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ABSTRACT
The main protease (Mpro) of SARS-associated coronavirus (SARS-CoV) had caused a high rate of mortality in
2003. Current events (2019–2020) substantiate important challenges for society due to coronaviruses.
Consequently, advancing models for the antiviral activity of therapeutic agents is a necessary component
of the fast development of treatment for the virus. An analogy between anti-SARS agents suggested in
2017 and anti-coronavirus COVID-19 agents are quite probable. Quantitative structure-activity relation-
ships for SARS-CoV are developed and proposed in this study. The statistical quality of thesemodels is quite
good. Mechanistic interpretation of developed models is based on the statistical and probability quality of
molecular alerts extracted from SMILES. The novel, designed structures of molecules able to possess anti-
SARS activities are suggested. For the final assessment of the designed molecules inhibitory potential,
developed from the obtained QSARmodel, molecular docking studies were applied. Results obtained from
molecular docking studies were in a good correlation with the results obtained fromQSARmodeling.

Abbreviations: CoV: Coronaviruses; COVID-19: (CO: Corona, VI: Virus, D: Disease, 19: 2019); CoMFA:
Comparative molecular field analysis; CoMSIA: comparative molecular similarity indices analysis; DCW:
optimal descriptor of correlation weights; HCoV: human coronavirus; MD: molecular docking; Mpro:
main protease; MVD: Molegro Virtual Docker; PDB: Protein Data Bank; QSAR: quantitative structure
activity relationships; RNA: ribonucleic acid; SMILES: simplified molecular input-line entry system; SARS:
Severe acute respiratory syndrome
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Introduction

The genus coronavirus appertains to the plus-strand RNA
virus and currently contains about 25 species that are classi-
fied into three groups under their genetic and serological
relationships (Siddell et al., 2005; Yang et al., 2005).
Coronaviruses (CoVs) infect humans and different species of
animals, causing severe diseases (Yang et al., 2005). For
example, human coronavirus (HCoV) strains 229E (HCoV-
229E), NL63 (HCoV-NL63), OC43 (HCoV-OC43), and HKU1
(HCoV-HKU1) cause a significant portion of respiratory tract
infections in humans, including bronchiolitis and pneumonia.
They have also been involved in otitis, asthma, diarrhea, and
neurological disease (Remuzzi & Remuzzi, 2020; Siddell et al.,
2005; Yang et al., 2005).

Acute respiratory syndrome is an infectious disease
caused by different viruses. Symptoms can be mild to severe.
Severe acute respiratory syndrome (SARS) is a highly infect-
ive respiratory disease caused by SARS coronavirus (SARS-
CoV). The SARS-CoV-2 is a very dangerous virus, according to
most experts, and proved to be the etiological agent of a
global outbreak of a life-threatening form of pneumonia

called severe acute respiratory syndrome (SARS)
(Abuhammad et al., 2017; Amin et al., 2020; Jain et al., 2020;
Remuzzi & Remuzzi, 2020; Worldometer’s COVID-19 data,
2020). The coronavirus COVID-19 also is causing severe
respiratory pathology in humans and its spread alarms health
organizations around the world (Amin et al., 2020; Remuzzi &
Remuzzi, 2020; Worldometer’s COVID-19 data, 2020).

An attractive therapeutic target for CoVs is the main pro-
tease (Mpro) or 3-chymotrypsin-like cysteine protease (3CLpro),
as this enzyme plays a key role in polyprotein processing
and is active in a dimeric form. Further, Mpro is highly con-
served among various CoVs, and a mutation in Mpro is often
lethal to the virus. Thus, drugs targeting the Mpro enzyme
significantly reduce the risk of mutation-mediated drug
resistance and display broad-spectrum antiviral activity
(Goyal & Goyal, 2020).

One can expect some analogies between different corona-
viruses. There are available experimental data for inhibitory
activity towards SARS-CoV-2 of a set of organic compounds
(Abuhammad et al., 2017).

Quantitative structure – activity relationships (QSARs) are a
tool to solve problems related to medicinal chemistry when

Table 1. The statistical characteristics of the developed model for SARS-CoV Mpro inhibitory activities for three random splits of data.

Split Set R2 Q2 CCC IIC� RMSE MAE

1 Active training set 0.6464 0.4450 0.7852 0.956 0.795
Passive training set 0.7586 0.5802 0.8205 0.886 0.610
Calibration set 0.9115 0.8512 0.9026 0.9539 0.470 0.371
Validation set 0.9566 0.9320 0.9216 0.542 0.438

2 Active training set 0.7439 0.5840 0.8531 0.893 0.762
Passive training set 0.7654 0.6003 0.7366 1.07 0.714
Calibration set 0.9174 0.8799 0.9358 0.9577 0.413 0.336
Validation set 0.9442 0.9154 0.9479 0.454 0.309

3 Active training set 0.6983 0.4234 0.8223 0.824 0.650
Passive training set 0.8445 0.7742 0.5553 1.54 1.33
Calibration set 0.9124 0.8829 0.9081 0.9548 0.345 0.267
Validation set 0.9175 0.8916 0.9249 0.489 0.403

�IIC ¼ index of ideality of correlation (Toropova & Toropov, 2019); RMSE¼ root mean squared error; MAE¼mean absolute error.

Table 2. Promoters of increase and decrease of the inhibitory activity of SARS-CoV Mpro (IC50, lM).

No. SMILES attribute CWs Probe 1 CWs Probe 2 CWs Probe 3 N1 N2 N3

Promoters of IC50 increase
1 1… … ….. 2.63153 1.15486 3.78669 10 10 10
2 2… … ….. 2.55878 1.21207 1.64933 10 10 10
3 S… … ….. 0.48795 0.06021 2.20339 10 10 10
4 S…S… …. 2.02730 0.56998 2.44765 10 10 10
5 c… … ….. 0.05582 0.34232 0.34661 10 10 10
6 c…1… …. 0.07471 0.40638 1.18716 10 10 10
7 c…S…S… 2.96490 1.14621 2.40403 10 10 10
8 c…c… …. 0.04212 0.58132 0.22205 10 10 10
9 n… … ….. 0.30264 0.00072 0.28500 10 10 10
10 n…c… …. 1.35271 0.05507 0.12055 10 10 10
11 C…(… …. 0.43671 0.17893 0.17255 9 8 6
12 C… … ….. 1.10523 0.50393 0.47038 9 8 7
13 O…(… …. 0.16441 0.57525 0.88699 9 7 7
14 O…¼… …. 0.13313 0.43790 0.28864 9 7 6
15 n…c…(… 0.10720 0.32142 0.33964 8 6 4

Promoters of IC50 decrease
1 N… … ….. �0.02294 �0.17040 �0.48815 6 3 4
2 3…n…(… �0.15624 �0.05464 �0.16157 3 2 0
3 n…3…n… �0.25960 �0.10767 �0.08532 3 2 0
4 n…(…O… �2.54052 �0.12802 �2.47903 2 0 0
5 1…n…(… �2.13926 �1.32809 �2.11675 1 3 1
6 s…(…1… �0.05921 �0.10068 �0.01523 1 1 2

N1, N2, and N3 are frequencies of molecular features in the active training set, passive training set, and calibration set, respectively; CWs are the correl-
ation weight.
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the analysis of the chemical structure becomes important
(Abuhammad et al., 2017; Amin et al., 2020; Bhargava et al.,
2017, 2019; Halder, 2018; Jain et al., 2020; Makhouri &
Ghasemi, 2018; Wang et al., 2017). The approach can be based
on the Monte Carlo technique (Abuhammad et al., 2017; Amin
et al., 2020; Bhargava et al., 2017; Duhan et al., 2019; Jain et al.,
2020; Kumar et al., 2020; Kumar & Kumar, 2020).

Disulfide bonds play key roles for bioactive proteins in the
aspect of preferable correct folding (Wang et al., 2017). It is not
a simple task to develop a method sensitive to assigned
molecular features. CoMFA and CoMSIA were used to build up
3D-QSAR for novel inhibitors of SARS-CoV-2 main protease
(Wang et al., 2017). The direct interface between 3D models
and the chemical technique of synthesis of considered unsym-
metrical aromatic disulfides is an attractive advantage of the
above research work (Wang et al., 2017).

In this research in silico method - MD was used to test
the inhibition effect of designed molecules, because, the cal-
culated binding energies can correlate with inhibitory poten-
tials (Halperin et al., 2002; Kitchen et al., 2004).

We suppose that these models can provide a bridge to
develop antiviral agents for the COVID-19 when the corre-
sponding experimental data will become available.

Method

Data

The data on unsymmetrical aromatic disulfide compounds
and their SARS-CoV Mpro inhibitory activities (IC50, mM) are
available in the literature (Wang et al., 2017). This data set
includes forty compounds. In our study the compounds were
randomly splitting into the active training set (25%), passive
training set (25%), calibration set (25%), and validation set
(25%). The distribution of data into those four sets is a
necessary component of building up QSAR models using the
CORAL software (Toropova & Toropov, 2017). The details and
tasks related to each of the above sets are described in the
literature (Toropova & Toropov, 2019).

Optimal descriptor

The optimal descriptor is calculated with molecular features
extracted from SMILES (Weininger, 1988):

DCW T�,N�ð Þ ¼
XNS

k¼1

CWðSkÞ þ
XNS�1

k¼1

CWðSSkÞ þ
XNS�2

k¼1

CWðSSSkÞ

(1)

Table 3. Examples of proposed modifications for structure #38 together with variations of model values of SARS-CoV Mpro inhibi-
tory activity.

Structures and SMILES Model IC50[mM] Comment

Basis

Clc2ccc(SSc1ncccn1)cc2
Experiment IC50[mM]¼ 0.684

0.921

Improvement

Clc2cnc(SSc1ncccn1)cc2

0.850 Fragment [N] is added

Improvement

Fc2ccc(SSc1ncccn1)cc2

0.909 Fragment [F] is added

Improvement

Fc2cnc(SSc1ncccn1)cc2

0.838 Fragments [N] and [F] are added
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The Sk is the SMILES-atom, i.e. single symbol (e.g. C, N, O,
etc.), or a group of symbols which cannot be examined apart
(e.g. Cl, Br, %11, etc.); SSk is a pair of SMILES-atoms; SSSk is a
trine of SMILES-atoms. It is to be noted the SMILES-atom can
be the traditional atom (e.g. N, S, Br, etc.), but also it can rep-
resent covalent bonds (i.e. =, #, @), as well as other molecular
phenomena (e.g. the number of rings, 1, 2, %11, etc.). The NS
is the number of SMILES-atoms for given SMILES.

Having the correlation weight for all molecular features
involved in the modelling process, one can obtain the one-
variable model:

IC50 lM½ � ¼ C0 þ C1 � DCW T�,N�ð Þ (2)

Monte Carlo optimization

The scheme of the improved Monte Carlo optimization is
described in the number of papers (Kumar & Chauhan, 2017;
Manisha et al., 2019; Toropova et al., 2020). The essence of
this version of the optimization procedure is in the applica-
tion of the Index of ideality of correlation (IIC). Models for
the inhibitory activity built up here apply the algorithm pre-
viously described (Kumar & Chauhan, 2017; Manisha et al.,
2019; Toropova et al., 2020). Three models have been devel-
oped based on the three splits of data as described above.

Molecular docking

Different host receptors for cellular entry, the structural pro-
teins (antigens), and the high mutation and recombination
rates of CoVs are a significant problem in the development
of wide-spectrum anti-CoV drugs. The accession number in
the Protien Data Bank (PDB, http://www.rcsb.org/pdb/) for
each structure of SARS Mpro is individual. The crystal struc-
ture of SARS-CoV Mpro in complex with inhibitor (PDB code
2AMD) was obtained from the PDB databank and used for
molecular docking studies. All molecules that acted as
ligands for docking studies were drawn using Marvin sketch
(Marvin 6.1.0, 2013, ChemAxon), and MMFF94 force field
implemented in Marvin sketch was used to obtain their opti-
mal 3D geometry. In this research, Molegro Virtual Docker
(MVD) was used as the main software for molecular docking
studies. MVD can be successfully used in MD studies for
obtaining an appropriate geometrical orientation of the lig-
and inside the active site of the studied enzyme. Also, MVD
can identify hydrogen bonds and hydrophobic interactions
between flexible studied compounds and rigid amino acids
from the enzyme active site. Further, MVD can be used to
calculate “scoring” functions related to relevant binding ener-
gies and these functions can be applied for the estimation of
the studied compounds inhibitory effect (Thomsen &
Christensen, 2006; Zivkovic et al., 2020). In this study, the
used “scoring” functions were: Hbond, VdW, Steric, Pose
energy, MolDock, and Rerank Score and their detailed
description is given in the literature (Zivkovic et al., 2020). A
published approach was used for molecular docking protocol
validation (Amin et al., 2018). Maestro software version
11.6.012. was used for presenting 2D representations of
interactions between the studied molecules and amino acids
from the studied enzyme active site.

Figure 1. The experimental and calculated SARS-CoV Mpro inhibitory activities
for three random splits.

Table 4. Score values (kcal/mol) for all computer-aided designed compounds.

Molecule
Pose
Energy HBond Steric VdW

MolDock
Score

Rerank
Score

A �95.3978 0 �108.245 �31.6369 �93.9852 �81.9477
A1 �96.2774 �2.5 �109.457 �21.6198 �94.3305 �78.3661
A2 �96.357 0 �108.868 �30.6175 �94.9384 �82.1304
A3 �97.1479 �2.5 �107.498 �33.5078 �93.8624 �85.0888

Figure 2. Binding energies of the studied compound with the active site of
SARS-CoV Mpro.
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Results and discussion

The models for SARS-CoV Mpro inhibitory activity obtained in
the three employed splits are the following:

IC50 lM½ � ¼ �2:464 6 0:517ð Þ þ 0:1507 6 0:0153ð Þ
� DCW 1, 10ð Þ (3)

IC50 lM½ � ¼ �2:807 6 0:463ð Þ þ 0:2158 6 0:0189ð Þ
� DCW 1, 10ð Þ (4)

IC50 lM½ � ¼ �5:857 6 1:059ð Þ þ 0:2028 6 0:0265ð Þ
� DCW 1, 10ð Þ (5)

Table 1 contains the statistical characteristics of these
models. Table 1 confirms two important features of the
approach: (i) the statistical quality for the validation set is
high, the correlation coefficient for each split is larger than
0.90; and (ii) dispersion for all considered criteria is small.

The statistical quality of the model based on 3D represen-
tation of the molecular structure suggested in the literature
(Wang et al., 2017) is defined as R2¼0.916, Q2¼0.681. Three
compounds were removed as influential outliers (Wang et al.,
2017). Thus, the comparison of the above model with the
predictive potential of models suggested here confirms that
the described approach gives models with quite good pre-
dictive potential. Several runs of the Monte Carlo optimiza-
tion with a different distribution of data into the training
and validation sets allow obtaining the statistical and mech-
anistic interpretation of the model (Table 2). It should be
noted that promoters of increase for IC50[mM] have stable
prevalence, whereas promoters of decrease are relatively
rare ones.

The described approach indicates that the molecular fea-
tures related to nitrogen atoms hint on how to select prom-
ising molecular structures (Table 3). In other words, the
analysis of various structures based on the suggested CORAL
model is transparent and convenient for practical applying.

Figure 3. MD studies are applied to identify all interactions between the designed molecules and amino acids from SARS-CoV Mpro, including hydrogen bonds,
hydrophobic, and hydrophilic interactions.
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Figure 1 represents experimental and calculated with
Equations (3)–(5) the inhibitory activity of SARS-CoV Mpro.
One can see (Figure 1), the split (distribution of available
data into the training set, and the validation set) have a sig-
nificant influence on the prediction for a given structure.
However, as noted above, in all the described experiments,
the statistical quality of models is quite good.

For the assessment of designed molecules, inhibitory
potential MD studies were used. Binding energies of the
studies compound with the active site of SARS-CoV Mpro are
presented in Table 4 and the best-calculated poses for all
studied compounds inside the SARS-CoV Mpro were shown in
Figure 2.

“Scoring” functions can be associated with the inhibitory
potential of the studied compound and according to
obtained results for MolDock score function molecule with
the highest potential is A2, while results for ReRank score
function indicate that molecule with the highest potential is
A3. According to results for both above stated “scoring”
functions molecule with the lowest inhibitory potential is A.
The highest energy interactions related to Van der Waals
interactions were determined for molecule A3, while mol-
ecule A1 had the highest energy-related to steric interac-
tions. The highest pose energy was calculated for molecule
A3. All obtained results for “scoring” functions are in good
agreement with results obtained from QSAR modeling. MD
studies were applied to identify all interactions between the
designed molecules and amino acids from SARS-CoV Mpro,
including hydrogen bonds, hydrophobic, and hydrophilic
interactions, and they are presented in Figure 3. Most signifi-
cant components of the interaction are histidine, valine, and
glutamine (Figure 3).

Supplementary materials section contains experimental
and calculated SARS-CoV Mpro inhibitory activities for three
random splits.

Conclusions

The described approach provides a quite good model for the
inhibitory activity of SARS-CoV Mpro by 50% (IC50, lM). The
model is accompanied by the mechanistic interpretation that
can help to compare the potentials of different molecular
structures as possible antiviral agents. This facilitates the
exploration of efficient drug candidates. The CORAL software
is freely available on the Internet (www.insilico.eu/coral) and
provides a capable tool for QSAR studies. Molecular docking
studies were applied to calculate the energy and determine
interactions between the designed compounds and amino
acids inside the SARS-CoV Mpro. In presented research calcu-
lated “scoring” functions for designed molecules were used
as estimators for their inhibitory potential and obtained
results were in good correlation with the results obtained
from QSAR modeling.
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