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Abstract

In the past scientists reported summaries of their findings; they did not provide their original

data collections. Many stakeholders (e.g., funding agencies) are now requesting that such

data be made publicly available. This mandate is being adopted to facilitate further discov-

ery, and to mitigate waste and deficits in the research process. At the same time, the neces-

sary infrastructure for data curation (e.g., repositories) has been evolving. The current target

is to make research products FAIR (Findable, Accessible, Interoperable, Reusable), result-

ing in data that are curated and archived to be both human and machine compatible. How-

ever, most scientists have little training in data curation. Specifically, they are ill-equipped to

annotate their data collections at a level that facilitates discoverability, aggregation, and

broad reuse in a context separate from their creation or sub-field. To circumvent these defi-

cits data architects may collaborate with scientists to transform and curate data. This

paper’s example of a data collection describes the electrical properties of outer hair cells iso-

lated from the mammalian cochlea. The data is expressed with a variant of The Ontology for

Biomedical Investigations (OBI), mirrored to provide the metadata and nested data architec-

ture used within the Hierarchical Data Format version 5 (HDF5) format. Each digital speci-

men is displayed in a tree configuration (like directories in a computer) and consists of six

main branches based on the ontology classes. The data collections, scripts, and ontological

OWL file (OBI based Inner Ear Electrophysiology (OBI_IEE)) are deposited in three reposi-

tories. We discuss the impediments to producing such data collections for public use, and

the tools and processes required for effective implementation. This work illustrates the

impact that small collaborations can have on the curation of our publicly-funded collections,

and is particularly salient for fields where data is sparse, throughput is low, and sacrifice of

animals is required for discovery.

Introduction

Traditionally, scientists publish reports that describe their experimental findings, while data

collected to uncover these findings are not typically reported, nor are they made readily
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available to their scientific peers, despite their value for further discovery and public education

and awareness. There are notable exceptions where it was deemed beneficial to the disciplines

and in the public interest that scientific data collections be aggregated, stored as collections,

and made generally available. They include: X-ray crystallography of chemical structures, [e.g.,

Protein Data Bank] [1], with the caveat that the raw diffraction data is only now being archived

with coordinates [2]; sequencing of genes [NCBI] [3]; characterization of astronomical objects

and their radiation (e.g., CADC and NASA’s HEASARC) [4, 5]; and weather-associated mea-

surements (e.g., NOAA national centers for environmental information) [6]. There has been a

growing chorus of voices [7–12] arguing that such practices should be extended to other types

of data because it permits checking the data and analysis; it allows for aggregation of data

thereby improving the robustness of findings by increasing sample size, and it facilitates re-use

of data. All of these factors should reduce unnecessary and costly experiments while helping to

improve the reproducibility of the methods, results and inferred findings within biomedical

sciences [13]. This is particularly relevant now when the lack of reproducibility is a well-docu-

mented deficiency that results in an enormous cost to the taxpayer [14].

The need to share and aggregate data is even more obvious in fields where the experimental

throughput is notoriously slow and where it is usually necessary to sacrifice experimental ani-

mals in the interest of scientific discovery. This is the case within cochlear physiology. Mea-

surements require specialized equipment for the detection of movements [15, 16], pressures

[17], potentials [18–20], or currents [21–23] that reflect the physiological responses of mam-

mals to acoustic stimulation. Such assays also require healthy mammals (e.g., gerbils, guinea

pigs) that can survive the surgeries and that exhibit minimal run-down upon perturbation

with probes and sensors. These procedures are made more difficult because experimental

access to the cochlea is limited by the bony labyrinth which is the most petrous part of the

temporal bone. Typically results of sophisticated measurements demand the sacrifice of many

animals over many years [19]. Similar problems arise when studying the electrical and

mechanical properties of the sensory epithelium ex vivo. The sensory hair cells (namely the

outer hair cells and inner hair cells) lose their viability quickly upon interrogation, and the

electrophysiological techniques (i.e., voltage clamp or current clamp) necessitate specialized

training and equipment. In addition, the properties (i.e., morphological, electrical and

mechanical) of the hair cells can differ because of the tonotopic architecture of the cochlea; a

topographic map that relates the characteristic frequency to place. Hair cells located in the

base of the cochlea respond to higher frequencies (up to 43 kHz in the guinea pig) with the

best frequency decreasing towards the apex of the cochlea, reaching a minimum at the apex

(e.g., the guinea pig is at 0.060 kHz) [24]. We and others have used these variations to describe

tonotopic relationships that relate the properties (i.e., physical [25–27], electrical [28–31], or

expression levels of proteins [32, 33]) with the place (or best frequency) within the cochlea.

Given the number of hair cells within a cochlea, it is a formidable task to record or define these

properties along the entire tonotopic axis, and this provides further motivation for aggregation

of data collections in auditory physiology. Pioneering efforts in other sub-fields show that

aggregation of electrophysiological data for peer and public re-use is completely feasible [34].

For example, Eglen and colleagues combined twelve published data collections of time series

data of action potentials of the retina, formatted the data collections to the same standard, and

made comparisons across them. The number of recordings produced by sharing data is 366

compared to 30 recordings produced by each laboratory without data sharing. The algorithms

used to analyze the data were provided on-line for readers to reproduce the results. By combin-

ing data collections, the sample size and hence the power is enhanced, while sharing the algo-

rithms provides the reader a means to verify the results. This improves data robustness and

should reduce the number of animals required to make new findings [35].

Collaborative curation of electrophysiology data collection
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Despite these logical arguments, the electrophysiological community is slow to adopt prac-

tices to share electrophysiological data collected from the hearing (e.g., mammalian cochlea)

or balance (e.g., semicircular canals, utricle, and saccule) organs. Efforts have been made for

quite some time to preserve tissue especially human temporal bones, and register these speci-

mens with the National Temporal Bone Database [36]. This database contains data and meta-

data (e.g., age and sex of specimens) associated with about 8000 specimens from 23 US

hospitals and laboratories. More recently, audiological data relevant to human pediatric hear-

ing health can be found and deposited through the AudGenDB portal [37]. This is a web-

based query database (beta version, v2.0) with clinical data (e.g., audiograms, tympanograms,

computerized tomography scans) from about 96,000 pediatric patients with plans to add

genetic information in updated versions of the portal. A more recent initiative is a web portal

that enables the sharing of gene expression data within both the auditory and vestibular sys-

tems across species via the gEAR (gene Expression Analysis Resource) portal [38]. The Inter-

national Mouse Phenotyping Consortium, IMPC [39] is characterizing the genotype and

phenotypes of mice with a pipeline that includes performing hearing tests with auditory brain

stem methodology [40]. This resource allows peers and the public to download the data pro-

duced by the consortium, but it does not provide a place for others to deposit and share their

data.

Effective data sharing is not a trivial undertaking. It requires new infrastructure, adoption

of new practices, and consensus by the investigators within disciplines. The impediments that

still exist include: (i) the desire by some scientists to keep their data confidential for their own

latent discoveries; (ii) the need to assimilate data, including relevant descriptions or metadata,

into one package or place (which can be time consuming), such as collating hand-written labo-

ratory notes with data stored on PCs and servers [41]; and (iii) proper curation of data collec-

tions requires training within the field of information and information systems which most

scientists do not possess. The necessity to devise a standard process with rules to cite, find and

consistently access a data collection was articulated by Altman and King [42]. A detailed list of

encompassing basic principles was developed by a diverse group of people with leadership

from FORCE11 (aka Future of Research Communication and e-Scholarship [43]). This group

drafted and published the FAIR principles which stipulate that all digital objects (including

data collections) should be Findable, Accessible, Interoperable and Reusable where these

adjectives are applied to both humans that make use of them and machines that survey them

[12]. These principles are part of a living document [43] that all stakeholders (e.g., researchers,

data architects, journals, publishers, and repositories) should strive to adopt to facilitate good

stewardship for digital objects including data collections. A recent report describes a roadmap

to hasten citation of data collections [44].

To hasten discovery in auditory electrophysiology and to facilitate effective data sharing

(addressing impediment (iii)), a scientist, (BF) initiated a collaboration with a data architect

(JB) to transform electrophysiological data from private to public use. This data collection

describes the electrical properties of outer hair cells isolated from the mammalian cochlea of

guinea pigs. At the onset, it was paramount that the information specialist, and not the scien-

tist, provide the rationale for the data design. This ensured that the data collection was anno-

tated with expansive metadata (cf. [41]). This was achieved by describing the data with a

purpose-built variant of the Ontology for Biomedical Investigations [45]. The data, originally

stored in the proprietary MATLAB [46] format, was then re-arranged and translated to Hier-

archical Data Format version 5 (HDF5), [47] a non-proprietary format, using a group and

attribute structure based upon this variant OBI ontology. Early and condensed version of this

work was presented at the 2018 International Conference on Biological Ontology (ICBO) and

subsequently published online [48].

Collaborative curation of electrophysiology data collection
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We describe our data management plan and how it was implemented to produce a data

structure that starts to meet the FAIR principles [12] and demonstrate that some of the barriers

to data sharing (item iii) can be mitigated by undertaking a two-way collaboration. This illus-

trates a point made by others: that buzzwords like Big Data can be a misnomer. Impactful data

does not always entail hundreds of users or terabytes (TBs) of data; it can also refer to the

potential positive impact that small collaborations [49] have on the production, curation, and

sharing of our publicly-funded collections.

Description of data

This data collection describes the linear and non-linear electrical properties of the outer hair

cells of the domestic guinea pig. The data is generated by whole-cell voltage clamping isolated

outer hair cells and determining the linear capacitance and voltage-dependent membrane

capacitance. This technique was developed over 30 years ago [50] with much of the methodol-

ogy refined for outer hair cells in the ensuing years. This method is commonly used to estab-

lish whether cells isolated from wildtype or engineered rodents exhibit the characteristic

voltage-dependent capacitance in response to a change in the membrane potential. Typically, a

cell is whole-cell voltage-clamped and electrical admittance monitored during a DC voltage

ramp. In our experiments, the admittance was interrogated with a two-sine stimulus and the

membrane capacitance calculated at each potential from this admittance [28, 51, 52]. The

membrane resistance and access or series resistance of the pipette was also calculated. A com-

puter program was written in LABVIEW for Windows (v8.5.1) in conjunction with a digital to

analog converter card (PCI-6052E, National Instruments Austin, TX) that controlled the cali-

bration, stimulus, and acquisition of the admittance. The data was exported as a spreadsheet

into Microsoft Excel (Office version 2003 and later versions), and then later imported and ana-

lyzed in MATLAB (v. 8.2-v 9.0) [46]. In some cells, we also measured the DC conductance by

interrogation of the cell with a voltage-step function which was calculated from the change in

the mean steady-state current with respect to DC voltage.

The electrophysiology data associated with each recording was assimilated for each record-

ing from an outer hair cell and saved as an array of structures in MATLAB where the field-

name is common across all cells, and the value associated with the field name can be retrieved

by MATLAB syntax. Each recording of an outer hair cell has 82 fields. The field names used

were originally chosen by the scientist for manipulation within the MATLAB environment

and do not reflect a class or sub-class of an ontology.

The rationale for data design

The value of a research data collection is intrinsically magnified by two factors: aggregation

potential and future scalability. Data that can be effectively aggregated may be integrated into

systematic reviews or meta-analyses to magnify their value. Data that retain their interpretive

value over time may continue to be used far into the future, even as the context the data origi-

nally existed within changes, allowing them to scale into the future effectively. At the other

extreme are situations when data or information objects are not described with a sufficient

degree of accuracy, or are described without context, potentially leading to orphaned data or

objects that are useless outside of their original context, be that context a particular laboratory,

the guiding elucidation of a specific researcher, or a time and place in which particular jargon

or conventions are used [53, 54]. To successfully implement a robust description (i.e., Knowl-

edge Representation (KR) [55]) of the data, our strategy is to use expansive metadata to

describe the data structure. This provides essential context to the data so that others who reuse

it are not forced to attempt to re-create or guess at that context themselves. This approach

Collaborative curation of electrophysiology data collection
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allows researchers to avoid relying on commonly understood (and potentially misunderstood)

jargon, and it mitigates the need to contact the original owner of the data. Such a preserved

context provides the researcher with the assurance that the data represents exactly what the

owner intended.

To preserve the original data context and meaning, and allow it to “take its place within our

general understanding of the world” [56], such contextualization should allow for human

understanding of the data, both across disciplines and in the same discipline across time [57].

It should also allow data collections to be interoperable so that they can be aggregated together

to form a more complete picture of the subject being researched. Such interoperability can

result from the authoring of ad hoc translation programs [58]. In some cases, efforts to aggre-

gate data have been forced to deal with unstructured data (such as data in simple tables,

spreadsheets, or text files), greatly increasing the time needed to edit and reuse the data in

question [59]. However, by creating more structured data (e.g., eXtensible Markup Language

(XML), JavaScript Object Notation (JSON), HDF5, and relational database models) which

facilitate navigation and search of values, and making use of metadata to capture the original

data context in a portable way, data interoperability can be achieved with much less effort [58].

To organize the data collection appropriately with metadata, the metadata itself must have

structure, so that terms and definitions employed have unambiguous meanings that scale

across time to provide an accurate classification of the generated data collections [60]. Meta-

data should be structured logically to provide a framework to connect the data within a data

collection to the rest of the world in a meaningful way. One tried and true modality for achiev-

ing this is to employ an ontology [61]. Ontologies are information structures that contain for-

mal terms with definitions (generally describing a particular discipline or technical area) and

descriptions of the relationships of those defined terms to one another. Technically, ontologies

are differentiated from simpler classification schemes because they allow sub-classes to fall

beneath more than one parent class [56]. Ontologies not only provide a rich contextual envi-

ronment for data but they also, when that ontology is used as a framework for the data values,

potentially make interoperability easier by providing a data collection with a predictable and

logical format to traverse the data file with a computer program. Data described by an ontology

elucidates meaningful relationships among the concepts described by that data. Such a depth

of knowledge can only be derived from less structured data through data mining by computa-

tionally challenging techniques [62]. Many scientists are unaware of the importance of meta-

data and ontologies to the preservation of data. The developers of the CARMEN (code

analysis, repository, and modeling for E-neuroscience) portal [63] described the problems they

encountered when trying to encourage scientists to use expansive descriptions for their

uploaded data, forcing them to resign to the use of minimal descriptions. As a result, they were

not able to produce an ontology-driven metadata system and cautioned that such portals can

become "data-dumps", where effective sharing is difficult without sufficiently descriptive meta-

data [41].

In addition to the need for ontologies, consensus on other best practices to implement

effective sharing of electrophysiological data has received attention by consortia (e.g., Interna-

tional Neuroinformatics Coordinating Facility INCF [64]; Neuroscience Information Frame-

work (NIF) [65]; Neurodata Without Borders (NWB) [66]; and the CARMEN consortium

[63]). Most of the focus evidenced by these groups is on organizing and sharing imaging data,

as demonstrated by the successful development of XNAT [67]. The minimum information

that should be reported about an (electrophysiology) neuroscience investigation (MINI) was

published by the CARMEN [68] and by Collaborative Research in Computational Neurosci-

ence (CRCNS) consortia [69–71]. Cardiac electrophysiologists have proposed minimum stan-

dards for reporting results of cardiac electrophysiology experiments (MICEE) [72] and

Collaborative curation of electrophysiology data collection
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developed several consortia to share data; e.g., Experimental Data and Geometric Analysis

Repository, EDGAR [73] and Consortium for ECG Imaging [74]. To improve outcomes for

epilepsy and seizures similar efforts have been done within this community [75–77]. There

have also been efforts to develop a standard format to store data [70] to facilitate easier integra-

tion of disparate data collections. In 2014 the electrophysiological taskforce of the INCF [78]

proposed that the standard format for electrophysiological data storage should be based upon

Hierarchical Data Format version 5, (HDF5) [47]. This non-proprietary format was developed

by the HDF group for long term storage of large or complex data collections and is compatible

with common operating systems (i.e., Linux, Unix, Mac, and Windows). It provides significant

flexibility and integration with a variety of application programming interfaces, including C,

MATLAB, FORTRAN, Java and Python.

Other file formats include XML and JSON. XML provides a flexible data format, albeit one

which is entirely hierarchal in nature. The Web Ontology Language (OWL) files commonly

used to store ontologies are, in fact, simply a subset of XML. However, this flexibility comes at

a significant cost, since formatting complex data, such as those found in this data collection,

would require an extraordinary amount of markup. XML is a markup language designed to

encode text characters through the use of “tags” (similar to HTML). It has no built-in complex

data types or objects. Data existing as matrices or arrays as commonly found in electrophysiol-

ogy or biophysical data collections would have necessitated the creation of a very complex

Document Type Definition (DTD) for the file, and the programmatic application of an

unwieldy amount of markup which would not have been easy for other researchers to navigate

when they opened the file in a text or XML editor.

Similarly, while JSON is a very flexible, object-based data transfer and storage format, it

lacks the built-in data types that are such an asset of HDF5. MATLAB functions exist for the

conversion of MATLAB data to XML or JSON, however, given that both of those formats are

primarily designed for the encoding of text, they were deemed to be inadequate. The combina-

tion of a hierarchal format, with embedded, complex data types, and the ability to easily associ-

ate those data with rich, descriptive metadata both implicitly (through the hierarchal

structure), and explicitly (through the use of attributes), made HDF5 a clearly superior choice.

In addition, HDF already enjoyed significant adoption by scientists, making it likely that it

would scale into the future effectively, and that sufficient means would exist to migrate the

data collection to another file format from HDF5 if necessary. The eponymous hierarchal for-

mat of HDF5 makes it extremely versatile, allowing for a multiplicity of data architectures and

strategies to arrange and describe the data.

Data management plan

Develop an ontology for data description

The ontology we used is a variant and extension of the Ontology for Biomedical Investigations

(OBI) [45] that was developed to describe the diverse range of assays used in biological and

bioengineering-based research and discovery. We used OBI because it already contained

many of the classes and relationships that we needed, and it was practical to build upon this

effort. When adding classes to the existing OBI ontology we followed the general guidelines of

the Minimum Information to Reference an External Ontology Term (MIREOT), a standard

encouraged by the architects of OBI, who also stipulate that existing ontologies be used and

modified where needed instead of creating new ones [45, 79]. We made use of several biopor-

tals and tools: the National Center for Biomedical Ontology, (NCBO) bioportal [80]; the

Ontology Lookup Service [81]; Ontobee [82, 83]; and OntoMaton [84] to locate classes and

their definitions to describe the data. Classes from ontologies were grafted into OBI, along

Collaborative curation of electrophysiology data collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223984 October 18, 2019 6 / 26

https://doi.org/10.1371/journal.pone.0223984


with custom classes added for this data collection; employing a technique known as Applica-

tion Profiles to produce a variant ontology [57] named OBI based Inner Ear Electrophysiology
(OBI_IEE). We use this notation in compliance with another application ontology also built

upon a version of OBI that describes Beta Cell Genomics Ontology (OBI_BCGO) [85]. When

editing the ontology we used the Protégé editor [86], while regularly deploying newly edited

versions of the ontology to the web-based version of the tool, WebProtege [87]. To follow the

relationships within the data the OWL file can be downloaded from the repositories holding

the data collection, and from the NCBO bioportal and perused with Protégé editor.

The data collection is described by six main branches and shown in Fig 1. This class struc-

ture was derived through a logical mapping of OBI’s existing classes onto the experimental

data. The branch that describes the electrical recordings (i.e., voltage-clamp measurements) is

the assay. Device constitutes the 2nd branch as instruments (e.g., amplifier) are required to per-

form this assay. The voltage-clamp measurements were performed on cells, hence cell was cho-

sen as a 3rd branch. The cells were isolated from the cochlea of guinea pigs, therefore

anatomical entity and organism are natural 4th and 5th branches. We introduced the new class

transformed data set to describe the 6th branch. It describes the data sets produced upon the

use of one or more data transformation processes. For example, it includes partitioning the

measurement data into the voltage-independent and voltage-dependent data sets that are typi-

cal of this data. These branches and the constituent classes of which they are composed repre-

sent the main nodes within the data collection. They (along with the metadata) describe the

experiment (including the animals used), the general properties of the experimental animals,

information about the devices used for the assay, and information about the type of assay

performed.

Fig 1. Six (6) classes that describe the data. The classes are denoted with different colors. Arrow denotes is-a
property.

https://doi.org/10.1371/journal.pone.0223984.g001
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We provide the directed root tree for each branch and the number of new classes and the

number of terms imported from each ontology in Table 1. Consider the branch cell (Fig 2); the

experiments were performed with outer hair cells which we mapped to this sub-class by use of

classes derived from the Cell Ontology (CL) [88]. The morphological characteristics, including

the size of each outer hair cell used in an experiment, were measured from an image obtained

by an analog camera during the experiment and include cochlear outer hair cell length and

diameter of the outer hair cell. These experimental measures are described with classes (e.g.,

cell diameter) derived from the Ontology of Biological Attributes (OBA) [89]. The cell surface
area class was predicted from these measurements and the description imported from OBA.

In this case, we delineate whether a data item was measured or predicted as this enhances the

understanding of the methodology. The main classes of morphology and size were imported

from Phenotype and Trait Ontology, PATO [90]. We also measured the cochlear lateral wall
length which we introduce as a new class, and make it a sibling of cochlear outer hair cell length.

We described the organism arm in our short report [48]. The anatomical arm (S1 Fig) made

use of the anatomical structure terms imported from the Foundational Model of Anatomy

(FMA) [91], and Uberon multi-species anatomy (UBERON) [92, 93] ontologies. To describe

the positional origin of the cells interrogated we imported terms from PATO, and define three

further new classes that describe their position: cochlear turn, apical, and basal. These terms

are commonly used by auditory scientists.

The directed root tree of the assay arm, which is more elaborate than the other branches, is

shown in Fig 3. This is a planned process where the cells were interrogated by voltage clamp-

ing with a whole-cell patch-clamp voltage clamp assay with two protocols. The main protocol
was the measurement of the electrical admittance with dual-sine stimulus. To describe the stim-

ulus used to interrogate the cells for each protocol, a common feature of such an assay, we

introduce the new class intracellular electrophysiology stimulus. In this case, it describes the fre-
quency and amplitude of the sine waves, and the magnitude of DC potential used to voltage

clamp the membrane potential and the length of time this potential is held at this value. This

Table 1. Ontologies and number of classes imported and created for OBI based Inner Ear Electrophysiology (OBI_IEE) variant.

Ontology International Resource Identifier Imported classes Reference

CHEBI http://purl.obolibrary.org/obo/chebi.owl 8 [94]

CL http://purl.obolibrary.org/obo/cl.owl 5 [88]

CNO https://bioportal.bioontology.org/ontologies/CNO.owl 2 [95]

EDAM http://edamontology.org/EDAM.owl 2 [96]

FMA http://purl.obolibrary.org/obo/fma.owl 12 [91]

GO http://purl.obolibrary.org/obo/go.owl 6 [97]

MP http://purl.obolibrary.org/obo/mp.owl 5 [98]

NCBITaxon http://purl.obolibrary.org/obo/ncbitaxon.owl 2 [99]

NCIT http://purl.obolibrary.org/obo/ncit.owl 2 [100]

OBA http://purl.obolibrary.org/obo/oba.owl 7 [101]

OPB https://bioportal.bioontology.org/ontologies/OPB.owl 1 [102]

PATO http://purl.obolibrary.org/obo/pato.owl 28 [90]

SBO http://purl.obolibrary.org/obo/sbo.owl 1 [103]

SIO http://semanticscience.org/ontology/sio.owl 3 [104]

UBERON http://purl.obolibrary.org/obo/uberon.owl 2 [93]

New 37

Total Classes 123

https://doi.org/10.1371/journal.pone.0223984.t001
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assay measures the real and imaginary component of the electrical admittance which we intro-

duce as new classes. The membrane capacitance, membrane resistance, and series resistance are

calculated from the admittance based upon a model where we introduce the series resistance as

a new class. Once again we delineate whether this data item is either predicted or measured.

The time the assay commenced and this time relative to the life-death temporal boundary of

the animal were both measured. In these experiments, the study design control variables are

Fig 2. Directed root tree and data architecture of the cell arm of the data. (A) The classes that describe the cell arm

data. For clarity, we do not show that cell surface area was a predicted data item and that cell diameter, cochlear outer
hair cell lateral wall length and cochlear outer hair cell length were measured data items. (B) The groups that describe

cell arm with other main groups. The classes that were transformed into sub-groups and datasets are denoted by blue

and aqua.

https://doi.org/10.1371/journal.pone.0223984.g002
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reported and include temperature and pipette pressure. We introduce pipette pressure as a new

class, and we also define study design control variable as a class. In electrophysiology experi-

ments, the solutions used affect the outcome, so for these, we introduce two new classes. The

first is the chemical solutions used to bathe the cells (i.e., extracellular solution) and the second

is the solution in the patch pipette. We import the classes for the compounds used to make up

the chemical solutions from the Chemical Entities of Biological Interest (CHEBI) ontology

[94], the class for their concentration from the EDAM ontology [96], and the classes describing

the acidity and osmolality of the solutions from PATO.

The device arm is straightforward (S2 Fig) and defines three new classes that describe the

pipette pressure clamp, patch pipette, and analog camera. The final arm includes the trans-
formed data set (S3 Fig) which provides the data items normally provided in scientific reports.

In this case, we define sixteen new classes including linear membrane capacitance, non-linear

Fig 3. Directed root tree for the assay arm showing the classes that describe the data for both protocols. For clarity, we do not show

that membrane capacitance, membrane resistance, and series resistance were predicted data items and the electrical admittance and charge
flow rate (aka current) were measurement data items. The classes transformed into sub-groups and datasets are denoted by purple and

aqua.

https://doi.org/10.1371/journal.pone.0223984.g003
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membrane capacitance, the potential of maximum sensitivity (often abbreviated to: V0.5, Vpeak

or Vpk) and sensitivity of a process to voltage (often abbreviated by Greek symbol, α). Together,

the branches (e.g., Figs 1–3) implicitly and explicitly containing this descriptive metadata pro-

vided a coherent framework we could hang the experimental data upon.

This project required importing 86 classes from fifteen [15] ontologies. The additional

ontologies include Computational Neuroscience Ontology, (CNO) [95], Gene Ontology (GO)

[97], Mammalian Phenotype Ontology, (MP) [98], Ontology of Physics for Biology, (OPB)

[102], Semantic Science Integrated Ontology (SIO) [104], Systems Biology Ontology (SBO)

[103], National Cancer Institute Thesaurus (NCIT) [100], and National Center for Biotechnol-

ogy Information (NCBI) Organismal Classification (NCBITaxon) [99]. By mapping these data

and metadata onto an application ontology: OBI based Inner Ear Electrophysiology (OBI_IEE),

the logical connections of the data are preserved, which should enhance opportunities for

search and discovery of this data [60]. By combining the data and metadata together, research-

ers seeking to reference and re-use the data should find sufficient qualitative context to make

meaningful use of the data into the future [54].

Design data architecture based upon ontology

Once the basic class structure was formulated (Fig 1), and the directed root trees compiled

(e.g., Figs 2 and 3), it became obvious to both of us that such maps provide a framework that

could be extracted to organize the data. We mirror the class structure established with the vari-

ant OBI ontology to arrange the data within Hierarchal Data Format version 5 [47]. The scien-

tist with knowledge of the data and sub-field drove the choice of the classes that became part of

the structured data collection.

The six classes of the ontology became the six main groups (group is a particular term that is

a part of the HDF5 standard) within the HDF5 format, with abbreviated nomenclature when

appropriate; i.e., anatomical entity was shortened to the group anatomical. The sub-classes

within each class of the variant ontology were not translated; only sub-classes directly associ-

ated with the data collection (usually the adjacent sub-classes) became sub-groups within the

translated data. For example, for the group anatomical, there are two sub-classes translated to

a sub-group subdivision of bony labyrinth and position. In HDF5, data values are stored in

datasets (dataset is a keyword in the HDF5 standard). In this case, the question of whether the

position of the cell was found in the apical or basal regions of the cochlea was addressed by the

dataset coined apical-basal polarity. Expanding downwards from the sub-group subdivision of
the bony labyrinth provides the sub-group (the subdivision of cochlea) and the datasets

(cochlear turn and cochlea) that describe whether the left or right cochlea was used and which

cochlear turn was the origin of the cell (S1B Fig). In the same way, for the class cell, the first

hierarchal sub-class translated to a sub-group is outer hair cell with morphology becoming a

major sub-group with the datasets that are delineated based upon whether the data was pre-
dicted from a model or measured (Fig 2B).

In translating the class and sub-class structure of the ontology to HDF5, we embraced

MINI guidelines [68, 71]. For example, the specimen was collected from a guinea pig and the

characteristics of this organism (e.g., sex, phenotype) are described under the group organism
[48].

The recording, experimental and stimulus conditions are classified under the group assay
for each protocol (Fig 4). The sub-group concentration contains the ionic composition of the

extracellular solution and the solution in the patch pipette, including their pH and osmolality,

as required [68, 71] since electrophysiology results depend upon the ionic composition of the

solutions. We added the chemical components of the solutions as labels of the dataset, with the
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molarity of each compound saved as the value within the dataset. We include the study con-

trolled variables pipette pressure and temperature and we specify the time when the assay was

conducted and the time interval between the death of the animal and the commencement of

the assay. The latter relates to the quality and robustness of the electrical recording and is par-

ticularly relevant to this data. Once an animal is sacrificed there is degradation of tissues and

cells as the active processes that support membrane gradients start to fail. The longer the time
interval from death the more chance of cell degradation. We provide the intracellular electro-
physiology stimulus for each protocol and delineate whether a data item is measured or pre-

dicted with measurement datum and predicted data item as sub-groups. The datasets for

protocol electrical admittance dual-sine stimulus describe the electrical admittance which is

measured at both frequencies, and the membrane capacitance is calculated at both frequencies.

The 6th group is a transformed data set where we divide the classes into sub-groups based

upon which protocol was used (S4 Fig). For the protocol electrical admittance dual-sine stimu-
lus there are three transformed data sets. The first is the linear (voltage-independent) data set
sub-group with datasets: mean linear capacitance; mean membrane and series resistance, and

Fig 4. Data architecture for the two protocols of the assay arm of the data with other main groups shown. Refer to

Fig 3 for the directed root tree for this arm.

https://doi.org/10.1371/journal.pone.0223984.g004
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the voltage drop across the membrane. The non-linear (voltage-dependent) data set is a sub-

group with datasets: non-linear membrane capacitance, (NLC) (including the peak NLC

value); the displacement charge (including the maximum displacement charge); the voltage

sensitivity; and the potential of maximum sensitivity. The last sub-group is the data set of pre-

dicted values after fitting to the 2-state Boltzmann function. The values were determined upon

fitting the capacitance versus membrane potential data to the capacitance form of the 2-state

Boltzmann function [105] or upon fitting the charge versus membrane potential data to the

displacement charge form of the 2-state Boltzmann function [106]. The electrical admittance

dual-sine stimulus is an over-determined assay, and we provide an estimate of parameters at

two frequencies and stipulate which estimate we report given the noise and electrical parame-

ters of the cell [107–109]. We provide one sub-group for the protocol membrane current, I as a
function of membrane potential, V (I vs V) plot. It contains three datasets the mean and stan-

dard deviation of the steady-state current (I_mean); the reciprocal of the conductance (Rb) and

the membrane potential. These four sub-groups of the transformed dataset contain key vari-

ables commonly reported in scientific communications.

The datasets, groups, and sub-groups have associated contact and context information [68,

72]. Each file reports the date when the experiment was conducted, the original cell number of

the recording, the name of the researcher who conducted the experiment, the name of the per-

son responsible for this data, the name of the data curator and the name of the funding source.

Each group, sub-group and data file has a description that was either written by the authors or

imported from existing ontologies. All datasets that are associated with standard units of mea-

sure have the additional attribute named units (e.g., units = micrometer, when describing

length). Because HDF5 does not readily support Greek symbols like μm, or superscripts and

subscripts, we write out the units in long-form; e.g., micrometer ×micrometer (cf. μm2) when

describing the area.

Concerning all datasets, our first attempt was to make them of type compound (which are

identical to type struct found in C and MATLAB). This is a popular type, as it provides for

related data collections of different sizes and types (e.g., string, integers, doubles) to be bundled

together. However, we did not adopt the compound datatype, because HDF5 does not support

adding metadata as attributes to the fields found within a compound datatype. Attributes are

only associated with objects (e.g., groups and datasets) and a field in a compound datatype is

not an object. Consequently, we decided to use datasets exclusively, while employing attributes

to add descriptive mark-up. This is because our philosophy is to make use of extensive descrip-

tions, and the use of the compound datatype would not only have made the mark-up of the

metadata cumbersome, it could also lead to ambiguous interpretations of the metadata. This

translation produced a large number of small datasets which can slow down retrieval. To help

improve performance we store these small datasets as compact so that the data is stored with

the metadata header. We did not bundle the data from different cells but described and trans-

lated them separately into named sensory files. We did this because bundling makes the write-

up of metadata more cumbersome. We incorporated some conventions; all group and sub-

group names were single words or phrases of the lower case unless they contained a well-

known abbreviation (e.g., DC). In contrast, dataset names were contiguous words connected

by an underscore. We did this because of the ease of re-reading the values back into MATLAB,

where variable names must be labeled without white spaces.

Packaging, licensing and storing the data

The package contains six main items: (1) the original unstructured data in MATLAB; (2) the

data files translated to HDF5 with metadata; (3) MATLAB scripts that facilitate the translation
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of the data from MATLAB to HDF5; (4) MATLAB scripts that facilitate the translation of the

data back to MATLAB from HDF5; (5) MATLAB scripts used to analyze the data; and (6) the

OWL file describing the variant or application ontology. Data collections cannot usually have

restrictions on their use and require a Creative Commons Zero license (CC0). We include the

original data (item 1) as this is considered good data management practice since it allows the

researchers to go back to the original file and to check for errors or inconsistencies. To pro-

mote the dissemination of the Data Management Plan we also impose no restriction on the

use of the scripts and use the same Creative Commons Zero license. The MATLAB scripts can

be found at the repositories. The OWL file was also deposited with the National Center for Bio-

medical Ontology. When the application ontology is revised, the new version will be uploaded

to NCBO.

Best practices indicate that valuable data collections should be stored in multiple reposito-

ries in order to enhance availability and reduce the likelihood of data loss. The selection of a

suitable repository is a challenge since there are only a few that specialize in this particular type

of data. While the CARMEN portal and repository did not require rich descriptive metadata as

generated here, it was probably the most suitable candidate; unfortunately, it is no longer avail-

able for data deposits. The IMPC [39] has tested the hearing of engineered mice with the non-

invasive auditory brain stem methodology. This procedure and results are partially curated

with the Mammalian Phenotype Ontology [98] where the raw and transformed data are avail-

able for download. However, IMPC does not provide a place for others to deposit their data.

There is only one other repository compatible with the contents of our collection: Collabora-

tive Research in Computational Neuroscience (CRCNS) [69], which specializes in neurosci-

ence data (e.g., time series, imaging, and electrophysiology). We have established a sub-folder

on the small discipline-specific repository CRCNS to house electrophysiological data collected

from cells or anatomical structures that originate from the inner ear. In addition to CRCNS,

we selected: Zenodo [110], and Digital Commons at the Texas Medical Center Library [111].

We choose TMC because of our affiliation, and Zenodo because there is no fee, it is not based

in the U.S. (cf., CRCNS and TMC repository), and it is guaranteed to be maintained for 20

years.

Related to the repository selections, was the application of a Digital Object Identifier (DOI)

to the data collection. Best practices stipulate that a digital object should have only one DOI

associated with it. Since some repositories automatically assign a DOI, while others will accept

a previously assigned DOI, we applied a strategy both in the repositories we submitted to, and

in the order in which those submissions occurred. In order to facilitate a single DOI, we first

submitted to CRCNS, a repository that will automatically assign a DOI to the data collection.

Once the DOI was assigned, the data collection was submitted to Zenodo [110], and, because

of our institutional affiliations, the TMC Digital Commons [111]. If the data collection needs

revisions or additions, we will submit them in the same order. Updates will be uploaded to

CRCNS and changes will be written in the text that describes the data collection. The same

DOI is used and only if the versions are significantly different will both versions be stored. The

changes will then be made to Zenodo and TMC.

Results and discussion

Comparison with other data formats

Our approach to develop a variant ontology to describe a data collection, and then use the

ontology as the basis to design the data architecture within the hierarchical storage format

HDF5, provides for a structurally simple data file that is intuitive and highly human-readable

(Fig 1). Given that the necessary context is preserved by use of metadata (via the HDF5
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attributes and the variant ontology), and this construct allows for aggregation using the hier-

archal strengths inherent to HDF5, it should make it easier for researchers, whether they are

familiar or unfamiliar with such data, to understand and reuse them for their own purposes.

In addition, given the hierarchal nature of the HDF5 format, grafting the ontological structure

onto the data collection as a framework seemed like the best approach. It provides a reliable,

predictable structure for perusing the file with a computer program. In our opinion, this

makes the data easier to understand at a glance, and easier to evaluate before the aggregation

process is initiated. It also makes it easier to search the file with any HDF-capable editor in

order to find a data point of interest before aggregation. If more complex data structures are

required, this construct can be scaled-up by the expansion of the variant ontology. For exam-

ple, if a researcher used a different protocol to interrogate the cell this protocol could be added

to the application ontology with any associated new classes imported or defined. If a researcher

interrogated a native outer hair cell isolated from a different rodent, the details could be

imported and added to the application ontology. We made a relatively simple construct first to

avoid a common pitfall of ontological development: the creation of a burdensome data struc-

ture [56].

This construct could also be readily expanded to describe other electrophysiology assays.

Consider, the auditory brain stem response used to characterize the hearing of engineered

mice by IMPC [39]. This assay is a planned in vivo electrophysiology process. The anesthetic

agents would be described under the chemical substance class. Sound pressure level, (SPL) is a

quality factor that would need a new class. The click and chirp sound stimulus would be

described. The measurement datum is a voltage and encompasses the aggregated potentials at

the brain regions (cf. membrane potential described for this assay). The organism is the mouse
where the genotype, phenotype and comparative information (e.g., age, weight) would be

included. The anatomical entity would describe the parts of the brain or nerve connections

(e.g., cranial eighth nerve, cochlear nucleus) that are stimulated. The device class would

describe the amplifiers, heating blanket, sound-booth and electrodes used. The transformed
data sets would describe the data normally reported, including results from thresholding the

waveforms, and a description of the various waves and the resulting hearing outcomes. In this

way, this in vivo assay could be described with this expanded application ontology, translated

with annotations to HDF5 to promote the interoperability and reusability of such commonly

attained data collections.

Our approach differs significantly from BrainFORMATS [112] and NeuroData Without

Borders (NWB) [70]. BrainFORMATS, while offering a powerful and flexible model for stor-

ing data, requires serialization of metadata values as JSON objects, often within attributes, pro-

viding a less direct structural path to those values and their meanings. In comparison to our

format, which mirrors the structure of the ontology employed, BrainFORMATS separates data

collections and at least some of the metadata into two silos at the top level [112]. As a format, it

is well suited to describing index map relationships for purposes of connecting images to a

series, for instance. It employs a well-designed Python module, with an associated Application

Programming Interface (API) for interacting with the file. Python is particularly well suited for

such data operations, being a flexible language with wide scientific support. However, given

that our data was originally in the popular MATLAB format, this data collection did not need

to make use of BrainFORMAT’s specific tools and did not require any additional complexity

of structure, and hence we did not adopt BrainFORMAT.

Likewise, the authors investigated the NWB format [70], which provides an extremely effec-

tive system for serializing time-series data for aggregation, but which seemed to provide a less

structured and intuitive platform for serializing our data. The upper-level file structure has a

well-defined, predictable format suitable to the machine-aggregation that this modality is
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designed to easily provide. However, when looking over the format specification, we found that

fitting the data collections for this project into the NWB format would have been difficult. Apply-

ing the descriptive metadata we proposed would have required the addition of structures beneath

the NWB format upper levels, which would have necessitated additional scripting by anyone seek-

ing to aggregate the data with other NWB files. This eliminates much of the advantage provided

by the generically traversable NWB format. We decided to proceed with our ontology-based data

architecture since it provided a structure that was easily human-readable, easy to traverse

programmatically after minimal examination, provided a significant level of descriptive metadata,

and required only scripts written in MATLAB in order to generate the HDF5.

Our format shares some commonality with the Allotrope Data Format (ADF). ADF was

developed by OSTHUS and spearheaded by the Allotrope Foundation; a consortium of indus-

trial companies and partners [113]. The framework is designed to standardize the acquisition,

exchange, storage and access of analytical data, (e.g., mass spectrometry). Like our format, it

makes use of ontologies (Allotrope Foundation Ontologies) and the HDF5 storage format, but

in their case, the data structure is constrained by the shape constraint language (SHACL).

SHACL (cf. OWL) is designed for expert producers and users of analytical data. Our format

preserves inferred class relationships by transplanting them into the tree-based group structure

of an HDF5 file. In contrast, the Allotrope Data Format uses the data cube mechanism to

record some more complex relationships within HDF5, including axioms, that the OWL for-

mat is capable of encoding. However, the data cube format is not necessarily required to

encode such relationships in HDF5 and does not provide a particularly human-readable way

of doing so. As an alternative, the data architect has developed a method of using HDF5 attri-

butes to encode deeper ontological relationships in a manner congruent with the data format

presented in this paper. The result serves as an extension of the authors’ data format; which is

to say it is much more human-readable than axioms represented by a data cube, highly extensi-

ble, and can be navigated and parsed in exactly the same way as already described.

Transformation to HDF5 from MATLAB and harvest from HDF5 by

MATLAB

MATLAB has both a high and a low-level API for working with HDF5. Despite these capabili-

ties, the overall documentation provided by Mathworks for transformation to HDF5 was lim-

ited and opaque. This is contrary to the level of documentation normally offered by

Mathworks. Much of the information necessary to make the transformations from MATLAB

to HDF5 was provided by The HDF Group and required a significant amount of trial and

error on our part before we could craft satisfactory transformations. This part of the data man-

agement plan was time-consuming and would benefit from further development and docu-

mentation. This is contrary to the reverse-translation from HDF5 to MATLAB, which is

straightforward and intuitive. Once the HDF5 file is open (using the H5F.open command) the

use of the h5info command (e.g., INFO = h5info(‘nameofile’)) reveals the nested hierarchical

structure of an HDF5 file within the variable named INFO. This structure is readily repre-

sented in MATLAB as a compound type (i.e., structure). For example, to evaluate the architec-

ture below the Group (upper case nomenclature used by MATLAB) named morphology (Fig

2B), one would first establish where this Group is within the file architecture retrieved within a

script or at the command line:

DATA = INFO.Groups(3).Groups(1).Groups(2) as morphology is nested below Group

named cell (1st layer), and the sub-Group named outer hair cell (2nd layer). The variable DATA

would provide the contents of a structure with fields: Name of the Group (i.e., morphology) and

the Groups, Datasets, Datatypes, Links, and Attributes (which are MATLAB key names) found
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below it. In this case, there are two Groups named: measurement datum and predicted data
item. To explore the Group measurement datum further, and examine the properties of the

Datasets stored below this directory structure, the label Datasets(1) or Datasets(2) or Datasets
(N) (where N is a total number of datasets found within this sub-group) is added at the end of

the query, e.g.,

DSET = INFO.Groups(3).Groups(1).Groups(2).Groups(1).Datasets(1).

Examination of variable DSET would now provide information on the first Dataset, includ-

ing Name ‘cell_diameter’; the type of data stored found under Datatype; the space allocated for

the data found under Dataspace; the metadata found under Attributes.

In this way, it is straightforward to map the hierarchical arrangement of HDF5 to the nested

structure format within MATLAB to retrieve the variables of interest for aggregation or to per-

form analysis with the tools provided within MATLAB. This illustrates that our simple con-

struct provides a predictable structure for harvest.

Data aggregation

Mechanical aggregation may pose some potential difficulties, in that, until other files appear in

this format, customizing scripts to traverse the nodes of the file will be necessary. However,

some of the same issues can be seen even in formats developed to ease data aggregation. Such

designs may provide for consistency of some top-level folders, and structure for particular

types of data collections (e.g., NWB, time-series data are the main focus), but often provide lit-

tle guidance for creation and harvesting of other types of lower-level data and metadata with

their tools. In our experience, programmatic aggregation of data across files is primarily a chal-

lenge when facing inconsistent (i.e., dirty) data, and inconsistent (heterogeneous) data for-

mats. If the data is of reasonable consistency, as provided here, and if it is in a predictably

traversable format, harvesting, and thereafter aggregating, the data, is simply a matter of tra-

versing the relevant nodes of the file.

Level of granularity

The process of converting, describing, and archiving this data collection raised a number of

issues. One of the most subjective questions is how to determine the optimum level of granu-

larity for the descriptive metadata applied to a data collection. There is not a rule here; others

have elected for relatively minimal metadata, whereas we elected to apply a more in-depth

layer of metadata to the data collection that, although more extensive, is actually not that much

more than that established by the MINI guidelines [68, 71]. Our approach is similar to Zehl

and colleagues who proposed the use of expansive metadata to ensure the steps and processes

are reproducible and the data can be reused [114]. Research time required to acquire and orga-

nize metadata could be significantly reduced if the data structure was established before the

commencement of such assays and we recommend this in the future. We also suggest that

both scientists and architects collaborate to consider whether additional metadata (beyond the

MINI) is needed to sufficiently describe the data to others removed from the original context

of the experiment. We do note that a single ontology cannot describe the plethora of terms

associated with this data collection (Table 1) and we suspect that this will be typical of other

complex and heterogeneous data collections. OBI was chosen as it was developed to describe

experimental investigations. Ontologies that were developed to describe computational based

neuroscience studies (e.g., [95] and [102]) were less useful to describe this experimental data,

as was the Ion Channel Electrophysiology ontology (ICEPO) [115], which described electrical

and temporal properties of ion channels. In our case the voltage sensor [116] found within the

lateral membrane of outer hair cells is not an ion-channel.
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Matching data collections to the most suitable repository

Many organizations (e.g., journals, government agencies, societies, and consortia) are provid-

ing guidelines for standards to adopt when sharing data [117] and making recommendations

on the repository to use as they refine and accept these standards. A fundamental issue for the

scientist is to locate the most appropriate place to deposit their data collections for future dis-

covery and re-use. There are several useful resources for scientists to peruse when deciding

which repository is most appropriate, including the German-based Registry of Research Data

Repositories [118], and the UK-based fairsharing.org (FAIRsharing [119]). In some cases, it

may be obvious to a researcher where their data should be deposited. For example, physiology

data that describes measurements made on human subjects can be placed in the PhysioNet

repository [120] which includes auditory-based measurements (e.g., evoked auditory

responses). Data on hearing health of babies and children can be placed in the Children’s Hos-

pital of Philadelphia Research Database [37]. Unfortunately, if similar measurements were

made on small mammals like cats, guinea pigs, and rats there does not appear to be a vetted

repository suitable to house these collections. There are non-vetted resources like CRCNS [69]

and other repositories for electrophysiology time series data with emphasis on cardiovascular

measurements (such data can be deposited with the Electrophysiology Data Discovery Index |

The CardioVascular Research Grid [121]). There is also a Community (a term used by

Zenodo.org) within Zenodo.org [110] that accepts data collections, and other products that

describe electrophysiology and imaging data performed in vivo. It does not accept data collec-

tions or products of in vitro electrophysiological measurements as described here.

One example of the dearth of essential metadata in many curated data collections would be

the results we discovered when we performed some searches in Dryad [122]. As of writing this

article, we found in Dryad eighty-six [86] data collections when searching for "electrophysiol-

ogy", eight [8] when searching for “voltage clamp”, and two [2] when the search item was

“outer hair cell”. One of the two “outer hair cell” data collections contains experimental data

similar to that discussed here but performed with cells isolated from mus musculus [123]. We

note pertinent descriptive metadata, as espoused in MINI consortium documents [68, 71] was

not provided (e.g., the sex, age and weight of the animal), nor were these metadata found in

the published peer-reviewed journal article [124]. Clearly, the scientists creating such data col-

lections need to appreciate the value of such reporting, which has been woefully undervalued

by the scientific community, and the librarians and data architects that manage repositories

need to find ways to ensure such MINI-compliant descriptive metadata is there to make these

repositories more valuable.

To address the deficiency of suitable repositories, research communities could create sub-

ject-specific repositories. This would provide the researchers with more autonomy over the

data collections they helped to create. However, this requires resources and expertise that are

not always available. We note that if researchers continue to be forced to make use of the gen-

eral repositories like Zenodo, Dryad, and Dataverse [125], then resources will still be needed

later as they are mined to address new research questions. A compromise may be to set-up

subject-specific repositories within these general repositories. In this way, researchers could

piggy-back on their infrastructure, but have some control over the quality and type of data col-

lections deposited. Zenodo allows this through its Community-based system as does Data-

verse. This needs much more patronage by the entities who fund the research especially to

support the establishment and maintenance of such virtual data libraries.

A related issue is how communities should manage such virtual libraries to ensure that

deposited data collections adhere to some standard with respect to the data structure used and

the quality of the data. The first problem we have discussed in detail and the incoming data

Collaborative curation of electrophysiology data collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223984 October 18, 2019 18 / 26

https://doi.org/10.1371/journal.pone.0223984


could be checked for inconsistencies by suitable tools (e.g., OpenRefine [126]). Determining

the data quality will require community members of the sub-field to validate data and data

transformations, and this will require additional resources. We note that if there are aberra-

tions within a data collection then they will be more likely to be found upon the aggregation of

similar data collections [34]. Such events may be errors overlooked by the data producer or

reveal new phenomenon only present in some of the data collections.

Concluding remarks

In the past scientists have largely worked within "their world", and made use of their instru-

ments (virtual or physical) to collect, compute and analyze their data. In the past, there was no

urgency to develop intuitive, human-readable data structures that both the public and their sci-

entific peers could readily understand. Indeed, in many cases, their data was in such an

unstructured format that others would struggle to understand the contents. In many other

cases, research data was lost as hard drives expired. The limits of this modality are articulated

well by Freedman, Cockburn, and Simcoe [14]. We show that a poorly structured data collec-

tion can become human-readable through the use of extensive descriptions and by employing

an ontology. The ontology satisfies the need for architecture or schema to provide overall

structure, with allowable attributes and classes, and it also provides a controlled vocabulary to

express durable and unambiguous definitions for the terms placed within the schema. We

made use of HDF5 as it is a flexible storage format and permits marking-up the metadata to

the digital objects [127]. Although others may debate the utility of the nested data structure we

implemented, especially at the lower levels of architecture, we propose that transforming

unstructured data into an ontology-based one with the structure of a defined HDF5 file is a

viable strategy for the future. For example, this approach of compiling the directed root trees is

a useful model to build work-flows. Conceptual maps can be used to draft and refine such

work-flows, and once an application ontology is formulated the OWL file can be used for que-

rying attributes.

The scientist can still work within their environments but can subsequently share their data

with the public and their peers. However, a key component of this strategy will be the develop-

ment of tools to more easily transform OWL files into the latticework of intricate and often

vast frameworks that describe a researcher’s data structures. Efforts are being initiated to do

this, including the creation and adoption of the Investigation-Study-Assay (ISA) framework

[128] which has developed a suite of tools to describe an experimental investigation from initi-

ation to publication. The consortia FAIRDOM [129] has developed similar tools that are

geared to system biology modeling including RightField [130] that allows for the import of the

classes and sub-classes of an ontology from an OWL file into the fields of an Excel spreadsheet.

This permits the scientist to annotate their electronic notes and produce templates (with pre-

defined nomenclature) that can then be used to populate the experimental parameters

recorded during an assay. However, this tool does not yet permit the import of definitions of

the classes which would be needed for improved human-understanding. Their spreadsheets

conform to the application ontology Just Enough Results Model (JERM) [131]. This model

was rationalized to encourage its adoption by scientists and is prudent given their reluctance

to provide metadata in the past (e.g., [41]). We assert that we should train scientists on the

basis of good knowledge representation and provide them more opportunities to partner with

information professionals to facilitate high-quality data curation. They will then see the bene-

fits of producing machine and human-understandable data collections that can be used and

re-used by themselves, their peers and the public. This will require the development of tools

that ease and eventually automate the process of applying rich, descriptive metadata to data
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collections for researchers. Small teams should be encouraged to participate [49] to develop a

diverse range of options that cater to different frameworks. Finally, we are excited to write that

PubData (i.e., PubMed for data) is coming. PubData will be a searchable portal for locating

and downloading data collections and other research products that should further encourage

curation. The difference is the journal that describes the papers in PubMed is now replaced by

a repository that describes and houses the data collections. This search engine, coined

DataMED [132], is being developed by the bioCaddie (biomedical and healthcare data discov-

ery index ecosystem) team [133] who are formulating the rules that will ensure data collections

are Findable, increasing the probability that data collections will be reused.

Data and scripts

The data, scripts and OWL file can be found at: (1) CRCNS repository http://dx.doi.org/10.

6080/K0571975 with a direct link http://crcns.org/data-sets/ear/ear-1; (2) Zenodo https://

zenodo.org/record/2818546#.XNrlJtNKhhE and at (3) Digital Commons at the Texas Medical

Center Library https://digitalcommons.library.tmc.edu/baylor_datasets/1/. The OWL file can

be found at https://bioportal.bioontology.org/ontologies/OBI_IEE.

Supporting information

S1 Fig. (A) Directed root tree for the anatomical arm showing the classes that describe the
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96. Ménager HIJ, Kalaš M. EMBRACE Data and Methods, EDAM, http://edamontology.org/EDAM.owl

2017 [updated 2017.

97. Gene Ontology, GO—Summary | NCBO BioPortal [Available from: https://bioportal.bioontology.org/

ontologies/GO.

98. Mammalian Phenotype Ontology, MP—Summary | NCBO BioPortal [Available from: https://bioportal.

bioontology.org/ontologies/MP.

99. National Center for Biotechnology Information (NCBI) Organismal Classification—Summary | NCBO

BioPortal [Available from: https://bioportal.bioontology.org/ontologies/NCBITAXON.

100. National Cancer Institute Thesaurus, NCIT—Summary | NCBO BioPortal [Available from: https://

bioportal.bioontology.org/ontologies/NCIT.

101. Mungall C. Ontology of Biological Attributes, OBA, http://purl.obolibrary.org/obo/oba.owl. 2018.

102. Ontology of Physics for Biology, OPB—Summary | NCBO BioPortal [Available from: https://bioportal.

bioontology.org/ontologies/OPB.

103. Systems Biology Ontology, SBO—Summary | NCBO BioPortal [Available from: https://bioportal.

biolontology.org/ontologies/SBO.

Collaborative curation of electrophysiology data collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223984 October 18, 2019 24 / 26

http://www.ecg-imaging.org/home
https://www.ieeg.org/
https://doi.org/10.1016/j.neuroimage.2015.05.075
http://www.ncbi.nlm.nih.gov/pubmed/26044858
https://doi.org/10.1097/WNP.0000000000000159
https://doi.org/10.1097/WNP.0000000000000159
http://www.ncbi.nlm.nih.gov/pubmed/26035676
https://bioportal.bioontology.org/
https://doi.org/10.1093/nar/gkw918
http://www.ncbi.nlm.nih.gov/pubmed/27733503
http://www.ontobee.org/
https://doi.org/10.1093/bioinformatics/bts718
https://doi.org/10.1093/bioinformatics/bts718
http://www.ncbi.nlm.nih.gov/pubmed/23267176
http://purl.obolibrary.org/obo/bcgo.owl
http://purl.obolibrary.org/obo/bcgo.owl
http://protege.stanford.edu/about.php
https://protegewiki.stanford.edu/wiki/WebProtege
http://purl.obolibrary.org/obo/cl.owl
http://purl.obolibrary.org/obo/oba.owl
http://www.obofoundry.org/ontology/pato.html
http://purl.obolibrary.org/obo/fma.owl
http://purl.obolibrary.org/obo/fma.owl
https://doi.org/10.1186/gb-2012-13-1-r5
http://www.ncbi.nlm.nih.gov/pubmed/22293552
http://purl.obolibrary.org/obo/uberon.owl
http://purl.obolibrary.org/obo/chebi.owl
http://purl.obolibrary.org/obo/chebi.owl
https://bioportal.bioontology.org/ontologies/CNO.owl
https://bioportal.bioontology.org/ontologies/CNO.owl
http://edamontology.org/EDAM.owl
https://bioportal.bioontology.org/ontologies/GO
https://bioportal.bioontology.org/ontologies/GO
https://bioportal.bioontology.org/ontologies/MP
https://bioportal.bioontology.org/ontologies/MP
https://bioportal.bioontology.org/ontologies/NCBITAXON
https://bioportal.bioontology.org/ontologies/NCIT
https://bioportal.bioontology.org/ontologies/NCIT
http://purl.obolibrary.org/obo/oba.owl
https://bioportal.bioontology.org/ontologies/OPB
https://bioportal.bioontology.org/ontologies/OPB
https://bioportal.biolontology.org/ontologies/SBO
https://bioportal.biolontology.org/ontologies/SBO
https://doi.org/10.1371/journal.pone.0223984


104. Semantic science Integrated Ontology, SIO—Summary | NCBO BioPortal [Available from: https://

bioportal.bioontology.org/ontologies/SIO.

105. Santos-Sacchi J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J

Neurosci. 1991; 11(10):3096–110. PMID: 1941076

106. Gale JE, Ashmore JF. An intrinsic frequency limit to the cochlear amplifier. Nature. 1997; 389

(6646):63–6. https://doi.org/10.1038/37968 PMID: 9288966

107. Barnett DW, Misler S. An optimized approach to membrane capacitance estimation using dual-fre-

quency excitation. Biophys J. 1997; 72(4):1641–58. https://doi.org/10.1016/S0006-3495(97)78810-6

PMID: 9083668

108. Chen P, Gillis KD. The noise of membrane capacitance measurements in the whole-cell recording

configuration. Biophys J. 2000; 79(4):2162–70. https://doi.org/10.1016/S0006-3495(00)76464-2

PMID: 11023920

109. Farrell B. Ugrinov R. Brownell W. E. Frequency dependence of admittance and conductance of the

outer hair cell. In: Nuttall PG A., Ren T., Grosh K., deBoer E., editor. Auditory Mechanisms: processes

and models; 2006. New Jersey: World Scientific; 2006. p. 230–1.

110. Zenodo—Research [Internet]. Available from: https://zenodo.org.

111. Digital Commons at the Texas Medical Center Library [Available from: https://digitalcommons.library.

tmc.edu/.

112. Rubel O, Dougherty M, Prabhat, Denes P, Conant D, Chang EF, et al. Methods for Specifying Scien-

tific Data Standards and Modeling Relationships with Applications to Neuroscience. Front Neuroin-

form. 2016; 10:48. https://doi.org/10.3389/fninf.2016.00048 PMID: 27867355

113. Allotrope Foundation developed and implemented by OSTHUS. Allotrope Data Format [updated

20190428. Available from: http://www.allotrope-framework-architect.com/.

114. Zehl L, Jaillet F, Stoewer A, Grewe J, Sobolev A, Wachtler T, et al. Handling Metadata in a Neurophys-

iology Laboratory. Front Neuroinform. 2016; 10:26. https://doi.org/10.3389/fninf.2016.00026 PMID:

27486397

115. Hinard V, Britan A, Rougier JS, Bairoch A, Abriel H, Gaudet P. ICEPO: the ion channel electrophysiol-

ogy ontology. Database (Oxford). 2016;2016.

116. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear

outer hair cells. Nature. 2000; 405(6783):149–55. https://doi.org/10.1038/35012009 PMID: 10821263

117. McQuilton P. S. Hodson R. Lawrence S-A Sansone. FAIRsharing, a registry interlinking standards,

databases, repositories and policies 2019 [updated 2019. Available from: https://rd-alliance.org/group/

fairsharing-registry-connecting-data-policies-standards-databases-wg/outcomes/fairsharing.

118. Registry of Research Data Repositories, https://doi.org/10.17616/R3D 2019 [updated 2019/01/24/.

Available from: https://www.re3data.org/.

119. FAIRsharing [Available from: https://fairsharing.org/.

120. PhysioNet the research resource for complex physiologic signals [Internet]. Available from: https://

physionet,org/.

121. Electrophysiology Data Discovery Index | The CardioVascular Research Grid [Available from: http://

www.cvrgrid.org/tools/eddi.

122. The Organization—Dryad [Internet]. Available from: https://datadryad.org/pages/organization.

123. Duret G PFA. Data from: Diflunisal inhibits prestin by chloride-dependent mechanism. http://

datadryad.org.

124. Duret G, Pereira FA, Raphael RM. Diflunisal inhibits prestin by chloride-dependent mechanism. PLoS

One. 2017; 12(8):e0183046. https://doi.org/10.1371/journal.pone.0183046 PMID: 28817613

125. The Dataverse Project [Internet]. Available from: https://dataverse.org/.

126. OpenRefine [Available from: http://openrefine.org/.

127. Bengtson J. The Semantic Revolution. Journal of Electronic Resources in Medical Libraries. 2015; 12

(1):72–82.

128. Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al. Toward interoperable

bioscience data. Nat Genet. 2012; 44(2):121–6. https://doi.org/10.1038/ng.1054 PMID: 22281772

129. Fairdom. FAIRDOM.org [Available from: https://fair-dom.org/.

130. Wolstencroft K, Owen S, Horridge M, Krebs O, Mueller W, Snoep JL, et al. RightField: embedding

ontology annotation in spreadsheets. Bioinformatics. 2011; 27(14):2021–2. https://doi.org/10.1093/

bioinformatics/btr312 PMID: 21622664

Collaborative curation of electrophysiology data collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223984 October 18, 2019 25 / 26

https://bioportal.bioontology.org/ontologies/SIO
https://bioportal.bioontology.org/ontologies/SIO
http://www.ncbi.nlm.nih.gov/pubmed/1941076
https://doi.org/10.1038/37968
http://www.ncbi.nlm.nih.gov/pubmed/9288966
https://doi.org/10.1016/S0006-3495(97)78810-6
http://www.ncbi.nlm.nih.gov/pubmed/9083668
https://doi.org/10.1016/S0006-3495(00)76464-2
http://www.ncbi.nlm.nih.gov/pubmed/11023920
https://zenodo.org
https://digitalcommons.library.tmc.edu/
https://digitalcommons.library.tmc.edu/
https://doi.org/10.3389/fninf.2016.00048
http://www.ncbi.nlm.nih.gov/pubmed/27867355
http://www.allotrope-framework-architect.com/
https://doi.org/10.3389/fninf.2016.00026
http://www.ncbi.nlm.nih.gov/pubmed/27486397
https://doi.org/10.1038/35012009
http://www.ncbi.nlm.nih.gov/pubmed/10821263
https://rd-alliance.org/group/fairsharing-registry-connecting-data-policies-standards-databases-wg/outcomes/fairsharing
https://rd-alliance.org/group/fairsharing-registry-connecting-data-policies-standards-databases-wg/outcomes/fairsharing
https://doi.org/10.17616/R3D
https://www.re3data.org/
https://fairsharing.org/
https://physionet,org/
https://physionet,org/
http://www.cvrgrid.org/tools/eddi
http://www.cvrgrid.org/tools/eddi
https://datadryad.org/pages/organization
http://datadryad.org/
http://datadryad.org/
https://doi.org/10.1371/journal.pone.0183046
http://www.ncbi.nlm.nih.gov/pubmed/28817613
https://dataverse.org/
http://openrefine.org/
https://doi.org/10.1038/ng.1054
http://www.ncbi.nlm.nih.gov/pubmed/22281772
https://fair-dom.org/
https://doi.org/10.1093/bioinformatics/btr312
https://doi.org/10.1093/bioinformatics/btr312
http://www.ncbi.nlm.nih.gov/pubmed/21622664
https://doi.org/10.1371/journal.pone.0223984


131. Just Enough Results Model Ontology, JERM, 2017 [updated 2017. Available from: https://bioportal.

bioontology.org/ontologies/JERM.

132. DataMed prototype(v3.0) [Internet]. Available from: https://datamed.org.

133. biomedical and healthCare Data Discovery Index Ecosystem (bioCADDIE) [Available from: https://

biocaddie.org/.

Collaborative curation of electrophysiology data collection

PLOS ONE | https://doi.org/10.1371/journal.pone.0223984 October 18, 2019 26 / 26

https://bioportal.bioontology.org/ontologies/JERM
https://bioportal.bioontology.org/ontologies/JERM
https://datamed.org/
https://biocaddie.org/
https://biocaddie.org/
https://doi.org/10.1371/journal.pone.0223984

