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In this paper, the fractional-order differential model of HIV-1 infection of CD4+ T-cells with the effect of drug therapy has been
introduced./ere are three components: uninfected CD4+ T-cells, x, infected CD4+ T-cells, y, and density of virions in plasma, z.
/e aim is to gain numerical solution of this fractional-order HIV-1 model by Laplace Adomian decomposition method (LADM).
/e solution of the proposed model has been achieved in a series form. Moreover, to illustrate the ability and efficiency of the
proposed approach, the solution will be compared with the solutions of some other numerical methods. /e Caputo sense has
been used for fractional derivatives.

1. Introduction

Human immunodeficiency virus (HIV) is a retrovirus
that causes acquired immunodeficiency syndrome (AIDS)
[1]. HIV infects, damages, and reduces CD4+ T-cells.
/erefore, it causes to decrease the resistance of immune
system [2]. /e body becomes more gradually sensitive to
infections and loses its safety. AIDS is one the most
important and dangerous diseases in our time. According
to UNAIDS 2017 annual report, “36.7 million people
globally were living with HIV and 1.8 million people
became newly infected with HIV and 1 million people
died from AIDS-related illnesses in 2016.” In spite of the
great progress in controlling the disease, no vaccine has
been yet discovered for HIV. In the last two decades, a lot
of efforts have been made to design and solve mathe-
matical models that have essential rule in analyzing to

control and prevent the spread of HIV-related diseases
[3–13]. Usually almost all of these mathematical models
explain the relation between HIV viruses and uninfected
CD4+ cells and the effect of drug therapy to infected cells.
Bonhoeffer et al. [4] presented a model for virus dynamics
with two components x and y, where x denotes the
density of infected cells and y shows the density of virus-
producing cells.

/e proposed model is as follows:
dx

dt
� c− βx− cxy,

dy

dt
� cxy−dy,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where c is the rate of production of infected cells, β
is the natural death rate of infected cells, d is the rate of
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virus-producing cells’ death, and c is the rate of infection of
uninfected cells. /is model and many such models were
inspired from Anderson’s model [14, 15]. Anderson’s model
is one of the first and the most important models of in-
fectious diseases. Tuckwell and Wan [16] introduced a
modified model of equation (1) with three components:
uninfected, infected CD4+ T-cells, and density of virions in
plasma (x, y, and z, respectively). /e presented model with
three equations is as follows:

dx

dt
� s′ − μx− βxz,

dy

dt
� βxz− εy,

dz

dt
� cy− cz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with the initial conditions x(0) � k1,y(0) � k2, and z(0) �

k3 where s′, μ, β, ε, c, and c are constant coefficients, s′ is
the rate of creation or production of CD4+ T-cells, μ is the
natural death rate, β is the rate of infected CD4+ cells
from uninfected CD4+ cells, ε is the rate of virus-
producing cells’ death, c is the rate of creation of vi-
rions viruses by infected cells, and c is the rate of virus
particle death. For the sake of comparison and showing
the ability of the proposed approach, we use the pa-
rameter values reported in references [6, 16]. /e pa-
rameter values are as follows: s′ � 0.272 (day/mm3),
μ � 0.00136 (day/mm3), β � 0.00027 (day/virion/mm3),
ε � 0.33 (day/mm3), c � 50 (virion/CLM/day), and c � 2.0
(day). /e rate of some coefficients will change if drug
therapy is not 100% successful. When the drug treatment
begins, infected cells which create virus components are
affected. If the drug therapy is not effective, a part of
infected cells will improve and remaining cells will begin
to produce virus [8].

Mathematical modeling of many problems in biology
and other branches of sciences appears as differential
equations in fractional order. Because the fractional-
order differential equations save memory on them-
selves and are related to fractals [8, 17–19], we prefer
to use the fractional-order form of the model (2) as
follows:

Dα1(x) � s′ − μx− βxz,

Dα2(y) � βxz− εy,

Dα3(z) � cy− cz,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

with the same initial conditions, where 0< αi ≤ 1,
i � 1, 2, 3. /ere are some numerical approaches for
solving these types of mathematical models. Some of
these methods are as follows: homotopy analysis, optimal
homotopy asymptotic, homotopy perturbation, Adomian
decomposition, and variational iteration [20–30]. In [8],
system of fractional equation (3) has been solved by
homotopy analysis method (HAM) and generalized Euler

method (GEM). In [31], equation (3) has also been solved
by homotopy perturbation method (HPM). Adomian
[32], introduced a decomposition method (ADM) which
is a powerful method to get analytic approximate solution
of differential equations. Using Laplace transform
method with couple of ADM (LADM) to solve systems of
differential equations leads to an effective method that
finds many applications in applied mathematics. In this
paper, we will solve equation (3) by LADM and will
compare the results with the results achieved by gener-
alized Euler, homotopy analysis, homotopy perturbation,
and Runge–Kutta methods. /e structure of the paper is
as follows: in Section 2, we will present a brief review of
fractional calculus. In Sections 3 and 4, we will solve the
fractional-order HIV-1 model by LADM. In Section 5, the
convergence of the method will be discussed. In the last
section, we present the conclusion.

2. Fractional Calculus

/e purpose of this section is to recall a few preliminaries
about what appears in this research.

Definition 2.1. /e Riemann–Liouville fractional integral of
order α for a function X : (0,∞)⟶ R is defined as

J
α
X(s) �

1
Γ(α)

􏽚
s

0
(s− t)

α−1
X(t)dt, (4)

where αε(0,∞) (see [33]).

Definition 2.2. /e Caputo fractional derivative for a
function X : (0,∞)⟶ R on the closed interval [0, S] is
defined as

D
α
X(s) �

1
Γ(m− α)

􏽚
s

0
(s− t)

m−α−1
X

m
(t)dt, m � ºα

Ø

+ 1,

(5)

where α is the integer part of α. Another presentation
of the Caputo fractional derivative can be shown as follows
(see [33]):

D
α
X(s) � J

m−α
D

m
X(s)( 􏼁. (6)

Lemma 2.1. If αε(0,∞) and m � α + 1, then the following
result holds for fractional calculus:

J
α

D
α
X􏼂 􏼃(s) � X(s) + 􏽘

m−1

j�0

Xj(0)

j!
s

j
. (7)

Proof. See [33, 34]. □

Definition 2.3. /e Laplace transform of Caputo fractional
derivative is defined as follows:
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L D
α
X(t)􏼈 􏼉 � s

α
Y(s)− 􏽘

m−1

j�0
s
α−k−1

X
j
(0),

m− 1< α<m, m ∈ N.

(8)

3. Solution of Model (3)

In this section, LADM has been implemented to solve
system of fractional equation (3) with the initial
conditions.

We apply Laplace transform on both sides of each
equation of equation (3):

L Dα1x{ } � L s′ − μx− βxz􏼈 􏼉,

L Dα2y􏼈 􏼉 � L βxz− εy􏼈 􏼉,

L Dα3z{ } � L cy− cz􏼈 􏼉,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

which implies that

sα1L x{ }− sα1−1x(0) � L s′ − μx− βxz􏼈 􏼉,

sα2L y􏼈 􏼉− sα2−1y(0) � L βxz− εy􏼈 􏼉,

sα3L z{ }− sα3−1z(0) � L cy− cz􏼈 􏼉.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Substitution of the initial conditions in equation (10) and
applying inverse Laplace transform results in

x � k1 + L−1
1

sα1
L s′ − μx− βxz􏼈 􏼉􏼔 􏼕,

y � k2 + L−1
1

sα2
L βxz− εy􏼈 􏼉􏼔 􏼕,

z � k3 + L−1
1

sα3
L cy− cz􏼈 􏼉􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

To apply ADM, let us consider x, y, and z as the fol-
lowing series:

x � 􏽘
∞

i�0
xi,

y � 􏽘
∞

i�0
yi,

z � 􏽘
∞

i�0
zi.

(12)

To decompose the nonlinear term xz, let us follow an
alternate algorithm [35] to get,

xz � 􏽘
∞

i�0
pi, (13)

where pi is as the following equation:

pi � 􏽘
i

k�0
xkzi−k, (14)

substituting equations (12)–(14) into (11) reads

L x0( 􏼁 �
k1

s
,

L y0( 􏼁 �
k2

s
,

L z0( 􏼁 �
k3

s
,

L x1( 􏼁 �
s′

sα1+1 −
μ

sα1
L x0( 􏼁−

β
sα1

L p0( 􏼁,

L y1( 􏼁 �
β

sα2
L p0( 􏼁−

ε
sα2

L y0( 􏼁,

L z1( 􏼁 �
c

sα3
L y0( 􏼁−

c

sα3
L z0( 􏼁,

L x2( 􏼁 � −
μ

sα1
L x1( 􏼁−

β
sα1

L p1( 􏼁,

L y2( 􏼁 �
β

sα2
L p1( 􏼁−

ε
sα2

L y1( 􏼁,

L z2( 􏼁 �
c

sα3
L y1( 􏼁−

c

sα3
L z1( 􏼁,

⋮

L xn+1( 􏼁 � −
μ

sα1
L xn( 􏼁−

β
sα1

L pn( 􏼁,

L yn+1( 􏼁 �
β

sα2
L pn( 􏼁−

ε
sα2

L yn( 􏼁,

L zn+2( 􏼁 �
c

sα3
L yn( 􏼁−

c

sα3
L zn( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

We take inverse Laplace transform on both sides of each
equation of equation (15):
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x0 � k1,

y0 � k2,

z0 � k3,

x1 � s′ − μx0 − βx0z0( 􏼁
tα1

Γ α1 + 1( 􏼁
,

y1 � βx0z0 − εy0( 􏼁
tα2

Γ α2 + 1( 􏼁
,

z1 � cy0 − cz0( 􏼁
tα3

Γ α3 + 1( 􏼁
,

x2 � − μ + βz0( 􏼁 s′ − μx0 − βx0z0( 􏼁􏼈 􏼉
t2α2

Γ 2α2 + 1( 􏼁
− βx0 cy0 − cz0( 􏼁

tα1+α3

Γ α1 + α3 + 1( 􏼁
,

y2 � βx0 cy0 − cz0( 􏼁
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ βz0 s′ − μx0 − βx0z0( 􏼁

tα1+α2

Γ α1 + α2 + 1( 􏼁
− ε βx0z0 − εy0( 􏼁

t2α2

Γ 2α2 + 1( 􏼁
,

z2 � c βx0z0 − εy0( 􏼁
tα2+α3

Γ α2 + α3 + 1( 􏼁
− c cy0 − cz0( 􏼁

t2α3

Γ 2α3 + 1( 􏼁
,

x3 � βx0c βx0z0 − εy0( 􏼁
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ βx0c cy0 − cz0( 􏼁

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
+ β2x0z0 cy0 − cz0( 􏼁

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ s′ − μx0 − βx0z0( 􏼁 βz0 μ + z0( 􏼁 + μ μ + βz0( 􏼁􏼈 􏼉
t3α1

Γ 3α1 + 1( 􏼁
+ β cy0 − cz0( 􏼁 μx0 − s′ − μx0 − βx0z0( 􏼁

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁
􏼠 􏼡􏼨 􏼩

·
t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y3 � βx0 c βx0z0 − εy0( 􏼁− ε cy0 − cz0( 􏼁( 􏼁( 􏼁
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
− βx0c cy0 − cz0( 􏼁

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁

− βz0 μ + βz0( 􏼁 s′ − μx0 − βx0z0( 􏼁
t2α1+α2

Γ 2α1 + α2 + 1( 􏼁
+ β s′ − μx0 − βx0z0( 􏼁

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− β2x0z0 cy0 − cz0( 􏼁 + βz0ε s′ − μx0 − βx0z0( 􏼁􏼐 􏼑
tα1+2α2

Γ α1 + 2α2 + 1( 􏼁
+ ε2 βx0z0 − εy0( 􏼁

t3α2

Γ 3α2 + 1( 􏼁
,

z3 � βx0c cy0 − cz0( 􏼁− cc βx0z0 − εy0( 􏼁( 􏼁
tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
+ c

2
cy0 − cz0( 􏼁

t3α3

Γ 3α3 + 1( 􏼁

+ βz0c s′ − μx0 − βx0z0( 􏼁
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− εc βx0z0 − εy0( 􏼁

t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(16)

We have calculated four terms of the infinite series of x,
y, and z as an approximate solution. To get any desired
accuracy, one is able to proceed the process and obtain more
terms. Finally, the solution of mathematical model can be
obtained as follows:

x(t) � 􏽘
∞

i�0
xi(t) ≈ x0(t) + x1(t) + x2(t) + x3(t),

y(t) � 􏽘
∞

i�0
yi(t) ≈ y0(t) + y1(t) + y2(t) + y3(t),

z(t) � 􏽘
∞

i�0
zi(t) ≈ z0(t) + z1(t) + z2(t) + z3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)
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4. Numerical Simulation

In this section, constants and initial values are substituted in
equation (16) to obtain an approximate solution.

Substituting the following values: s′ � 0.272 (day/mm3),
μ� 0.00136 (day/mm3), β� 0.00027 (day/virion/mm3),

ε� 0.33 (day/mm3), c � 50 (virion/CLM/day), and c � 2.0
(day) and the initial conditions x(0) � 100, y(0) � 0, and
z(0) � 1 in equation (16), we get,

x0 � 100,

y0 � 0,

z0 � 1,

x1 � 0.1090
tα1

Γ α1 + 1( 􏼁
,

y1 � 0.0270
tα2

Γ α2 + 1( 􏼁
,

z1 � −2.0000
tα3

Γ α3 + 1( 􏼁
,

x2 � −0.0001776700
t2α2

Γ 2α2 + 1( 􏼁
+ 0.05400

tα1+α3

Γ α1 + α3 + 1( 􏼁
,

y2 � −0.05400
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 0.0000294300

tα1+α2

Γ α1 + α2 + 1( 􏼁
− 0.0089100

t2α2

Γ 2α2 + 1( 􏼁
,

z2 � 1.35000
tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 4.0000

t2α3

Γ 2α3 + 1( 􏼁
,

x3 � −0.0364500
tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− 0.10800

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
− 0.0000145800

t2α1+2α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.000029711656
t3α1

Γ 3α1 + 1( 􏼁
− 0.00054

Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y3 � 0.054270000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
+ 0.10800

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 0.000000047971

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.0000294300
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ 0.000004868100

tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
+ 0.0002940300

t3α2

Γ 3α2 + 1( 􏼁
,

z3 � 0.054270000
tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 8.0000

t3α3

Γ 3α3 + 1( 􏼁
+ 0.0014715000

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− 0.4455000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(18)

Computational and Mathematical Methods in Medicine 5



/ree terms approximations can be written as the fol-
lowing form:

x(t) � 100 + 0.1090
tα1

Γ α1 + 1( 􏼁
− 0.0001776700

t2α2

Γ 2α2 + 1( 􏼁
+ 0.05400

tα1+α3

Γ α1 + α3 + 1( 􏼁
− 0.0364500

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁

− 0.10800
tα1+2α3

Γ α1 + 2α3 + 1( 􏼁
− 0.0000145800

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁
+ 0.000029711656

t3α1

Γ 3α1 + 1( 􏼁

− 0.00054
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

t2α1+α3

Γ 2α1 + α3 + 1( 􏼁
,

y(t) � 0.0270
tα2

Γ α2 + 1( 􏼁
− 0.05400

tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 0.0000294300

tα1+α2

Γ α1 + α2 + 1( 􏼁
− 0.0089100

t2α2

Γ 2α2 + 1( 􏼁

+ 0.054270000
t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
+ 0.10800

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁
− 0.000000047971

t2α1+α2

Γ 2α1 + α2 + 1( 􏼁

+ 0.0000294300
Γ α1 + α3 + 1( 􏼁

Γ α1 + 1( 􏼁Γ α3 + 1( 􏼁

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
+ 0.000004868100

tα1+2α2

Γ α1 + 2α2 + 1( 􏼁

+ 0.0002940300
t3α2

Γ 3α2 + 1( 􏼁
,

z(t) � 1− 2.0000
tα3

Γ α3 + 1( 􏼁
+ 1.35000

tα2+α3

Γ α2 + α3 + 1( 􏼁
+ 4.0000

t2α3

Γ 2α3 + 1( 􏼁
+ 0.054270000

tα2+2α3

Γ α2 + 2α3 + 1( 􏼁

− 8.0000
t3α3

Γ 3α3 + 1( 􏼁
+ 0.0014715000

tα1+α2+α3

Γ α1 + α2 + α3 + 1( 􏼁
− 0.4455000

t2α2+α3

Γ 2α2 + α3 + 1( 􏼁
.

(19)

Let us take α1, α2, and α3 equal to α, so the solution of
fractional-order of model (3) is obtained as follows:

x(t) � 100 +
0.1090tα

Γ(α + 1)
+
0.0538223300t2α

Γ(2α + 1)
−
0.1444348683t3α

Γ(3α + 1)
−
0.00054Γ(2α + 1)t3α

Γ(3α + 1)
,

y(t) �
0.0270tα

Γ(α + 1)
−
0.0628805700t2α

Γ(2α + 1)
+
0.1625688501t3α

Γ(3α + 1)
+
0.0000294300Γ(2α + 1)t3α

Γ(3α + 1)
,

z(t) � 1−
2.0000tα

Γ(α + 1)
+
5.35000t2α

Γ(2α + 1)
−
8.389758500t3α

Γ(3α + 1)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

For α1 � α2 � α3 � 1, the solution of equation (3) will be
as follows:

x(t) � 100 + 0.1090t + 0.02691116500t2 − 0.02425247806t3,

y(t) � 0.0270t− 0.03144028500t2 + 0.02710461836t3,

z(t) � 1− 2.0000t + 2.6750000t2 − 1.398293083t3.

⎧⎪⎪⎨

⎪⎪⎩

(21)

In Tables 1–3, one can compare the approximate solu-
tion of fractional-order of model (3) with the results of GEM,
HAM, RK4 in [8], and HPM in [31] using traditional order
α � 1. /e results of LADM are more accurate than the
results obtained by other methods.

Figures 1–3 show the results for different values of α, and
the results can be compared.
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5. Convergence Analysis of the Method

In this section, convergence of the proposed method, using
the idea presented in [36], is studied.

Consider the following functional equation:

F(v(t)) � g(t), (22)

where F is a functional operator and can be decomposed as
F � Dα + R + N and g is a known function.

Dα is a Caputo fractional derivative operator,R is a linear
operator, and N is a nonlinear analytic operator, re-
spectively. So equation (22) can be written as follows:

D
α
(v(t)) � g(t)−R(v(t)) −N(v(t)). (23)

Table 1: Numerical results of x(t) (uninfected CD4+ T-cells).

t LADM GEM HPM HAM RK4
0 100 100 100 100 100
0.2 100.023 100.023 100.023 100.023 100.023
0.4 100.046 100.047 100.047 100.047 100.047
0.6 100.070 100.071 100.071 100.071 100.071
0.8 100.092 100.097 100.097 100.096 100.097
1.0 100.112 100.122 100.123 100.122 100.122

Table 2: Numerical results of y(t) (infected CD4+ T-cells).

t LADM GEM HPM HAM RK4
0 0 0 0 0 0
0.2 0.00436 0.00434 0.00434 0.00434 0.00434
0.4 0.00750 0.00715 0.00721 0.00714 0.00715
0.6 0.01074 0.00908 0.00934 0.00909 0.00908
0.8 0.01336 0.01049 0.01117 0.01063 0.01049
1.0 0.01866 0.01161 0.01276 0.01194 0.01161

Table 3: Numerical results of z(t) (density of virions in plasma).

t LADM GEM HPM HAM RK4
0 1 1 1 1 1
0.2 0.69581 0.69030 0.69071 0.69059 0.69070
0.4 0.53851 0.51152 0.51208 0.51237 0.51190
0.6 0.46097 0.41069 0.41394 0.40994 0.41103
0.8 0.39607 0.35656 0.37749 0.35148 0.35684
1.0 0.27671 0.33053 0.42419 0.32869 0.33073
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Figure 1: Dynamics of uninfected CD4+ T-cells for various values of α.
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/e goal is to find a function v(t) satisfying equation
(22). By applying the Laplace transform on both sides of
equation (23) reads

L D
α
(v(t))􏼈 􏼉 � L g(t)−R(v(t))−N(v(t))􏼈 􏼉. (24)

By using definition (2.3), equation (23) can be written as
follows:

L v(t){ } �
v(0)

s
+
L g(t)􏼈 􏼉

sα
−
L R(v(t)){ }

sα
−
L N(v(t)){ }

sα
,

(25)

by considering v(0) � v0 and using inverse of Laplace
transform on both sides of equation (25) results in

L
−1

L v(t){ }{ } � L
−1

􏼨
v(0)

s
+
L g(t)􏼈 􏼉

sα

−
L R(v(t)){ }

sα
−
L N(v(t)){ }

sα
􏼩,

(26)

which implies that

v(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(v(t)){ }

sα
􏼨 􏼩

−L−1
L N(v(t)){ }

sα
􏼨 􏼩.

(27)

By implementing ADM and assuming the solution v(t)

as an infinite series say, v(t) � 􏽐
∞
n�0vn(t), and writing the

nonlinear term based on Adomian polynomials such as

N(v(t)) � 􏽘
∞

n�0
pn v0(t), v1(t), . . . , vn(t)( 􏼁, (28)

where

pn v0(t), v1(t), . . . , vn(t)( 􏼁 �
1
Γ(n + 1)

dn

dλn

⎧⎨

⎩Nλ 􏽘

n

i�0
vi(t)λi⎛⎝ ⎞⎠

⎫⎬

⎭
λ�0

.

(29)

1
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Figure 3: Dynamics of density of virions in plasma for various values of α.
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Figure 2: Dynamics of infected CD4+ T-cells for various values of α.
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Equation (27) can be written as the following form:

􏽘

∞

n�0
vn(t) � v0 + L

−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
∞
n�0vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
n�0pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(30)

So, we have

􏽘

∞

n�0
vn(t) � v0 + L

−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩− 􏽘

∞

n�0
L
−1 L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

− 􏽘

∞

n�0
L
−1 L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(31)

From which we can define

v0(t) � v0,

v1(t) � L−1
L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

v2(t) � −L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

⋮

vn+1(t) � −L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Theorem 5.1. LADM for equation (21) with the solution (19)
is equivalent to

sn(t) � v0(t) + v1(t) + . . . + vn(t),

s0(t) � v0(t).
(33)

By using the following iterative scheme:

sn+1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(34)
where

N 􏽘
n

i�0
vi(t)⎛⎝ ⎞⎠ � 􏽘

n

i�0
pi v0(t), v1(t), . . . , vi(t)( 􏼁,

n � 0, 1, 2, . . . .

(35)

Proof. For n � 0, from equation (33):

s1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R s0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N s0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(36)

/en, by assumption of equation (33), we have

v1(t) � L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(37)

for n � 1:

s2(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R s1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N s1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R v0(t) + v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p0 v0(t)( 􏼁 + p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0(t) + v1(t)−L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(38)

We know that s2(t) � v0(t) + v1(t) + v2(t), so we obtain

v2(t) � −L−1
L R v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩−L−1

L p1 v0(t), v1(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(39)

By strong induction, let us have
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vk+1(t) � −L−1
L R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

k � 1, 2, . . . , n− 1,

(40)

and prove the following for k � n,

sn+1(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N sn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
n
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐

n
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩− 􏽘

n

k�0
L
−1 L R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

− 􏽘
n

k�0
L
−1 L pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0(t) + v1(t) + . . . vn(t)−L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(41)

/en, from equation (33), we derive

vn+1(t) � −L−1
L R vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L pn v0(t), v1(t), . . . , vn(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩.

(42)

/is entails the statement is true and the theorem is
proved. □

Theorem 5.2. Let X be a Banach space.

(i) 􏽐
∞
i�0vi(t) resulted from equation (31), convergence to

s ∈ X, if ∃ c ∈[0, 1), s.t (∀ n ∈ N⟹ ‖vn+1‖≤ c ‖vn‖),

(ii) s(t) � 􏽐
∞
i�0vi(t) satisfies in

s(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(s(t)){ }

sα
􏼨 􏼩

−L−1
L N(s(t)){ }

sα
􏼨 􏼩.

(43)

Proof.

sn+1 − sn

����
���� � vn+1

����
����≤ c vn

����
����≤ c

2
vn−1

����
����≤ . . . ≤ c

n+1
v0

����
����.

(44)

∀n, m ∈ N, n≥m, we have

sn − sm

����
���� � sn − sn−1( 􏼁 + sn−1 − sn−2( 􏼁 + . . . + sm+1 − sm( 􏼁

����
����

≤ sn − sn−1
����

���� + sn−1 − sn−2
����

���� + . . . + sm+1 − sm

����
����

≤ c
n

v0
����

���� + c
n−1

v0
����

���� + . . . + c
m+1

v0
����

����

≤ c
n

+ c
n−1

+ . . . + c
m+1

􏼐 􏼑 v0
����

����

≤ c
m+1 1 + c + c

2
+ . . . + c

n
+ . . .􏼐 􏼑≤

cm+1

1− c
v0

����
����.

(45)

/is means that lim
n,m⟶∞

‖sn − sm‖ � 0, therefore, sn􏼈 􏼉 is a
Cauchy sequence in the Banach space of X and is conver-
gent. So, ∃ s ϵ X, s.t lim

n⟶∞
sn � s.

From equation (33), we derive

lim sn(t)
n⟶∞

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
R sn(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
N sn(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
R 􏽐

n
k�0vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
N 􏽐

n
k�0vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L lim

n⟶∞
􏽐

n
k�0R vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−L−1
L lim

n⟶∞
􏽐

n
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼚 􏼛

sα

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
k�0R vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L 􏽐
∞
k�0pk v0(t), v1(t), . . . , vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩,

(46)
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From equation (35), we have

N 􏽘
∞

i�0
vi(t)⎛⎝ ⎞⎠ � 􏽘

∞

i�0
pi v0(t), v1(t), . . . , vi(t)( 􏼁,

n � 0, 1, 2. . . . .

(47)

So,

s(t) � v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R 􏽐
∞
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

−L−1
L N 􏽐

∞
k�0vk(t)( 􏼁􏼈 􏼉

sα
􏼨 􏼩

� v0 + L
−1 L g(t)􏼈 􏼉

sα
􏼨 􏼩−L−1

L R(s(t)){ }

sα
􏼨 􏼩

−L−1
L N(s(t)){ }

sα
􏼨 􏼩.

(48)

□

Lemma 5.1. Equation (43) is equivalent to equation (22).

Proof. By using Laplace transform on both sides of equation
(43) reads to

L(s(t)) � L v0( 􏼁 +
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα

�
v(0)

s
+
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα

�
sα−1v(0)

sα
+
L g(t)􏼈 􏼉

sα
−
L R(s(t)){ }

sα
−
L N(s(t)){ }

sα
,

(49)

so we can write

s
α
L(s(t))− s

α−1
v(0) � L g(t)􏼈 􏼉−L R(s(t)){ }

−L N(s(t)){ }.
(50)

In virtue of definition 2.3 and linearity of the Laplace
transform, equation (50) can be written as the follows:

L D
α
s(t)􏼈 􏼉 � L g(t)−R(s(t))−N(s(t))􏼈 􏼉. (51)

By applying the inverse of Laplace transform on both
sides of equation (51), we derive

D
α
s(t) � g(t)−R(s(t))−N(s(t)). (52)

Considering v(t) � s(t), one gets equation (22). So, the
solution of equation (43) is the same as the solution of
equation (22). □

6. Conclusion

In this paper, a fractional-order model of HIV-1 with
three components has been introduced. When α⟶ 1,

then Dαx(t)⟶ Dx(t); therefore, the fractional-order of
presented model reduces to traditional model. By applying
Laplace transform and Adomian decomposition method, or
LADM for short, which is a strong approach to compute
numerical solution of fractional differential equations, we
gain an approximate solution of the proposed model. /e
accuracy of the proposed approach has made it a reliable
method. We have calculated four terms of the infinite series
of x, y, and z as an approximate solution. /e result of
LADM has been compared with the results of some other
methods such as GEM, HAM, RK4 [8], and HPM [31]. /e
results are presented in Tables 1–3. Figures 1–3, show that
the uninfected CD4+ T-cells, x, infected CD4+ T-cells, y, and
density of virions in plasma, z, depend on the various values
of α, the various values of the parameters, and the time
fractional derivative. A comparison of the approximate
solutions shows that LADM can work more accurate than
other methods. Convergence of the proposed method is
studied. Because of the fact that obtaining the exact solution
for system of fractional equation is difficult or impossible, we
would like to suggest such an easy and reliable approach for
further research, in the future.
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[26] Ş. Yüzbaşı, “A numerical approach to solve the model for HIV
infection of CD4+ T cells,” Applied Mathematical Modelling,
vol. 36, no. 12, pp. 5876–5890, 2012.

[27] M. Ghoreishi, A. M. Ismail, and A. Alomari, “Application of
the homotopy analysis method for solving a model for HIV
infection of CD4+ T-cells,” Mathematical and Computer
Modelling, vol. 54, no. 11-12, pp. 3007–3015, 2011.

[28] A. Atangana and E. F. D. Goufo, “On the mathematical
analysis of Ebola hemorrhagic fever: deathly infection disease
in West African countries,” BioMed Research International,
vol. 2014, Article ID 261383, 7 pages, 2014.

[29] M. Y. Ongun, “/e Laplace adomian decomposition method
for solving a model for HIV infection of CD4+ T cells,”
Mathematical and Computer Modelling, vol. 53, no. 5-6,
pp. 597–603, 2011.

[30] A. A. M. Arafa, S. Rida, and M. Khalil, “A fractional-order
model of HIV infection with drug therapy effect,” Journal of
the Egyptian Mathematical Society, vol. 22, no. 3, pp. 538–543,
2014.

[31] M. Merdan and T. Khan, “Homotopy perturbation method
for solving viral dynamical model,” CÜ Fen-Edebiyat
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