
Frontiers in Pharmacology | www.frontiers

Edited by:
Suowen Xu,

University of Science and Technology
of China, China

Reviewed by:
Lei Zheng,

Southern Medical University, China
Xiao Qun Wang,

Shanghai Jiaotong University, China

*Correspondence:
An-Ji Zhang

ajzhang001@126.com
Hui-Ling Cao

caohuiling_jzs@xiyi.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Translational Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 03 February 2020
Accepted: 21 April 2020
Published: 15 May 2020

Citation:
Xu S-N, Zhou X, Zhu C-J, Qin W,
Zhu J, Zhang K-L, Li H-J, Xing L,
Lian K, Li C-X, Sun Z, Wang Z-Q,
Zhang A-J and Cao H-L (2020)

Nϵ-Carboxymethyl-Lysine
Deteriorates Vascular Calcification

in Diabetic Atherosclerosis Induced
by Vascular Smooth Muscle

Cell-Derived Foam Cells.
Front. Pharmacol. 11:626.

doi: 10.3389/fphar.2020.00626

ORIGINAL RESEARCH
published: 15 May 2020

doi: 10.3389/fphar.2020.00626
Nϵ-Carboxymethyl-Lysine
Deteriorates Vascular Calcification in
Diabetic Atherosclerosis Induced by
Vascular Smooth Muscle Cell-
Derived Foam Cells
Sui-Ning Xu1†, Xin Zhou1†, Cun-Jun Zhu2, Wei Qin1, Jie Zhu3, Ke-Lin Zhang1, Hui-Jin Li1,
Lu Xing1, Kun Lian2, Cheng-Xiang Li2, Zhen Sun4, Zhong-Qun Wang4, An-Ji Zhang1*
and Hui-Ling Cao1*

1 Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease,
Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China, 2 Department of Cardiology, Xijing
Hospital, The Fourth Military Medical University, Xi’an, China, 3 Department of Cardiology, Affiliated Luan Hospital of Anhui
Medical University, Luan, China, 4 Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China

Nϵ-carboxymethyl-lysine (CML), an advanced glycation end product, is involved in vascular
calcification (VC) in diabetic atherosclerosis. This study aimed to investigate the effects of CML
on VC in diabetic atherosclerosis induced by vascular smooth muscle cell (VSMC)–derived
foam cells. Human studies, animal studies and cell studies were performed. The human study
results from 100 patients revealed a poor blood glucose and lipid status and more severe
coronary lesions and stenosis in patients with coronary artery disease and diabetes mellitus.
Intraperitoneal injection of streptozotocin combined with a high-fat diet was used to build a
diabetic atherosclerosis model in ApoE−/− mice. The animal study results indicated that CML
accelerated VC progression in diabetic atherosclerosis by accelerating the accumulation of
VSMC-derived foam cells in ApoE−/− mice. The cell study results illustrated that CML induced
VSMC-derived foam cells apoptosis and aggravated foam cells calcification. Consistent with
this finding, calcium content and the expression levels of alkaline phosphatase, bone
morphogenetic protein 2 and runt-related transcription factor 2 were significantly elevated
in A7r5 cells treated with oxidation-low-density lipoprotein and CML. Thus, we concluded that
CML promoted VSMC-derived foam cells calcification to aggravate VC in diabetic
atherosclerosis, providing evidence for the contribution of foam cells to diabetic VC.

Keywords: Nϵ-carboxymethyl-lysine (CML), vascular calcification (VC), diabetic atherosclerosis, vascular smooth
muscle cell (VSMC), foam cell
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INTRODUCTION

Approximately 387 million people suffered from diabetes
mellitus (DM) in 2014 according to the International Diabetes
Federation, and this number is predicted to increase to 552
million by 2030 (Yamagishi et al., 2015). Additionally, vascular
calcification (VC) is the main risk factor for adverse
cardiovascular events and contributes to a high morbidity in
DM patients (Benjamin et al., 2017; Stabley and Towler, 2017;
Yahagi et al., 2017; Lino et al., 2018). VC refers to the phenotypic
transdifferentiation of osteo-/chondroblasts from vascular
smooth muscle cells (VSMCs) under pathological conditions
including atherosclerosis, DM, and chronic kidney disease
(CKD), through matrix vesicle secretion and hydroxyapatite
crystals formation (Wang et al., 2020). Therefore, VC have a
similar composition to bone minerals. VC can be classified into
two distinct forms according to the location: intimal calcification
and medial calcification. The link between DM and VC is driven
by small muscular peripheral arteries (Ho and Shanahan, 2016).
Medial calcification is the most common form of VC in DM
and is associated with oxidative stress, active endothelial
proinflammatory and proosteogenic conditions, such as
physiological dysfunction, alterations in mineral metabolism,
increased inflammatory cytokine production, and the release of
osteoprogenitor cells from the marrow into the circulation
(Yahagi et al., 2017).

Advanced glycation end products (AGEs) are the most
important metabolites of diabetic glucose toxicity and
participate in multiple stages of diabetic cardiovascular
complications (Wang et al., 2014; Ye et al., 2016). Nϵ-
carboxymethyl-lysine (CML) is considered the key component
of AGEs. Previous studies have demonstrated that CML can be
regarded as an early indicator of the diabetic VC (Xu et al., 2017;
Li et al., 2017). Furthermore, our research group successfully
built animal and cell models of diabetic VC to simulate the
appearance of focal microcalcifications in the anterior tibial
artery of patients with diabetic foot amputation (Wang et al.,
2012; Wang et al., 2016).

The formation and accumulation of foam cells serve as
important processes in atherosclerosis (AS). The formation of
macrophage-derived foam cells in the intima is a major hallmark
of early-stage AS lesions. Analogous to original foam cells, non-
macrophage-derived foam cells engulf and process modified
lipoproteins in lipid-rich conditions. Moreover, VSMCs have
been reported to contribute more than 50% of foam cell
populations in human AS lesions (Allahverdian et al., 2014).
Dedifferentiated VSMCs migrating into the subintimal space of
AS lesions could provide structural integrity for fibrous cap.
Meanwhile, VSMCs can perform the function of cholesterol
uptake in the lipid core (Liu et al., 2017). Considerable
progress has been achieved in diabetic VC induced by
macrophage-derived foam cells, but little research has been
conducted on VC induced by VSMC-derived foam cells. Here,
our study explores the effects of CML on VC in diabetic AS
induced by VSMC-derived foam cells and provides evidence for
the contribution of foam cells to diabetic VC.
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MATERIALS AND METHODS

Materials
A7r5 VSMCs were purchased from the Shanghai Cell Bank of
the Chinese Academy of Sciences (Shanghai, China). Dulbecco’s
modified Eagle’s Medium, Nutrient Mixture F-12 (DMEM/F12)
was obtained fromGibco (Grand Island, USA). CMLwas acquired
from Polypeptide Laboratories (San Diego, USA). Streptozotocin
(STZ) was obtained from Sigma–Aldrich Co. LLC (St. Louis,
USA). A CML ELISA kit was obtained from Meixuan Biological
Science and Technology Co., Ltd (Shanghai, China). A calcium
assay kit and alkaline phosphatase (ALP) activity kit were
purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). A Von Kossa staining kit was purchased
from Shunbai Biologicals Inc. (Shanghai, China). An Annexin
V-FITC apoptosis detection kit was obtained from Sigma-Aldrich
Co. LLC (St. Louis, USA). Glyceraldehyde-phosphate
dehydrogenase (GAPDH) was acquired from Cell Signaling
Technology, Inc. (Boston, USA). Antibodies against ALP, bone
morphogenetic protein 2 (BMP-2) and runt-related transcription
factor 2 (Runx2) and all secondary antibodies were from Santa
Cruz Biotechnology (Santa Cruz, USA).

Human Studies
The study was approved by the Ethical Committee of the First
Affiliated Hospital of Xi’an Medical University and carried out in
accordance with the institutional guidelines. Written informed
consents were obtained from all patients. The inclusion criteria
were established according to the 2013 European Society of
Cardiology (ESC) guidelines (Montalescot et al., 2013).
Patients with stable angina or other symptoms associated with
coronary artery disease (CAD) diagnosed by coronary
angiography (CAG). The exclusion criteria included patients
with acute coronary syndrome, organic valvular disease,
cardiac arrest, severe neurological disease, tumor, pregnancy,
perioperative haemodynamic instability and a lack of the
laboratory biochemical indicators needed for this study. Then,
one hundred patients with CAD in the Department of
Cardiology, the First Affiliated Hospital of Xi’an Medical
University (Xi’an, China), were recruited from January to
August 2019. The patients were classified into two groups
according to whether they had a history of DM. The patients
were consecutively recruited to the CAD group or CAD with DM
group, and each group consisted of fifty patients. The DM
patients had been diagnosed in accordance with the 1999
World Health Organization (WHO) diagnostic criteria (Alberti
and Zimmet, 1998), and all enrolled DM patients were receiving
antiglycaemic therapy (17 patients received insulin therapy and
33 patients received oral hypoglycaemic treatment).

The risk factors of the CAD patients and their profiles were
evaluated, including age, sex, hypertension history, smoking
status. And their fasting glucose (FPG), glycated hemoglobin
(HbA1c), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), total cholesterol (TC),
and triglyceride (TG) were measured with well-established
methods (Duque et al., 2017). The serum CML concentration
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was measured by the CML ELISA kit according to the
manufacturer’s instruction.

CAG was performed according to standard procedures. The
angiograms were reviewed by at least two experienced
cardiologists who reached an agreement on the disease origin
and course according to the Science Clubs of America (SCA).
Patients with significant stenosis of luminal narrowing ≥ 50%
were considered as CAD. Significant AS was defined as luminal
narrowing ≥75% detected in a main branch of the epicardial
coronary arteries. The patients in this study were categorized as
having significant single-, double-, or triple-vessel disease when a
significant lesion of one or more coronary artery branches was
found on CAG. The major coronary arteries were defined as the
right coronary artery (RCA), left circumflex artery (LCX), and
left anterior descending (LAD) coronary artery. We selected the
LAD as the typical site of coronary artery lesions.

Animal Studies
The animal study protocols in the study were approved by the
Institutional Animal Care and Use Committee of Jiangsu
University (Jiangsu, China) and conducted in accordance with
the Guidelines for Animal Experimentation of the National
Institutes of Health. ApoE−/− mice with a C57BL/6J
background were purchased from Jackson Laboratory (USA).
All the mice were housed at 25°C under 12-h light and dark
cycles and provided with regular chow. At 6 weeks of age, the
mice were used to build a diabetic model through intraperitoneal
injection of 40 mg/kg STZ for five consecutive days. After 2
weeks, the mice with blood glucose levels ≥16.7 mmol/L were
defined as DM. These mice were then switched to a
semisynthetic high-fat diet (HFD) (21% fat, 0.15% cholesterol,
and other components were similar to those of regular chow) and
injected with CML (10 mg/kg/day) through the tail vein once
every other week for two months. A total of 30 ApoE−/− mice
were divided into three groups (10 mice per group): the control
group (normal saline, regular chow), the STZ group (STZ, HFD)
and the STZ + CML group (STZ+CML, HFD). After 4 months,
all the mice were euthanized for serology analysis (serum glucose
and serum CML levels) and morphological analysis
[hematoxylin-eosin (H&E) staining, Von Kossa staining, and
immunohistochemical staining]. Quantitative analyses of
indicated stains were performed using Image J software.

Histology and Immunohistochemistry
Aorta tissue was fixed using 10% formalin, dehydrated and
embedded in paraffin. Some sections were stained with H&E.
Images were taken under a light microscope and analyzed by
investigators blinded to the treatment conditions. Calcium
deposition in atherosclerotic plaques and VSMC calcification
were identified by Von Kossa staining. First, VSMCs and the
paraffin-embedded sections were fixed in 4% paraformaldehyde
for 15 min at room temperature and washed with double distilled
water (ddH2O) twice, followed incubated with 5% and 2% silver
nitrate solution. Next, the specimens were placed in the dark
under ultraviolet light for 30 min at room temperature. After
removing the silver nitrate solution and washing with ddH2O
twice, 5% sodium thiosulfate was used to remove the unreacted
Frontiers in Pharmacology | www.frontiersin.org 3
silver for 5 min, and the specimens were finally counterstained
with eosin (tissue) or neutral red (cell) for 10 min and washed
twice with ddH2O. Images were obtained with an Olympus
microscope (IX51, Olympus, Japan).

For immunohistochemistry, the methods were performed as
follows: first, aorta tissues were dewaxed and hydrated, and 3%
H2O2 was used to inactivate endogenous peroxidases for 10 min.
Then, protein-blocking agent was incubated with the slides for 10
min, followed by application of the primary antibody for
incubation overnight at 4°C. Next, the sections were incubated
with poly-horseradish peroxidase (HRP)-conjugated secondary
antibody for 1 h at 37°C, and peroxidase activity was identified by
a reaction with 3,3-diaminobenzidine tetra hydrochloride for 7
min. Finally, the sections were counterstained with hematoxylin.

Cell Culture and Calcification Induction
A7r5 cells were divided into three groups: the control group
(DMEM-F12), the ox-LDL group (DMEM-F12+ 50 mg/ml ox-
LDL) and the ox-LDL+CML group (DMEM-F12+ 50 mg/ml ox-
LDL+ 10 mmol/L CML). Calcification of VSMC-derived foam
cells was induced as follows: first, the A7r5 cells were cultured
until confluent and treated with ox-LDL or ox-LDL and CML for
24 h. Then, the cells were incubated with a calcification medium
(DMEM-F12 with 10% fetal bovine serum, 10 mmol/L sodium
pyruvate, 10-7 mol/L insulin, 10-8 mol/L dexamethasone, 100 U/ml
penicillin, 100 mg/ml STZ, and 10 mmol/L b-glycerophosphate
(b-GP) for two weeks in a humidified atmosphere with 5% CO2 at
37°C. During this period, the medium was replaced with fresh
calcification medium every 48 h to 72 h.

Oil Red O Staining
Cell culture was the same as above. After rinsing with phosphate-
buffered solution (PBS) and 60% isopropanol for 5 min, VSMCs
were fixed in 4% paraformaldehyde for 30 min at room
temperature. Then, fresh-filtered oil red O working solution
was used to stain the samples for 30 min at room temperature,
and the staining was subsequently evaluated under an inverted
microscope (IX51, Olympus, Japan).

Measurement of Cellular Cholesterol
Contents
The free cholesterol (FC) and TC contents of the collected cells
were quantified by a modified enzymatic fluorometric method.
Lipid extracts were dissolved in isopropanol and incubated with
an enzyme mixture for 1 h (FC) or 2 h (TC) at 37°C, and then 0.1
M NaOH was added for 30 min. Fluorescence intensity was
measured at excitation and emission wavelengths of 320 nm and
407 nm, respectively. FC and TC values were obtained from the
standard calibration curves. The amount of cholesterol ester
(CE) was calculated by subtracting FC from TC.

Apoptotic Cell Detection by Flow
Cytometry
The Annexin V-FITC apoptosis detection kit (Sigma-Aldrich, St.
Louis, USA) was used to detect apoptosis according to the
instructions of the manufacturer. The process was completed
May 2020 | Volume 11 | Article 626
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in the dark. First, A7r5 cells were cultured with ox-LDL or ox-
LDL and CML for 24 h, and then the cells were collected into
glass tubes. Next, the cells were stained with 10 ml of Annexin V
solution at 37°C for 15 min, followed by staining with 10 ml of PI
at 37°C for 15 min. Finally, the cells were quantified using flow
cytometry (FACSCanto II, Becton Dickinson, USA).

ALP Activity Assay and Quantification of
the Calcium Content
First, the total proteins of cells were extracted by centrifugation in
radioimmunoprecipitation assay (RIPA) lysis buffer (0.2% NP-40
in l mMMgCl2), and then the ALP activity was evaluated using an
ALP assay kit based on the manufacturer’s instruction. Determined
by the Bradford method, the results for ALP activity were
normalized to the level of the total protein (Wei et al., 2020).

The calcium content was determined by colorimetry assays as
previously described (Yahagi et al., 2017). After rinsing with PBS
twice, dried aorta tissues or cells were decalcified with 0.6 M HCl
for 24 h at room temperature. The calcium content was
determined by a reaction with o-Cresolphthalein complexon
(QuantiChrom TM Calcium Assay Kit, Bio Assay Systems,
USA). Next, the samples were washed three times with PBS,
and then dissolved in 0.1 M NaOH and 0.1% sodium dodecyl
sulfate (SDS). The protein content was measured using the
Bradford method. Finally, the calcium content of the samples
was normalized to the total protein content.

Western Blotting
Total proteins of A7r5 cells treated with ox-LDL and b-GP or ox-
LDL, CML, and b-GP were extracted by centrifugation in RIPA lysis
buffer. The protein samples were loaded onto SDS-polyacrylamide
gel and then transferred onto polyvinylidene difluoride (PVDF)
membranes using a semidry method. The membranes were
incubated with the primary antibodies anti-BMP-2, anti-Runx2,
anti-ALP, and anti-GAPDH overnight at 4°C and then with HRP-
conjugated secondary antibodies for 1 h at room temperature. The
immunoreactive bands were visualized with an ECL kit (Thermo
Fisher Scientific, Rockford, USA), and images were obtained using
Gel-Pro Analyzer 4 software (Media Cybernetics, USA).

Statistical Analyses
All data were presented as the mean ± standard deviation (SD).
Differences for multiple groups were compared by one-way
ANOVA analysis followed by post hoc individual comparisons.
An unpaired Student’s t test was applied to determine differences
between two variables. P < 0.05 was considered as statistically
significant. All statistical analyses were carried out using
GraphPad 5.01 software (GraphPad Software Inc., USA).
RESULTS

Baseline Clinical Data and Coronary
Angiography in the CAD Patients
The one hundred recruited CAD patients were classified into two
groups according to whether they had DM. Each group consisted
of 50 patients. All the 50 DM patients were receiving
Frontiers in Pharmacology | www.frontiersin.org 4
antiglycaemic therapy. The patients’ baseline characteristics are
listed in Table 1. Significant differences in the baseline
characteristics LDL-C, FPG, HbA1c, and CML were identified
between the two groups, but no significant differences in TC, TG,
and HDL-C were found. Hypertension history and smoking
status did not differ between the two groups.

The CAG results of the CAD patients are shown in Figure 1.
Luminal narrowing of 50% in the middle section of the LAD is
shown in Figure 1A, which was indicative of CAD. Luminal
narrowing of 75% in the middle section of the LAD and 30% in
an area near LAD are shown in Figure 1B, which were defined as
significant AS and served as an indication for coronary stent
implantation in the CAD patient. Furthermore, luminal
narrowing of 90% in the middle section of the LAD, 70% in
the middle section of the LCX and 80%–90% in the middle
section of RCA are shown in Figure 1C, which reflected serious
atherosclerosis of three coronary vascular lesions in a CAD
patient with DM.

Progression of Atherosclerotic
Calcification in Diabetic ApoE−/− Mice
The morphological characteristics of aortic AS plaques in
ApoE−/− mice were visualized by H&E staining (Figures 2A–
C). The aortic intima of the control group was locally thickened,
and early AS plaques were observed in the ox-LDL group, but no
destruction of the internal elastic plate was observed. The area of
aortic plaque in the ox-LDL+CML group was significantly larger
than that in the ox-LDL group and a large number of cholesterol
crystals were visible under the fibrous cap. Von Kossa staining
was performed to describe VC (Figures 2A, D, E). A small
number of black calcium particles were observed in the ox-LDL
group, while extensive spotty calcium deposits were noted in
the ox-LDL+CML group, which indicating that CML
aggravated VC.

ALP plays an important role in VC, and upregulated expression
of ALP indicates severe VC. We used immunohistochemical
staining to observe ALP expression in AS plaques, and brown
TABLE 1 | Baseline clinical data of CAD patients or combined with DM.

Groups CAD Group CAD+DM Group P value

Variables 50 50
Diabetes (%) 0(0) 50(1) <0.0001
Gender,M/(M+F) 37/50 36/50 1
Age(y) 62.58 ± 0.81 66.65 ± 0.35 0.012
Hypertension(%) 27(54) 30(60) 0.686
Smoke status(%) 23(46) 22(44) 1
TC(mmol/L) 3.775 ± 0.133 3.47 ± 0.113 0.083
TG(mmol/L) 1.545 ± 0.109 1.726 ± 0.129 0.288
HDL-C(mmol/L) 0.9652 ± 0.028 0.9372 ± 0.03 0.497
LDL-C(mmol/L) 2.354 ± 0.118 1.972 ± 0.093 0.012
FPG (mmol/L) 5.316 ± 0.192 7.73 ± 0.348 0.001
HbA1c (%) 5.2 ± 0.3 7.4 ± 0.4 0.005
CML(ng/ml) 25.46 ± 2.99 28.72 ± 3.77 0.0125
Ma
y 2020 | Volume 11 | A
Values are expressed as the number (%) or means ± SD. n = 50 for each group.
Annotations: CAD, coronary artery disease; DM, diabetic mellitus; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, triglyceride; TG,
total cholesterol; FPG, fasting glucose; HbA1c, glycated hemoglobin; CML, Nϵ-
carboxymethyl-lysine.
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A B
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FIGURE 2 | CML exacerbated atherosclerotic calcification in diabetic ApoE−/− mice. (A) Representative photomicrographs of atherosclerotic lesions in aortic cross-
sections after H&E staining (black arrowheads indicate atherosclerotic lesions, 100× magnification), Von Kossa staining (black arrowheads indicate black calcium
particles, 200× magnification) and immunohistochemical staining for ALP (black arrowheads indicate brown positive staining areas, 200× magnification). Quantitative
results of H&E staining for plaque area (B) and the ratio of plaque area (C). Quantitative results of Von Kossa staining for calcification area (D) and the ratio of
calcification area (E). Quantitative results of immunohistochemical staining for ALP (F). Values are expressed as the mean ± SD. *P < 0.05 .Annotation: CML, Nϵ-
carboxymethyl-lysine; ALP, alkaline phosphatase. IOD, integrated optical density.
FIGURE 1 | Coronary angiography images in CAD patients. (A) Angiography image of a CAD patient (LAD: 50%, LCX: 30%, RCA: 25%). (B) Angiography image of
a CAD patient with a significant AS of single coronary vascular lesions (LAD: 75%, LCX: 30%, RCA: 25%). (C) Angiography image of a CAD patient combined DM
with a serious atherosclerosis of three coronary vascular lesions (LAD: 90%, LCX: 70%, RCA: 80%-90%). The results indicated more severe coronary lesions and
stenosis in patients with CAD and DM. Black arrowheads indicate LAD coronary artery stenosis. Annotations: CAD, coronary artery disease; DM, diabetic mellitus;
LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery; AS, atherosclerosis.
Frontiers in Pharmacology | www.frontiersin.org May 2020 | Volume 11 | Article 6265
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sediments indicated positive staining. Almost no ALP expression
was observed in the control group. A small amount of brown
staining corresponding to ALP expression was found in the arterial
plaques of the ox-LDLgroup.ALP expression in the arterial plaques
of the ox-LDL+CML group was significantly increased, implying
that CML exacerbated VC (Figures 2A, F).

CML Levels in ApoE-/- Mice
Changes in the serological indications of the ApoE−/− mice were
found. Serum CML levels gradually rose in the control group, ox-
LDL group and the ox-LDL+CML group (9.51 ± 0.87 vs. 14.56 ±
1.53 vs. 20.81 ± 3.22, P < 0.05, n=10). Likewise, serum Glu levels
exhibited the similar trend in the control group, ox-LDL group
and the ox-LDL+CML group (12.24 ± 1.69 vs. 21.67 ± 1.23 vs.
25.56 ± 2.26, P < 0.05, n=10).

CML Promoted the Formation of A7r5
VSMC-Derived Foam Cells
A7r5 VSMC-derived foam cells were formed by VSMCs loaded
with ox-LDL or ox-LDL and CML. Oil red O staining was
performed to observe lipid accumulation. Few lipid droplets were
observed in the control groupas shownbyoil redOstaining (Figure
3A), demonstrating a low intracellular lipid content in the control
group. A number of red lipid droplets in the cytoplasm were found
Frontiers in Pharmacology | www.frontiersin.org 6
in the ox-LDL group, which indicated the formation of foam cells
(Figure3B).The red lipid droplets in theox-LDL+CMLgroupwere
significantly increased compared with those in the ox-LDL group
(Figure 3C). Consistent with the oil red O staining, the amounts of
cholesterol gradually increased in the control group, ox-LDL group,
and ox-LDL+CML group, namely, TC (43.56% ± 4.42% vs.
128.10% ± 12.06% vs. 215.57% ± 20.69%), FC (10.73% ± 1.09%
vs. 64.63%±6.31%vs. 118.70%±11.70%), andCE (32.83%±3.35%
vs. 62.43% ± 6.31% vs. 96.87% ± 9.17%), respectively (Figures
3D–F; P < 0.05), which disclosed that CML aggravated the
formation of A7r5 VSMC-derived foam cells.

CML Augmented the Apoptosis of A7r5
VSMC-Derived Foam Cells
As shown in Figure 4, Annexin V/PI double-staining flow
cytometry was used to detect cell apoptosis, and normal cells,
early apoptotic, late apoptotic, and necrotic cells were present in
the lower left, lower right, upper right, and upper left quadrants,
respectively (Figure 4A). Based on the flow cytometry analysis
data, the early apoptosis rate of A7r5 cells gradually increased in
the control group, ox-LDL group and ox-LDL+CML group
(4.93% ± 0.32% vs. 5.13% ± 0.22% vs. 7.52% ± 0.38%) (Figure
4B). Similarly, the late apoptosis rate of A7r5 cells gradually
elevated in the control group, ox-LDL group and ox-LDL+CML
FIGURE 3 | CML accelerated the lipid accumulation of A7r5 VSMC-derived foam cells. The degree of lipid accumulation was evaluated by oil red O staining (black
arrowheads indicate lipid accumulation, 200× magnification). (A) Control group; (B) ox-LDL group; (C) ox-LDL+CML group. Intracellular cholesterol content by
enzymatic method for (D) TC, (E) FC and (F) CE. Values are expressed as the mean ± SD. *P < 0.05. Annotations: CML, Nϵ-carboxymethyl-lysine; VSMC, vascular
smooth muscle cell; ox-LDL, oxidation-low density lipoprotein; TC, total cholesterol; FC, free cholesterol; CE, cholesterol ester.
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group (11.70% ± 0.21% vs. 13.30% ± 0.35% vs. 17.70% ± 0.43%)
(Figure 4C). Significant differences in the early apoptosis rates
and late apoptosis rates of A7r5 cells were detected between the
ox-LDL+ CML group and ox-LDL group (P < 0.05), which
manifested that CML exacerbated the apoptosis of A7r5 VSMC-
derived foam cells.

CML Accelerated the Calcification of A7r5
VSMC-Derived Foam Cells
The amount of calcification in A7r5 cells was determined by Von
Kossa staining (Figure 5A). Compared with the control group,
A7r5 treated with ox-LDL exhibited more calcification, and
Frontiers in Pharmacology | www.frontiersin.org 7
calcification in the ox-LDL+CML group was more serious than
that in the ox-LDL group. Similar results were observed for the
calcium content and ALP activity. The quantitative analysis
results indicated that the ALP activity increased by 21.2%
(478.30 ± 9.48 U/mg vs. 394.50±14.54 U/mg) in the ox-LDL
group compared with the control group and that ALP activity
increased by 28.5% (614.50±9.51 U/mg vs. 478.30±9.48 U/mg) in
the ox-LDL+CML group compared with the ox-LDL group
(Figure 5B). Similarly, the calcium content in the ox-LDL
group increased by 20% compared with that in the control
group (598.50±10.20 mmol/mg vs. 496.70±13.89 mmol/mg).
The calcium content significantly increased by 17% in the ox-
A

B C

FIGURE 4 | CML induced A7r5 VSMC-derived foam cells apoptosis. A7r5 cells were treated with ox-LDL alone or costimulated with CML for 24 h. (A) Apoptosis
was detected by Annexin V/PI double-staining flow cytometry, and normal cells, early apoptotic, late apoptotic and necrotic cells in groups of control, ox-LDL, ox-
LDL+CML were present in the lower left, lower right, upper right, and upper left quadrants. (B) The early apoptosis rate of A7r5 cells apoptosis by flow cytometry.
(C) The late apoptosis rate of A7r5 cells apoptosis by flow cytometry. Values are expressed as the mean ± SD. *P < 0.05. Annotations: CML, Nϵ-carboxymethyl-
lysine; VSMC, vascular smooth muscle cell; ox-LDL, oxidation-low density lipoprotein.
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FIGURE 5 | CML promoted VSMC-derived foam cells calcification. (A) Representative images of A7r5 cells treated with ox-LDL or ox-LDL and CML by Von Kossa
staining (200× magnification). The activity of ALP was analyzed by an ALP activity assay kit. Calcium depositions were measured utilizing the o-cresolphthalein
complexone method and normalized in accordance with the cellular protein content. Calcification related proteins (ALP, BMP-2 and Runx2) expression were
detected by the western blotting. Quantitative results of (B) ALP activity, (C) calcium content. (D) Western blotting bands of ALP, BMP-2 and Runx2 protein
expression. Semiquantitative analysis of western blotting for (E) ALP, (F) BMP-2 and (G) Runx2. Values are expressed as the mean ± SD. *P < 0.05. Annotations:
CML, Nϵ-carboxymethyl-lysine; VSMC, vascular smooth muscle cell; ox-LDL, oxidation-low density lipoprotein; ALP, alkaline phosphatase; BMP-2, bone
morphogenetic protein 2; Runx-2, runt-related transcription factor 2.
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LDL+CML group compared with the ox-LDL group (700.50
±9.48 mmol/mg vs. 598.50±10.20 mmol/mg) (Figure 5C). All
the differences found in the comparisons above were statistically
significant (P < 0.05).

The osteoblastic morphogens BMP-2, Runx2, and ALP are
important components of the osteogenic trans-differentiation of
VSMCs. We detected the effect of CML on VSMC osteogenic
transdifferentiation by assessing the expression of BMP-2, Runx2
and ALP by Western blotting (Figure 5D). Compared with the
expression levels in the control group, the expression of ALP,
BMP-2, and Runx2 in VSMCs were upregulated by ox-LDL
treatment by 2.59-fold (0.587±0.016 vs. 0.226±0.0014), 1.54-fold
(0.319±0.008 vs. 0.207±0.011), and 1.5-fold (0.3373±0.0149 vs.
0.224±0.013), respectively. Compared with the expression levels
in the ox-LDL group, the expression of ALP, BMP-2, and Runx2
in VSMC-derived foam cells was upregulated by CML and ox-
LDL costimulation by 1.22-fold (0.7187±0.023 vs. 0.587±0.016),
1.62-fold (0.5193±0.013 vs. 0.319±0.008), and 1.53-fold (0.5145
±0.0202 vs. 0.3373±0.0149), respectively (Figures 5E–G). All the
differences identified in the comparisons above were statistically
significant (P < 0.05). The results demonstrated that CML
aggravated the calcification of A7r5 VSMC-derived foam cells.
DISCUSSION

DM has increasingly become a global health care problem and
causes mortality worldwide due to its complications. VC is highly
prevalent in patients with DM, accounting for substantial adverse
cardiovascular events (Harper et al., 2016; Chao et al., 2019).
DM and VC share several common pathogenic mechanisms
and are intrinsically linked (Lanzer et al., 2014; Kay et al., 2016).
Long-term hyperglycemias in DM results in the formation and
accumulation of AGEs, which accelerates medial calcification and
promotes bone matrix protein expression and ALP activity
(Laakso and Cederberg, 2012; Zhu et al., 2018; Wei et al., 2019).
Inflammation and reactive oxygen species (ROS) production are
considered as the pivotal components in the pathogenesis of VC
(Chao et al., 2019). Receptors for advanced glycation end
production (RAGEs), important receptor for AGEs, have been
reported to persist in unstable plaques with microcalcifications by
colocalizing with inflammatory cells and VSMCs undergoing
osteochondrogenic differentiation (Menini et al., 2013). AGE/
RAGE signal have also reported to be the important factor in
diabetic VC through mediating oxidative stress in the phenotypic
switch of VSMCs via the signaling cascades such as TGF-b, NF-
kB, and Nox-1. The interaction of AGEs with RAGEs could
activate PKC-z to trigger downstream signaling through p38
Frontiers in Pharmacology | www.frontiersin.org 9
MAPK and NF-kB (Tada et al., 2013; Ott et al., 2014; Kay et al.,
2016). Our previous studies have suggested that the CML/RAGE
signal mediates microcalcification in diabetic atherosclerotic via
the p38 MAPK pathway (Wang et al., 2016). However, the
underlying mechanism remains poorly elucidated.

VC is similar to orthotopic bone formation, which is involved
in the dynamic balance between calcification-inhibiting factors
and calcification-promoting factors (Tian et al., 2015; Nakahara
et al., 2017). The cells involved in VC include endothelial cells,
VSMCs, monocytes and macrophages (Demer and Tintut, 2014).
VC is an active process, and VSMCs participate in several
associated mechanisms, including apoptosis, osteochondrogenic
transdifferentiation, extracellular vesicle release, calcium overload,
and cellular senescence (Proudfoot, 2009; Shanahan, 2013;
Schurgers et al., 2018; Jaminon et al., 2019). VSMCs can express
and release osteochondrogenic proteins via osteogenic
transformation into phenotypically osteoblast-like cells (Harper
et al., 2016; Ma et al., 2017). High phosphate induces a switch
toward an osteoblast-like phenotype via core-binding factor
subunit 1a (Cfba1)/Runx2. Osteogenic-primed VSMCs express
ALP and secrete bone-associated proteins such as osteocalcin and
osteopontin and bone morphogenetic proteins such as BMP-2
(Jono et al., 2000; Tintut and Demer, 2006).

At present, an increasing number of studies no longer support
foam cells as a major hallmark of the early stage of AS.
Macrophages have been reported to be the main source of foam
cells (Chistiakov et al., 2017), and our previous studies have
shown that CML/CD36 accelerated AS progression by promoting
the accumulation of macrophage-derived foam cells in the aorta
(Xu et al., 2018). Meanwhile, previous studies have reported that
VSMC-derived foam cells formation may result in AS calcification
and represent a pivotal step in cardiovascular morbidity and
mortality. VSMCs can differentiate into macrophages that
become foam cells by engulfing lipid (Alexopoulos and Raggi,
2009; Lao et al., 2015). In addition, dedifferentiated VSMCsmigrate
into the subintimal space of AS plaques to provide structural
integrity to the fibrous cap (Samouillan et al., 2012), which also
contributes to AS calcification.

In the present study, we built a VSMC-derived foam cells model
to investigate the role of CML, a major immunogen of AGEs, in
diabetic calcification. Here, we demonstrated that CML promoted
diabetic AS induced by VSMC-derived foam cells. First, in CAD
patients with DM, the baseline characteristics indicated a poor
blood glucose and lipid status. Regarding coronary lesions, more
severe coronary lesions were noted in the CAD patients with DM.
Then, in an animal study, ApoE−/− mice were used to build a
diabetic model via STZ injection, which destroyed the b cells of the
pancreatic islets to promote the formation of endogenous AGEs,
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followed by administration of a semisynthetic HFD plus injections
of CML. After four months, morphological features corresponded
to early AS plaques in the ox-LDL group, and the ox-LDL and CML
had accelerated AS plaques and cholesterol crystals under the
fibrous cap, which is consistent with our previous study (Xu et al.,
2018). In addition, ox-LDL and CML can induce extensive spotty
calcium deposition and upregulate ALP expression in the aortic AS
plaques of ApoE−/−mice. Moreover, we built a foam cell model with
VSMCs stimulated by ox-LDL or ox-LDL and CML. CML
promoted lipid accumulation in A7r5 derived foam cells as
shown by oil red O staining, and VSMC-derived foam cells
formation induced apoptosis, which was partly attributed to
VSMC calcification (Shi et al., 2017). Previous data showed that
inhibition of apoptosis decreased calcification in nodules (Proudfoot
et al., 2000). Moreover, apoptotic bodies of dead foam cells and
VSMC debris may provide a nucleation microenvironment for
calcium hydroxyapatite crystal formation (Johnson et al., 2006).
In addition, high glucose can cause endoplasmic reticulum stress-
mediated apoptosis, which promotes the development of VSMC
calcification (Zhu et al., 2015; Liu and Kong, 2016). Our results
suggested that CML augmented the apoptosis of A7r5 VSMC-
derived foam cells to aggravate VC of VSMCs.

Referring to the effect of CML on the calcification of A7r5
derived foam cells, we examined the expression of the bone-related
proteins BMP-2, Runx2, and ALP. BMP-2 is reported to be a
powerful bone morphogenic protein and causes osteogenic
transcription (Chen et al., 2017). Runx2 is considered an essential
transcription factor for osteogenic gene expression, which is
downregulated in normal VSMCs but upregulated in calcified
vascular tissue specimens (Evrard et al., 2015). ALP is known to
play an essential role in VC and is considered as the key osteoblastic
phenotypemarker (Sharma et al., 2014). Consistent with the present
in vivo study, our results revealed that CML increased the calcium
content and ALP activity in VSMC-derived foam cells. Western
blotting analysis showed that CML upregulated the expression of
ALP, BMP-2, and Runx2 in VSMC-derived foam cells to exacerbate
VC of VSMCs. These data indicate that CML promotes VSMC-
derived foam cells calcification induced by b-GP.
CONCLUSION

We concluded that CML promoted VSMC-derived foam cells
calcification to aggravate VC in diabetic AS, providing evidence
for the contribution of VSMC-derived foam cells to diabetic VC.
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