of BDNF also is a complex process.
The polypeptide is synthesized starting from a precursor, the
pre-pro-BDNF at the level of the endoplasmic reticulum (12).
Subsequently, the removal of the leader peptide takes place, with
the formation of pro-BDNF, a protein weighing 32 kDa. The
pro-BDNF, in turn, undergoes a proteolytic cut that generates,
within the cell, the mature BDNF (13). However, pro-BDNF can
also be cut later, after secretion in the extracellular environment,
by the plasmin serine protease (14) and matrix metalloproteases
(15) and it is also endowed with bioactive actions on the cells.
It is interesting to note how the two forms, the immature form,
called pro-BDNF, and the mature form, the BDNF, have not
only different binding properties (16), but also multiple diversity
in biological functions. In fact, BDNF promotes neuronal
survival, cell differentiation, synaptic plasticity, and long-term
potentiation (LTP). The pro-BDNF could induce apoptosis,
reduces the density of dendritic spines, determines the retraction

of the cones of growth, and facilitates long-term depression
(LTD) at the hippocampal level (17).

Focus on BDNF-Trk Pathway
BDNF mediates its effects by interacting with two types of
receptors: The first belongs to the family of receptors with
tyrosine kinase activity namely tropomyosin receptor kinase
(i.e., Trk), while the second is a neurotrophin receptor with
low binding affinity, known as p75 neurotrophin receptor (i.e.,
p75NTR) (Figure 1).

The class of Trk receptors includes three isoforms, TrkA,
TrkB, TrkC, resulting from different mRNA splicing events (18,
19). Although they are highly conserved and have numerous
homologous sequences, Trk receptors differ in the extracellular
domain, responsible for the interaction with ligands. This makes
each isoform specific for a different neurotrophin. In detail, TrkA
is activated by NGF (20), TrkB is activated by BDNF (21) and
NT4 (22), and TrkC is activated by NT3. However, in some
stages of brain development, NT-3 can also activate TrkA and
TrkB (23).

The interaction of BDNF with TrkB can induce the
activation of three different signal transduction pathways at
the intracellular level: the phospholipase-Cγ (PLCγ) pathway,
the phosphatidylinositol 3-kinase (PI3K) pathway and the
kinase pathway regulated by extracellular signals (ERK), and
members of the mitogen-activated protein kinase (MAPK)
family (24) (Figure 1). Once BDNF is bound, TrkB undergoes
dimerization and phosphorylation on the intracytoplasmic
kinase side (25). Phosphorylation on Y816 activates PLCγ (26)
with increased intracellular calcium and activation of type II
calcium/calmodulin-dependent protein kinase (CaMKII). The
result is the activation of the CREB transcription factor. On
the contrary, the phosphorylation on residue Y490 facilitates the
recruitment of Shc (27) which, once phosphorylated, activates the
Grb2/SOS complex. SOS, in proximity of the plasma membrane,
induces the detachment of the GDP from the Ras protein, which
can therefore bind to the GTP, activating itself. Activated Ras,
in turn, initiates the cascade that recruits Raf, MEK, and ERK
in succession (28). Instead, the activation of PI3K and, further
downstream, of the Akt kinase occurs starting from the bond
of Grb2 with Gab1. Akt and ERK can also activate CREB or
mTOR, which, respectively, promote gene expression and protein
translation (29).

The TrkB receptor exists in two isoforms, the gp145TrkB
and the truncated gp95TrkB, characterized by identical
transmembrane and extracellular structure and the absence
of the tyrosine kinase domain. The transcripts for gp145TrkB
have been identified at the level of the motor cortex and
pyramidal neurons of the hippocampus, while the transcripts for
gp95TrkB are located at the level of the ependymal lining of the
cerebral ventricles and in the choroid plexuses (21). In MS, the
expression of the whole form of TrkB appears to contribute to
the maintenance of autoimmunity of peripherally recruited cells,
mediating the resistance of T lymphocytes to apoptosis induced
by the so-called “activation-induced cell death mechanism”
(AICD) (30).
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FIGURE 1 | TrkB and p75NTR signaling. The binding between BDNF and TrkB induces the activation of three transduction pathways at the intracellular level

mediating their effects on neuronal growth and synaptic plasticity. The interaction between pro-BDNF and p75NTR receptor promotes cell apoptosis and neuronal

survival via JNK NF-kB, respectively. BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin receptor kinase; p75NTR, p75 neurotrophin receptor; Shc, Grb2,

growth factor receptor-bound protein 2; SOS, Son of Sevenless; Gab1, GRB2-associated-binding protein 1; AKT, protein kinase B; PI3K, phosphatidylinositol

3-kinase; PLC, phospholipase C; PKC, protein kinase C; DAG, diacylglycerol; IP3, inositol-3-phosphate; CaMKII, type II calcium/calmodulin-dependent protein kinase;

JNK, c-Jun N-terminal kinases; NF-kB, nuclear factor kappa B; CREB, cAMP response element-binding protein; mTOR, mammalian target of rapamycin; AMPA,

α-Ammino-3-idrossi-5-Metil-4-isossazol-Propionic Acid.

Both BDNF and TrkB are widely expressed in the CNS,
especially in the cerebral cortex, hippocampus, and cerebellum
(31). The presence of BDNF has also been demonstrated in the
striatum, synthesized at the cortical level, and released by the
descending cortico-striatal pathways (32). In cortical neurons,

BDNF production appears to be regulated by NT-4/5, as well
as by BDNF itself, in a glutamate receptor-dependent manner.
Through TrkB, BDNF and NT-4/5 activate dose-dependent
mRNA production for BDNF, suggesting that neurotrophic
factors are capable of mutual modulation. Stimulation of TrkB
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leads to the activation of MAPK and PI3K, which negatively
and positively modulate, respectively, the expression of AMPA
receptors. In turn, AMPA receptors increase the expression of the
BDNF gene through the activation of Lyn, a member of the Src
family, capable of activatingMAPKwith a consequential increase
in BDNF (33).

The p75NTR receptor, on the contrary, belongs to the
superfamily of TNF-α receptors, is encoded by a gene composed
of 10 exons and 11 introns (34), and consists of an extracellular
domain, a transmembrane domain, and an intracellular domain.
The extracellular domain has four cysteine repeats, and the
cysteines in positions three and four are essential for the
interaction with the ligands (35). The intracellular domain,
known as the death domain, is capable both in vivo and in
vitro of causing the death of nerve cells. If hyper-expressed and
in multimeric forms, p75NTR can cause cell death regardless
of binding to a ligand, presumably because of spontaneous
activation of the intracellular signal from the death domain (36)
and the activation of the JNK kinase (Jun N-terminal kinase).
Despite the expression of p75NTR often correlates with neuronal
death, multiple evidence indicates its involvement in cell survival
mechanisms. In fact, in some cases, the absence of the p75NTR

receptor leads to an increase in the death of peripheral sensory
neurons (37). It has been hypothesized that this may be due
to either the death or impaired migration of Schwann cells,
which are necessary for the survival of sensory neurons. Among
other things, p75NTR is expressed at high levels by Schwann cells
to ensure their correct migration along the peripheral nerves
(38, 39).

Furthermore, p75NTR can activate, alternatively to JNK,
NF-κB, thus promoting cell survival (40).

Ultimately, p75NTR can mediate both death and cell survival.
Its final effect therefore depends on the context and on the
different and numerous pathways activated in each cell (41).

EFFECTS OF BDNF IN THE NERVOUS
SYSTEM

BDNF Role in the Myelination Process
Several evidence from animal studies consistently indicated the
contribution of BDNF pathways to the myelination process.
In mice, the impaired expression of p75NTR results in reduced
myelination at the SNP level, in the absence of alterations
on myelination of the CNS. It has been suggested that the
p75NTR receptor is the one responsible for BDNF-inducedmyelin
synthesis at the SNP level (42). On the contrary, BDNF seems
to exert its myelinating effect on the CNS via the receptor TrkB
(43). In a cuprizone-induced mouse model of demyelination,
a positive correlation was noted between BDNF levels and
myelin expression by oligodendrocytes (44). BDNF appears in
fact to induce myelination by oligodendrocytes through the
ERK1/2 phosphorylation (90). Other evidence arrives from
BDNF-deficient mice expressing low levels of myelin proteins
during the recovery phase of demyelination (45). More precisely,
myelin basic protein (MBP) mRNA levels are significantly
reduced in the hippocampus and cerebral cortex when BDNF

gene expression is silenced (46). The activity of BDNF on
oligodendrocytes is not limited anyway only to the induction
of their functional activity. In fact, BDNF seems to be able
to control their proliferation and differentiation. Accordingly,
these processes can be hindered by a deficit in the BDNF
production (47). Consistent with this evidence, relevant are the
numerous data obtained from the group of Dr. Dreyfus in mice,
animal, and culture works. Precisely, they have demonstrated that
the BDNF levels impact oligodendrocyte lineage cells (47). In
oligodendrocyte progenitor cells (OPCs), in culture, they have
demonstrated that the reduced levels of BDNF influence the
proliferation of OPCs (48). Adequate BDNF amounts, through
the TrkB receptor, increase, indeed, the DNA synthesis in OPCs
and induce differentiation of post-mitotic oligodendrocytes
(OLGs) of the basal forebrain (BF). In addition, by using BDNF
knockout animals, they have investigated the BDNF’s effects on
OLG in vivo (48). OLCs of BF resulted to express the TrkB
receptor, suggesting their responsiveness to BDNF. Furthermore,
immunohistochemistry analysis with NG2 and CC1 antibodies
has been performed for evaluating the numbers of NG2+ OPCs
and CC1+ post-mitotic BF OLGs in the embryo (E17) of both
BDNF –/– and BDNF ± mice. A reduced number of NG2+
cells characterized the embryos without BDNF. The same result
has been obtained in the BDNF ± mice at E17 and at postnatal
day 1 (P1), P14, and adult, indicating the BDNF crucial role
in OPC development (47). Accordingly, BDNF ± mice did
not have an altered number of CC1+ OLGs, even if they
showed decreased levels of myelin basic protein (MBP), myelin-
associated glycoprotein (MAG), and proteolipid protein (PLP).
Such data have consequently confirmed that BDNF also has
a fundamental role in OLG differentiation, as well as in the
impairment, in vivo and at decreased levels, of progenitor cells
and myelin proteins (47).

Modulation of Central Motor Structures by
BDNF
The mRNA for BDNF is widely expressed in numerous neurons
of the cerebellum, basal nuclei, brainstem, motor cortex, and
spinal cord (32). These are areas with strategic functions
on motor control and behavior influencing, and regulating
the initiation, learning, execution, and coordination of motor
activity. For example, at the cerebellar level, BDNF acts as a
survival, differentiation, and morphogenetic development factor
of Purkinje cells and cerebellar granules (49) and can induce
rapid depolarization in cells of Purkinje through the activation
of sodium channels (50). BDNF deprivation in the striatum leads
to the loss of numerous dopaminergic neurons. On the contrary,
following a spinal injury, treatment with BDNF prevents the
death of spinal motor neurons in vivo and can promote the
connections of the corticospinal tract with the damaged cord
(51). It seems that BDNF can also mediate the activation of
anti-apoptotic pathways at the spinal level by recruiting ERK.
Activation of PI3K/Akt may also determine the same effect,
thanks to the production of BAD, an inhibitor of NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells), and
of the transcription factor FKHRL1(52). Furthermore, BDNF
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stimulates post-synaptic excitatory potentials (EPSPs) via NMDA
receptors on spiny neurons of adult mouse striatum and induces
LTP production in cortico-striatal synapses (53).

BDNF Modulation of Synaptic Plasticity
and Activity
BDNF stimulates the increase in the density of synaptic spines
through a mechanism dependent on the Ras/ERK pathway (54)
and the activation of the TRPC (transient receptor-potential
cation channel subfamily C) type 3 ion channel (55). At
the hippocampal level, BDNF induces the polymerization of
actin filaments in dendritic spines through the modulation
of PAK (p21-activated kinase) and ADF (actin-depolymerizing
factor)/cofilin, determining the initiation and maintenance of
LTP in vivo (long-term potentiation) (56). In the context of
the LPT, BDNF does not appear to act directly at the post-
synaptic level but appears to act positively on the pre-synaptic
terminals, preparing the exocytosis events necessary to modify
the responses of the post-synaptic neurons (56). Moreover, many
of the functions of BDNF on synaptic plasticity depend on its
ability to modulate the expression levels of numerous micro-
RNAs. For example, long-term stimulation by BDNF regulates
the extension and branching of axons in cortical neuronal
cultures by increasing the levels of mir-9 (57). Another miRNA
capable of responding to BDNF is miR-132, which is induced
by BDNF via CREB activation and induces dendritic growth,
inhibiting translation of the P250GAP protein (58). Inhibition
of mir-132 causes a decrease in the BDNF-dependent expression
of important synaptic proteins such as GluN2A, GluN2B, and
GluA1 (59).

In animal model of MS, such as EAE, the administration of
IL-17 exerts immune-protective effects through the reduction in
mir-155 levels with a parallel increase in BDNF levels (60). In
the PMBC of patients with symptomatic relapsing–remittingMS,
miR-132-3p, miR-106b-5p, and miR-19b-3p are downregulated
and their levels are related to BDNF levels (61).

BDNF and Neuroprotection
The neuro-protective activity is ensured by several mechanisms.
In hippocampal neurons, BDNF eliminates glutamatergic
toxicity via ERK and PI3K signaling (62). In primary rat
cortical cultures, the effects of BDNF against apoptosis
and mitochondrial dysfunction induced by 3-nitropropionic
acid (3-NP) are mediated through nitric oxide (NO), cyclic
guanosine monophosphate (cGMP)-dependent protein kinase
(PKG), and NF-κB (63). Neuroprotection and reduction in
neuroinflammation in numerous animal and cellular studies are
also often accompanied by an increase in BDNF expression.
For example, fingolimod, a sphingosine-1-phosphate receptor
modulator used to treat MS, causes increased BDNF expression
in experimental models of Huntington’s disease, MS, and
AD (64–66).

Effect on Cell Survival, Migration, and
Differentiation
BDNF has several effects on cell development. For example,
BDNF is a migration and differentiation factor of cortical

GABAergic inter-neurons, regulating their development by
stimulating growth and ensuring the stabilization of synapses.
This function is performed in synergy with the endocannabinoid
system (eCS) that enhances the morphogenetic effects of BDNF
through CB1-TrkB trans-activation (67). In general, BDNF seems
to play a role in promoting the development of different cell
subpopulations: It, in fact, stimulates neuronal differentiation
and the growth of dendrites in the neurons of the sub-granular
zone in the hippocampus. In this region, it seems that a decrease
in BDNF levels does not affect the number of neurons but
may compromise synaptic plasticity (68). BDNF is essential
also for the development, growth, and differentiation of sensory
neurons starting from the neural crest (69). However, the
survival of sensory neurons is not totally dependent on BDNF:
When their axons begin to move toward peripheral targets, in
fact, the neurons survive independently of BDNF. Once the
appropriate synaptic connections have been established, they
become sensitive to BDNF again and this response is necessary
for their survival (70). Immunohistochemical analyses have
shown that the expression of TrkB and its ligands increases
during corticogenesis and is essential for the development and
survival of cortical neurons; the absence of TrkB determines
the apoptosis of numerous cellular elements in development
at the level of layer II, III, V, and VI of the cerebral
cortices (71).

MULTIPLE SCLEROSIS AND BDNF: A
BIOMARKER OF THE DISEASE PHASES

There is a complex relationship between BDNF, and MS
presumably associated with the different disease phases. BDNF
levels have been shown to be globally reduced in people
with MS (72). This could be correlated for instance, to a
decreased neuroprotection (73). BDNF levels have been observed
to increase in relapsing–remitting MS (RRMS) patients after
a relapse compared to the stable phase of the disease (74).
This suggests a possible role of the neurotrophic factor in
remyelination from an acute inflammatory lesion as confirmed
by numerous studies. Indeed, it has been found that BDNF
levels inversely correlate with the number of lesions evidenced
by magnetic resonance imaging (75). In addition, the tendency
to demyelination is less sustained in EAE models when BDNF
levels are increased (76). These data are reinforced by the
fact that in RRMS patients, the levels of expression of BDNF
and its receptor also increase during the relapse phases of the
disease, and this event seems to constitute a biochemical pathway
useful for achieving the subsequent phase of remission (77).
Furthermore, TNR (Tenascin R), an activator of BDNF and
modulator of microglia with a role in neuroprotection (78) and
ARHGEF10, involved in the processes of remyelination and
neurogenesis (79), is also over-expressed during a relapse. The
levels of such molecules decrease then once clinical remission is
reached (77).

Immunohistochemistry analyses showed how macrophages
and T lymphocytes, positive for BDNF, have been found in the
active lesions of the brain in MS patients and their number
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FIGURE 2 | Role of BDNF in multiple sclerosis. (A) BDNF is reduced in patients with MS although during the relapses, its production is enhanced by neurons,

macrophages, and T cells; (B) BDNF levels are inversely correlated with the number of lesions evidenced by magnetic resonance imaging; (C) gut microorganisms

producing butyrate are able to induce BNDF expression; (D) muscles are able to produce BDNF and myokines as well as they may stimulate sympathetic system.

Peripheral BDNF may directly cross the BBB, thus explaining its effect on CNS. Also, it may serve as retrograde signal for the motor neurons of the spinal cord.

Myokines such as irisin and sympathetic system may both stimulate the BDNF production in hippocamp; (E) in progressive multiple sclerosis, the impairment in

anterograde axonal flux may lead to disrupted BDNF afflux in demyelinating lesions, thus reducing the protective role of BDNF. BDNF, brain-derived neuron factor;

MS, multiple sclerosis.

correlates with the entity of demyelination. Chronic and inactive
lesions are differently infiltrated by a smaller number of BDNF-
secreting cells (80). The potential significance of this presence
is unclear, as the BDNF produced by the SI cells seems unable
to exert neuroprotection in a model of MOG35−55 EAE (81).
However, outside the areas of injury, in MS patients and
in healthy controls, neurons are the main source of BDNF.
Since BDNF produced by neurons can be transported in an
anterograde direction (82), its release at lesion sites in MS may
provide further aid to the supportive action already performed
by the BDNF released locally by immune cells. Furthermore,
the anterograde transport of BDNF increases after damage to
the axon (83). Conversely, in the progressive stages of disease,
characterized by a deficiency in antegrade axonal transport
due to the reduced expression of proteins belonging to the
kinesin family (84), the efficiency of protective functions of
BDNF may be lost or reduced. Figure 2 illustrates the effects of
BDNF in MS.

BDNF Polymorphisms and MS
One polymorphism in BDNF gene, the Val66Met polymorphism
leading to the substitution of a methionine in place of a
valine at position 66, has been observed to be associated
with an alteration in activity-dependent secretion of BDNF,
while the constitutive secretion of neurotrophins does not
change. Subjects with the Val66Met polymorphism have defects
in memory because of alterations in hippocampal functions
(85). In Italy, in a population of 223 people examined, the
Met/Met homozygosis is present in 4.3% of cases, while the
heterozygous Met/Val form is present in 32.6% of cases (86).
Met carriers are more numerous in Asian populations than in
Caucasians (87). Studies have shown conflicting results about
associations of BDNF levels in controls and subjects with this
BDNF polymorphism. Indeed, higher (88), lower (89), and
similar (90) levels of BDNF have been found in Met carriers
compared to controls. In subjects with MS, in a longitudinal
study conducted on a population of Southern Italy, patients with
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Val66Met polymorphism showed higher peripheral BDNF levels
than healthy controls (91). Differently from what is evidenced
in other neurological diseases, the Vat/Met polymorphism of
BDNF is associated with better cognitive performance than the
Val/Val form on neuropsychological tests (92). Furthermore,
the Val/Met polymorphism is associated with a conservation of
gray matter in MS (93) and increased hippocampus–posterior
cingulate cortex connectivity (94). However, further analysis
is needed. In fact, these data appear to be clearly in contrast
with other observations, such as the fact that the Met allele
is related to a loss of gray matter (95). In a study on Polish
population, BDNF 196G/G genotype resulted to be associated
with an increased incidence of the disease, although this finding
was only found in the female population under study. The onset
of the disease appears to be even earlier in six subjects with the
196G/G genotype than in subjects with the 196G/A genotype.
On the contrary, in the same population, the risk of the disease
related to the 270C/T genotype does not seem to consider the
gender (96).

Experimental Model of MS and BDNF Role
BDNF has been shown to prolong neuron survival after axotomy
(97) and induce proliferation of oligodendrocytes (98). For
example, BDNF enhances oligodendrocytes proliferation and
development through the activation of TrkB and the MAPK
pathway without involving the p75 receptor (99) and the
deficiency of this neurotrophic factor reduces the proliferation of
oligodendrocytes in the basal forebrain (48). Themyelin proteins,
such as myelin basic protein, myelin-associated glycoprotein,
and proteolipid protein, are also compromised by the reduction
in BDNF (100). Furthermore, the use of agonists that mimic
the effects of BDNF on the TrkB receptor can induce the
repair of damaged myelin (101). The effects of BDNF have
been investigated in numerous animal models of MS. In
cuprizone-induced demyelination, TDP6, a mimetic of BDNF,
induces oligodendrocyte differentiation and myelin repair via
the expression of TrkB (102). Similar effects are obtained
during the process of remyelination of the corpus callosum
by the TrkB Agonist LM22A-4, which increases the density
of the oligodendrocytes, stimulating their myelin. Both effects
are achieved by stimulating the TrkB receptor (103). Since the
BDNF transport system through the BBB is saturable, methods
have been recently tested to increase the delivery of BDNF
into the brain thanks to the simultaneous administration of
substances capable of acting on the permeability of the BBB.
For example, in relapsing–remitting experimental autoimmune
encephalomyelitis (RR-EAE), eight intravenous injections of
BDNF (5.7 nmol/kg)—every 4 days beginning on day 21 after
EAE induction, using also the ADTC5 peptide, a modulator of
BBB—can induce the remyelination of the corpus callosum and
suppression of relapse more in the group treated with BDNF
and ADTC5 than in the group treated with only BDNF or only
ADTC5 (104).

Astrocyte-derived BDNF enhances myelin repair after a
demyelinating lesion (44). In cuprizone-treated mice, the
injection of CHPG, an agonist of the astrocytic metabotropic
glutamate receptor 5, stimulates the myelination supported by

BDNF (105). The BDNF secreted by the astrocytes after the
white matter lesion can also support the differentiation of
oligodendrocyte precursors (106).

PRO-BDNF AND MATURE BDNF IN
HUMAN BLOOD AS MS BIOMARKERS:
SOME CONSIDERATIONS AND
LIMITATIONS

Thanks to the growing literature evidence, in part
abovementioned, the BDNF can represent a promising
biomarker for MS disease, even if some considerations and
limitations must be underlined. First, it is imperative to consider
that BDNF exists in two forms, as precursor, the pro-BDNF,
and mature protein, the mature BNF, having different roles
and effects on neuronal survival, cognition, and myelination.
Another limitation is due by the difficulty of quantifying the
individual circulating levels of precursor and mature BDNF by
using commercial ELISA kits. These aspects are briefly described
and discussed in the following paragraphs.

The Different Effects and Roles of
Pro-BDNF and Mature BNF on Neuronal
Survival, Cognition, and Myelination
Diverse roles and effects appear to mediate the pro-BDNF and
mature BDNF. Precisely, pro-BDNF levels increase in aged
mice brains, while BDNF transcripts decrease during aging
(107). Increased levels of pro-BDNF at the hippocampal level
are associated with memory loss (108) and intra-hippocampal
administration of anti-proBDNF antibodies reduces cognitive
dysfunction (109). Moreover, synaptic plasticity dysfunctions are
mediated by p75NTR, a receptor typically activated by pro-BDNF
(110). Differently, BDNF, through the TrkB receptor, helps to
strengthen synapses and has a positive role in memory and
cognition (111). Yet, neuronal survival is negatively affected by
pro-BDNF, which can induce cell death in neurons through
the co-stimulation of p75NTR and sortilin (112). Interestingly,
truncated TrkB isoforms may also contribute to hindering the
BDNF signaling (113).

The role mediated by the BDNF/pro-BDNF balance
on oligodendrocytes and astrocytes is also different.
Oligodendrocytes express both TrkB and p75NTR, suggesting
that these cells are sensitive to mature BDNF and pro-
BDNF (48). Pro-BDNF appears to have inhibitory effects on
oligodendrocytes. Indeed, pro-BDNF reduces cell proliferation
and migration in a line of OLN-93 oligodendrocytes through
p75NTR signaling (114). Furthermore, the expression of p75NTR

does not seem to be required to induce myelination. In fact, only
the BDNF promotes myelination and proliferation in cultures of
oligodendrocytes (115) and BDNF-deficient mice have reduced
levels of various myelin proteins, such as MAG, MBP, and PLP,
and a deficit in the production of the oligodendrocyte lineage
(47). Furthermore, loss of BDNF appears to specifically affect
oligodendrocytes but not astrocytes or microglia (47). However,
myelination appears to be an effect mediated directly by the
TrkB receptor, while the proliferation of OPC is independently
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influenced by TrkB, because it can be stimulated by the
expression of TrkC (116).

Astrocytes are also targets for both BDNF and pro-BDNF.
Pro-BDNF contained in extracellular vesicles derived from
astrocytes has negative effects on cell survival (117), and p75NTR

stimulation is associated with oligodendrocytes loss after a
spinal cord damage (118). Neuronal death induced by isoflurane
is reduced by the buffering of pro-BDNF levels induced by
the intervention of astrocytes (119). Following a damage to
myelin, the BDNF capable of supporting myelination is not only
that produced by oligodendrocytes but also that produced by
astrocytes (44). In fact, the BDNF-secreting astrocytes can induce
the transition from the immature form of the oligodendrocytes to
the myelin-producing phenotype. The analogous differentiation
in microglia, on the contrary, seems to be supported by IGF-1
and not by BDNF (120). The neurons themselves, after damage
tomyelin, release an action potential that stimulates the release of
BDNF along the exposed axon. This stimulates the OPCs near the
axon to differentiate into mature oligodendrocytes, to proliferate,
and to promote the activity-dependent myelination (43).

Levels of the Two Form BDNF in Human
Blood and Cerebrospinal (CSF) Samples:
The Current Evidence
The accurate measurement of blood BDNF levels could serve as a
potential biomarker of MS, given its presence in circulation, and
even if highly concentrated in brain tissue. Of further relevance
would be the quantification of the individual circulating levels of
precursor andmature BDNF, given the different effects mediated.
The BDNF levels in human blood can be assessed by using
commercially available human BDNF ELISA kits. However,
the reduced specificity of the BDNF antibodies of these kits
makes difficult to discriminate the circulating pro-BDNF amount
than that of mature BDNF, also using human pro-BDNF or
BDNF ELISA kits. This question has been raised by Yoshida
and coworkers in 2012 (121), by quantifying the serum levels
of precursor and mature BDNF in healthy subjects. Precisely,
they have observed an unacceptable sensitivity of pro-BDNF kit
(121). Consequently, the development of highly sensitive pro-
BDNF and BDNF ELISA systems, as well as of standardized
methodologies and measures currently represent a priority. In
addition, it is recently considered to use other fluid liquids
as more appropriate biological matrices for testing the BDNF
levels or combining different evaluations in the same biological
liquid. For example, interesting results have been obtained by
assessing the levels of BDNF and neurofilament light chains (NfL)
in both serum and cerebrospinal (CSF) samples of 42 newly
diagnosed MS patients (122). Precisely, the group of Dr. Foerch
has evidenced that CSF BDNF and NfL levels measured at the
time of the diagnosis appeared inversely associated with cognitive
performance inMS cases (122). Therefore, such suggests that CSF
biomarkers related to different pathophysiological processes can
indicate neuropsychological impairment in the earliest stages of
the disease, and consequently, a combination of different CSF
measures might facilitate the developing of a better biomarker
of cognition in MS (122).

STRATEGIES FOR IMPROVING THE
PATHOPHYSIOLOGY OF MS

Physical Activity and BDNF
Physical activity in MS patients has been shown to have
numerous beneficial effects, being able to improve, for example,
the gait stability and walking (123, 124). A single exercise
session can increase BDNF and NGF levels measured in the
periphery (125, 126), and physical exercise can have positive
effects on symptoms progression in MS patients (126). In
fact, the muscles in activity produce and release BDNF into
the circulation apparently involved in the first place in the
autocrine and paracrine stimulation of the muscles themselves
(127, 128). An interesting hypothesis is that BDNF coming
from the muscles also influences the brain; in fact, it has been
shown that the BDNF can cross the blood–brain barrier (BBB)
in both directions, thanks to a high-capacity and saturable
transport system (129). Therefore, peripheral blood BDNF levels
could mirror the amount of neurotrophic factor present in the
brain (130), and peripheral BDNF measurements performed
following completion of motor exercise programs can provide
comparable values to the concentrations present in the nervous
system. The molecular mechanisms by which physical exercise
activities stimulate the production of BDNF are multiple. For
example, in mice a myokine, cathepsin B, produced following
muscle training, is capable of positively influencing neurogenesis
through the production of BDNF (131). Myokines are molecules
able to cross the BBB and directly stimulate the synthesis of
BDNF at the hippocampal level (132). Accordingly, the group
of Dr. Y Wang has recently evidenced that the muscle acts as
a secretory organ, by producing myokines, having the critical
role to communicate with other organs, such as the brain,
and evocating the increase in the brain levels of BDNF (133).
For example, the irisin is another myokine produced following
physical exercise, which can increase the production of BDNF at
the hippocampal level through the mediation of PGC-1α (134).

BDNF is therefore configured as a factor capable of mediating
the positive effects of physical activity on cognitive changes.
Study investigation the effects of exercise seem to confirm this
hypothesis. Aerobic exercise activity conducted for more than 3
months by subjects with MS and volunteers showed an increase
in hippocampal volume (135), and physical activity has been
shown as well to increase BDNF concentrations in subjects with
multiple sclerosis (136). The effects of physical exercise on the
levels of BDNF and other neurotrophic factors are independent
of disability status (137). Muscle tissue, itself, participates indeed
in the production of BDNF. This, in fact, can behave like a
protein whose synthesis is inducible by contraction by the active
muscle and is aimed at inducing, among other things, lipid
oxidation in the muscle (137). It has also been shown that IS
cells produce BDNF through stimulation effects from physical
activity (138). Finally, muscle exercise is accompanied by the
activation of the sympathetic nervous system which, through
adrenergic endings, stimulates the expression of hippocampal
BDNF and reduces the production of inflammatory cytokines.
All this constitutes an important suggestion that the functions of
stimulating growth, proliferation, and neuronal survival regularly
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performed by BDNF can be, in some way, elicited by physical
activity. Not surprisingly, when the interaction between the
TrkB receptor and BDNF is blocked, the beneficial effects of
rehabilitating physical exercise following damage to the spinal
cord are also lost (139).

Probiotics for Recovering BDNF
Expression and Ameliorating the Clinical
Conditions Related to MS
Alterations in the expression of BDNF are associated with
the pathophysiology of MS, as above largely described.
Consequently, the recovery of such BDNF expression might
represent an advantageous therapeutic MS strategy. In this
context, it appears relevant the recent indication of a possible
beneficial effect of butyrate production by gut microorganisms
in inducing BNDF expression and activating its secretion (140–
143). In addition, the group of Romo-Araiza has also shown in
middle-aged rats how probiotic and prebiotic supplementation
significantly better than other groups improve the spatial
memory, by increasing the BDNF levels. Such strategy, whether
confirmed by clinical studies, might be used as potential therapy
to be associated with current disease-modifying strategies in
MS. Currently, only a small number of studies have tested
the probiotic supplementation in individuals with MS (143–
145). In the two small double-blinded randomized controlled
trials, cases with MS daily received for 12 weeks a mix of
Lactobacillus and Bifidobacterium supplementation and showed
significant improvements in their disability score, depression,
anxiety, and inflammatory markers (143, 144). In another
study, the group of Tankou and coworkers used a probiotic
mix with Lactobacillus, Bifidobacterium, and Streptococcus
administered daily for 2 months to MS patients (145). Results
of these studies reported a diminished CD80 expression on
peripheral monocytes, which was anyway not sustained after
probiotic discontinuation, thus suggesting the necessity of
continuous supplementation (145) We conclude, hence, that
there is no at present time, clear evidence of the biological
effects of such supplementation on BDNF expression, secretion,
and levels.

Another promising evidence arrives from the data, obtained
by Chinese researchers (146), about the treatment with
antidepressant (R)-ketamine in cuprizone (CPZ)-treated mice
and remyelination after CPZ withdrawal. Precisely, they
have recently demonstrated that the repeated treatment with
(R)-ketamine (10 mg/kg/day, twice weekly, for 6 weeks)
significantly ameliorated demyelination and activated microglia
in the brain compared with saline-treatedmice (146). In addition,
it has been shown that the pretreatment with a TrkB antagonist,
the ANA-12, significantly inhibited the beneficial effects of
(R)-ketamine on the demyelination and activated microglia in
the brain of CPZ-treated mice. The 16S rRNA evaluation has also
revealed that (R)-ketamine significantly ameliorated the altered
composition of gut microbiota and reduced the levels of lactic

acid in CPZ-treated mice. Accordingly, significant correlations
between the demyelination (or microglial activation) in the brain
and the relative quantity of several microbiomes were detected,
suggesting a close relationship between gut microbiota and brain.
These relevant results have led the Dr. X Wang group to suggest
that (R)-ketamine could likely be a new therapeutic drug for
MS (146).

CONCLUSION

This overview on BDNF evidences its role in multiple
physiological processes and diseases, particularly in MS, as above
reported. Accordingly, compelling evidence demonstrates that
impairment in the synthesis and levels of BDNF and its signaling
are related to diverse pathologies, such as MS. Depending on
the pathological conditions, such alterations can be responsible
for damaging modifications in synaptic transmission, plasticity,
neuronal survival, and cognitive performance maintenance,
which also reflects the importance of this neurotrophic system.

The relevant importance of BDNF-related metabolic
pathways, in the onset of MS, has led to suggest its role as a
potential biomarker, as well as in some therapeutic strategies
including physical exercise, the use of probiotics, or more
recently the administration of BDNF itself. This last promising
perspective has some limitations characterizing it, such as the
inability to cross the BBB, the reduced half-life of the molecule,
and potential adverse side effects. In addition, the possibility to
delivering BDNF in a specific brain region represents another
crucial limitation. Consequently, the two mentioned ways, that
is physical exercise and the use of probiotics, or likely other
indirect treatments able at promoting or re-establishing BDNF
signaling and physiological levels, might be used.

However, it is possible to affirm that no effective MS
treatments do exist until now, and a major knowledge of the
mechanisms and pathways involved in BDNF dysfunction is
essential to develop suitable strategies for the MS pathological
scenario, as well as to suggest BDNF dysfunction as potential MS
biomarker useful in early diagnosis and prognosis.
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