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Background: Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore knee stability and function; however, recov-
ery outcomes vary widely, highlighting the need for predictive tools to guide rehabilitation and patient readiness.

Purpose: To identify the most effective machine learning models for predicting the successful recovery of Patient Acceptable
Symptom State (PASS) in terms of subjective function, symptoms, and psychological readiness 12 months after ACLR using
physical performance measures obtained 3 months after ACLR.

Study Design: Cohort study; Level of evidence, 3.

Methods: The authors retrospectively analyzed the data of 113 patients who underwent single-bundle anatomic ACLR. Physical
performance measures at 3 months after ACLR included the Y-balance and isokinetic muscle strength tests. The successful
recovery of PASS outcomes at 12 months were assessed using the International Knee Documentation Committee (IKDC) and
the ACL–Return to Sport after Injury (ACL-RSI) scale. Five machine learning algorithms were assessed: logistic regression, deci-
sion tree, random forest, gradient boosting, and support vector machines.

Results: The gradient boosting model demonstrated the highest area under the curve (AUC) scores for predicting SRPAS of the
IKDC (AUC, 0.844; F1, 0.889), and the random forest model demonstrated the highest AUC scores for predicting the successful
recovery of PASS of the ACL-RSI (AUC, 0.835; F1, 0.732) during test models. Key predictors of the successful recovery of PASS
outcomes included young age and low deficits in the 60 deg/s flexor and extensor peak torque for the IKDC, low 180 deg/s exten-
sor and flexor mean power deficit, and low 60 deg/s flexor peak torque deficits for the ACL-RSI.

Conclusion: Machine learning showed that younger age and greater 3-month isokinetic strength at 60 deg/s predicted attain-
ment of the successful recovery of PASS of the IKDC at 1 year after ACL. Greater 3-month isokinetic strength at 180 deg/s
was most predictive of attaining the successful recovery of PASS of the ACL-RSI at 12 months.
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Anterior cruciate ligament (ACL) tears are a widespread
and challenging issue for patients, leaving uncertain their
ability to resume previous levels of activity.1,25,34 The pri-
mary objective of ACL reconstruction (ACLR) and subse-
quent rehabilitation is to stabilize the knee, enabling
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a safe return to the preinjury level of sports.2,4,25 Despite
advancements in surgical techniques and rehabilitation
protocols, as many as 30% of patients encounter knee rein-
jury after ACLR, increasing the risk of long-term complica-
tions.1,6,45 This underscores the need for a comprehensive
approach that addresses both the physical and the psycho-
logical aspects of recovery.

After ACLR, individuals often grapple with weakened
knee muscles due to graft harvesting and quadriceps inhi-
bition, along with compromised postural stability stemming
from ACL mechanoreceptor injury.11,19 These factors lead to
reduced physical function, presenting substantial hurdles in
recovery. Hence, restoring muscle strength, balance, and
overall functional performance within the initial 3 months
after ACLR is deemed critical for attaining a successful
recovery of patient acceptable symptom state (SRPAS).7,15,35

The 3-month mark represents a pivotal phase in rehabilita-
tion, marking the initiation of impactful drills like double-
limb jumping tasks and running.15,21 Despite the emphasis
on SRPAS, there is a significant gap in understanding early
rehabilitation factors predicting SRPAS performance, par-
ticularly amid a changing health care landscape with fewer
ACLR patient visits.21

Patient demographics, including age at the time of
injury and sex, can play a role in the SRPAS capacity.
Additionally, both functional impairments and psychologi-
cal factors, as reported by patients, significantly affect the
SRPAS process.16,46 These functional impairments often
manifest as knee pain, joint swelling, instability, and
diminished strength.26,27 Additionally, psychological hur-
dles are also important, including the fear of reinjury,
kinesiophobia, and fear of movement extending to kinesio-
phobia in extreme cases.24,26 Recently, the integration of
machine learning into clinical settings has emerged as an
advanced methodology for predicting the outcomes of
ACLR.23,31,32,48 Most studies have focused on nonmodifi-
able factors related to surgery or joint conditions, such as
age, graft diameter, knee laxity, and posterior tibial
slope.36,48 In addition, machine learning analysis of
a national knee ligament register predicted the risk of
ACLR revision with moderate accuracy based on the crea-
tion of an in-clinic calculator for point-of-care risk stratifi-
cation using the input of 5 variables (age, Knee injury and
Osteoarthritis Outcome Score Quality of Life at primary
surgery, graft choice, femoral fixation device, and time
between injury and primary surgery).32 However, during
the early rehabilitation stage after ACLR, muscle weakness
and reduced balance commonly occur for various rea-
sons.13,38,41 Physical performance measures, such as
strength, balance, and biomechanical patterns, are

modifiable through rehabilitation. Machine learning, a sub-
set of artificial intelligence, employs historical data to pre-
dict clinical outcomes and offers insights into factors
affecting prediction accuracy.17,18,48 This study aimed to
establish targeted rehabilitation strategies for subjective
function, symptoms, and psychological readiness after
ACLR by predicting SRPAS using early physical perfor-
mance data.

Despite the acknowledged variability in recovery out-
comes after ACLR, there remains a significant gap in our
understanding of how early rehabilitation strategies can
be optimized to address both physical and psychological
factors influencing recovery. While recent studies have
begun to explore the potential of machine learning in pre-
dicting rehabilitation outcomes, this approach has not been
fully leveraged to understand the complex interplay of fac-
tors during the critical early post-ACLR period. Thus, this
study aimed (1) to determine the most effective machine
learning models for predicting SRPAS related to subjective
symptoms and psychological readiness 12 months after
ACLR, using physical performance variables assessed 3
months after ACLR, and (2) to confirm the key predictors
influencing these outcomes. This study offers valuable
insights into the rehabilitation strategies for patients
recovering from ACLR. It aims to help health care profes-
sionals optimize these strategies and improve patient out-
comes. This study hopes to provide reliable predictions of
the patient’s subjective function, symptoms, and psycho-
logical readiness at 12 months after surgery by utilizing
machine learning models.

METHODS

Patients

This study was approved by the ethics committee of Inje
University Seoul Paik Hospital (institutional review board
No. PAIK 2023-02-009). Retrospective approval was
obtained to review the medical records and collect demo-
graphic and clinical data from 113 patients who underwent
single-bundle anatomic ACLR between June 2016 and
April 2022. The inclusion criteria were 18- to 45-year-
olds who underwent single-bundle ACLR and completed
tests at 3 and 12 months after surgery. Baseline character-
istics at 3 months after ACLR were measured using data
collected during outpatient visits between 3 and 4 months
after surgery. SRPAS outcomes at 12 months after ACLR
were assessed using data obtained during outpatient vis-
its between 11 and 13 months after surgery. The
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exclusion criteria were multiple ligament injuries, bilat-
eral injuries, fractures, meniscus root and radial repair,
cartilage repair, mechanical alignment osteotomy, subto-
tal or total meniscectomy, revision ACLR, and previous
knee surgery on the involved and uninvolved sides. Table
1 presents the patient characteristics, and Figure 1
depicts the flowchart. We aimed for a minimum of 90 par-
ticipants to adhere to the guideline of 1 variable for every
10 events, ensuring comprehensive statistical analysis of
the SRPAS with �9 variables.

Postoperative Rehabilitation

All the patients followed a standardized rehabilitation
program involving home-based exercises. Range of motion
(ROM) exercises began 3 to 5 days after ACLR, followed
by the introduction of weightbearing 1 to 2 days later.
Patients were advised to wear a functional knee brace
in full extension for the initial 3 weeks, with full weight-
bearing permitted at 3 weeks after ACLR, determined
based on the patient’s assessment of knee stability, typi-
cally occurring between 4 and 6 weeks after ACLR. In
patients who underwent meniscal repairs, partial weight-
bearing with crutches was mandated for 6 weeks. Open
kinetic chain exercises targeting the quadriceps muscle
group were initiated between 2 and 6 weeks postopera-
tively. These exercises were performed in a seated posi-
tion, without additional resistance, and through a ROM

of 90� to 0� of knee flexion. At the 6-week postoperative
mark, progressive resistance training using a leg exten-
sion machine was introduced. However, to minimize ante-
rior shear forces on the healing graft, the ROM was
limited to 90� to 60� of knee flexion. Concurrently, at 6
weeks after surgery, open kinetic chain hamstring curl
exercises were commenced, with active curl exercises per-
formed from weeks 6 to 8, followed by progressive resis-
tance exercises from week 8 onward. Following the 12-
week postoperative time point, progressive resistance
training was advanced, and the ROM restrictions were
lifted, allowing for open kinetic chain exercises to be per-
formed from 90� to 0� of knee flexion. Perturbation train-
ing was initiated 6 weeks after ACLR. Between 2 and 3
months after ACLR, open kinetic chain quadriceps and
hamstring load-progression exercises were begun, involv-
ing isometric or isotonic contractions with light-to-moder-
ate external resistance. Running was initiated at 3
months after ACLR, while cutting and pivoting exercises
were introduced at 5 months. Sports-specific training
began at 6 months, and return to sports was allowed
from 9 months after ACLR.

Procedure

All assessments at 3 and 12 months after ACLR were con-
ducted in a random order by one of the authors (J-S.K.).

TABLE 1
Baseline Characteristics at 3 Months After ACLR and of Outcomes at 3 and 12 Months After ACLRa

Baseline Characteristics at 3 Months After ACLR
Sex, male/female, n 76/37
Age, y 29.87 6 9.5
Height, cm 171.78 6 8.28
Weight, kg 74.96 6 12.57
BMI 25.31 6 3.37
Involved side, right/left 64/49
Mean follow-up period, mo 3.14 6 0.37
Graft type, hamstring tendon autograft/quadriceps

tendon autograft/hybrid graft (hamstring tendon
autograft 1 allograft)/allograft, n

49/28/19/17

IKDC after ACLR 66.43 6 13.91
YBT–anterior direction, cm 49.37 6 9.60
YBT–posteromedial direction, cm 87.55 6 16.80
YBT–posterolateral direction, cm 83.32 6 16.10
60 deg/s knee extensor peak torque deficit, % 36.46 6 15.96
60 deg/s knee flexor peak torque deficit, % 24.22 6 21.45
180 deg/s knee extensor mean power deficit, % 31.28 6 14.57
180 deg/s knee flexor mean power deficit, % 17.02 6 21.01
Outcomes of SRPAS at 12 months after ACLR
Mean follow-up period, mo 12.45 6 1.78
IKDC after ACLR 84.00 6 10.70
SRPAS/IKDC after ACLR, 0/1b 25/88
ACL-RSI after ACLR 54.90 6 17.00
SRPAS/ACL-RSI after ACLR, 0/1b 59/54

aData presented as n or mean 6 SD. ACL-RSI, Anterior Cruciate Ligament–Return to Sport after Injury; ACLR, anterior cruciate liga-
ment reconstruction; BMI, body mass index; IKDC, International Knee Documentation Committee form; SRPAS, successful recovery of
patient acceptable symptom; YBT, Y-balance test.

bIKDC and ACL-RSI scores were dichotomized, with scores �75.9 for IKDC and �56 for ACL-RSI classified as 1, indicating SRPAS, while
scores \75.9 for IKDC and \56 for ACL-RSI were classified as 0, indicating unsuccessful recovery.
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Physical performance variables, serving as features or
independent variables, were assessed at 3 months, includ-
ing the Y-balance test (YBT) and isokinetic muscle
strength tests. SRPAS variables, serving as target or
dependent variables, were assessed 12 months after
ACLR and included the International Knee Documenta-
tion Committee (IKDC) and ACL–Return to Sport after
Injury (ACL-RSI) forms. The YBT and isokinetic muscle
strength tests were conducted randomly at 3 months.
The order of the tests was randomized using a randomiza-
tion website (www.randomization.com).

Patient-Reported Outcomes

To guide return to activity decisions and monitor patient
progress, patient-reported outcomes were considered.22

The IKDC is an 18-item questionnaire designed to assess
knee-related symptoms, functional capabilities, and sports
participation levels in individuals experiencing a range of
knee pathologies, including ligament and meniscal inju-
ries, patellofemoral pain, and articular cartilage lesions.35

An IKDC score of �75.9 was considered indicative of
a return to participation for knee-specific measures of func-
tion, symptoms, and sport-specific activity.37 The ACL-
RSI, consisting of 12 items examining psychological con-
structs related to SRPAS, generated a score ranging from
0 to 100. A score of �56 indicated psychological readiness
to return to functional activities, reflecting patient confi-
dence and risk appraisal.7

Y-Balance Test

Dynamic balance was assessed using the YBT (Move2Per-
form).20,30 The YBT device features a central plastic plate
with 3 tubes in anterior, posteromedial, and posterolateral
positions, each marked at 0.5-cm intervals. Patients, stand-
ing barefoot on 1 leg in the center of the YBT with hands on
the iliac crest, were instructed to move the pointer as far as
possible with the nonsupport limb in the anterior, postero-
medial, and posterolateral directions. Patients standing on
their weightbearing injured leg in a box were instructed to
softly push the side of the box using the unsupported and
uninjured leg, reaching as far as possible in 3 directions:
anterior, posteromedial, and posterolateral.30 Each attempt
was only recorded when the patient could return to the
starting position with full control. Patients underwent 6
practice trials followed by 3 measurement trials of the
YBT and the mean of 3 measurements was used for data
analysis (unit of measurement: cm).20

Isokinetic Muscle Strength Test

Isokinetic muscle strength assessments were conducted
using the HUMAC-NORM isokinetic extremity system
(Computer Sports Medicine Inc).11,20 Measurements were
taken with patients seated, employing angular velocities
of 60 deg/s and 180 deg/s for the knee extensors’ and flex-
ors’ peak torque and mean power, respectively. Peak tor-
que assessment involved patients’ performing 4

Figure. 1. Flowchart of patient selection and machine learning algorithm development. ACL, anterior cruciate ligament; ACL-RSI,
ACL–Return to Sport after Injury; ACLR, ACL reconstruction; AUC, area under the curve; BMI, body mass index; IKDC, Interna-
tional Knee Documentation Committee; SRPAS, successful recovery of patient acceptable symptom state; YBT, Y-balance test.
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repetitions of concentric quadriceps and hamstring con-
tractions at 60 deg/s after 2 practice sessions within 90�
to 0� (knee flexion).11,20 Mean power measurements con-
sisted of 10 repetitions at 180 deg/s after 2 practice ses-
sions within the same knee flexion range.11,20 The system
automatically logged the highest recorded data from the
4 repetitions of peak torque and the mean power measure-
ments calculated from the 10 repetitions of mean power for
both the uninjured and the injured legs in ACLR. Quadri-
ceps and hamstring deficits were determined as percen-
tages using the following formula:

Deficit % 5 1� Strength of injured leg

Strength of uninjured leg

� �
3 100

Machine Learning Modeling

Machine learning analysis was performed using the
Orange data mining software (Version 3.3.0) and Python
(Version 3.6.15; Python Software Foundation). A flowchart
of the machine learning algorithm development is shown
in Figure 1.

Preprocessing. Nine numerical predictors (age, body
mass index [BMI], YBT anterior direction, YBT posterome-
dial direction, YBT posterolateral direction, 60 deg/s knee
extensor deficit, 60 deg/s knee flexor deficit, 180 deg/s
knee extensor deficit, and 180 deg/s knee flexor deficit)
were included in the present study. The IKDC and ACL-
RSI scores were dichotomized, with scores �75.9 for IKDC
and �56 for ACL-RSI classified as 1, indicating SRPAS,
while scores \75.9 for IKDC and \56 for ACL-RSI were
classified as 0, indicating unsuccessful recovery (Table
1).7,37 For discovering missing values in the data set, we
performed exploratory data analysis. However, upon fur-
ther investigation, we found that there were no actual miss-
ing data points that required imputation or removal of
instances with unknown values. By using these visualiza-
tion methods (box plot, scatter plot, and linear projections),
we were able to confirm the distribution and properties of
each variable, ensuring that the data set was suitable for
the subsequent machine learning analysis. In addition,
the Kolmogorov-Smirnov normality test was conducted to
confirm the assumption of a normal distribution.

Machine Learning Algorithm. We split the entire data
set (N = 113) into a training set (81.0%; n = 91) for model
development and a test set (19.0%; n = 22) for external val-
idation to predict the performance. Five machine learning
algorithms—logistic regression, decision tree, random for-
est, gradient boosting, and support vector machine—were
trained via 5-fold cross-validation. In the selection of
machine learning algorithms for this study, we aimed to
incorporate a diverse set of models that offered a broad spec-
trum of strengths in data analysis and prediction capabil-
ities, thereby enhancing the robustness and reliability of
our findings. The 5 algorithms chosen were selected based
on their complementary characteristics and proven efficacy

in various predictive modeling.18 Logistic regression was
chosen for its simplicity and interpretability, providing
a solid baseline for performance comparison. It is particu-
larly effective for binary classification problems and offers
straightforward insights into the relationship between inde-
pendent variables and the outcome.17,29 Decision trees were
included for their ability to handle nonlinear relationships
and their ease of interpretation through a hierarchical
structure of decisions.44 This model can reveal important
variable interactions and is intuitive to understand, making
it valuable for identifying key predictors in the early stages
of rehabilitation.44 Random forest, an ensemble method that
builds multiple decision trees, was selected for its superior
accuracy and robustness against overfitting.9 By aggregat-
ing the predictions of numerous trees, it improves prediction
accuracy and is effective in handling complex interactions
and high-dimensional data.9 Gradient boosting, another
ensemble technique, was chosen for its ability to sequen-
tially correct errors of weak learners, leading to improved
model performance.3 This algorithm is particularly useful
for its high predictive accuracy and flexibility in optimizing
for various loss functions.3 Support vector machines were
included for their effectiveness in high-dimensional spaces
and their capability to model complex nonlinear boundaries.
This algorithm is beneficial for its robustness and efficiency,
especially in cases where the number of dimensions exceeds
the number of samples.48 Together, these algorithms encom-
pass a range of modeling approaches from simple linear mod-
els to complex ensemble and nonlinear methods allowing us
to comprehensively explore the predictive potential of early
rehabilitation metrics on recovery outcomes.

Model Validation. The primary metric for assessing
model performance involved calculating the area under
the curve (AUC) for both training and test data sets. Sec-
ondary performance metrics such as classification accuracy,
recall, precision, and F1 score were also computed for both
the training and the test data sets. Classification accuracy
represents the proportion of correct predictions (both true
positives and true negatives) among the total number of
instances evaluated, providing an overall measure of how
well the model classifies the data into the correct categories.
Recall, also known as sensitivity, is the ratio of true posi-
tives to the sum of true positives and false negatives, mea-
suring the model’s ability to correctly identify positive
instances, in this case, SRPAS. A high recall indicates
that the model effectively captures the majority of positive
instances. Precision, on the other hand, is the ratio of true
positives to the sum of true positives and false positives,
quantifying the model’s accuracy in predicting positive
instances. A high precision suggests that when the model
predicts an instance as positive, it is highly likely to be cor-
rect. Last, the F1 score is the harmonic mean of precision
and recall, providing a balanced measure of the model’s per-
formance, particularly useful when the data set has an
uneven class distribution. A high F1 score indicates that
the model achieves a good balance between precision and
recall. The predictive performance of the model was catego-
rized as excellent (�0.9), good (� 0.8 to \0.9), fair (�0.7 to
\0.8), or poor (\0.7), based on the AUC values.48
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To identify critical factors, the feature permutation
importance for each predictive variable was determined
using the training data.17,48 The analysis quantified the
contribution of each feature by measuring the prediction
error increase. In feature importance, black bars presented
the standard error of the importance measure for each fea-
ture, and the blue bars represented the importance scores of
each feature. A Shapley Additive Explanation summary plot
was created to demonstrate variable importance and direc-
tion.18,48 The y-axis displayed predictive variables arranged
by importance, with the most critical factors at the top. The
analysis focused on arranging predictive variables by their
relative importance and visualizing individual contributions
to the overall Shapley Addictive Explanation value.

RESULTS

Patient Characteristics

Table 1 shows the mean values and variability of all the var-
iables. The Kolmogorov-Smirnov normality test presented
normally distributed data of all the independent variables
(P . .05). Our study evaluated 113 patients who underwent
ACLR and were analyzed using machine learning models.
The mean age of the participants was 29.9 6 9.5 years,
with a male predominance (67.3%). The distribution of graft
types included hamstring (43.4%), quadriceps tendon
(24.8%), hybrid (16.8%), and allografts (15.0%). The mean
IKDC score at 3 months after ACLR was 66.4 6 13.9. Twelve
months after ACLR, 77.9% of patients (88 out of 113)
exceeded the IKDC threshold of 75.9, indicating SRPAS for
subjective function. For the ACL-RSI, 47.8% of patients (54
out of 113) surpassed the threshold of 56, suggesting satisfac-
tory psychological readiness for return to sports.

Predictive Models of Machine Learning

The performances of the 5 machine learning models in pre-
dicting the SRPAS for IKDC and ACL-RSI during model

training and testing are summarized in Tables 2 and 3.
The importance of feature permutation, Shapley additive
explanation, and the receive operating characteristic curve
are shown in Figures 2 and 3.

During the training, gradient boosting algorithm models
predicting SRPAS for the IKDC (AUC, 0.814 [good]; F1,
0.802) and ACL-RSI (AUC, 0.930 [excellent]; F1, 0.824) per-
formed with the highest AUC. Gradient boosting algorithm
models predicting SRPAS for the IKDC performed in the
highest AUC during the test model (AUC, 0.844 [good];
F1, 0.889). Random forest algorithm models predicting
SRPAS for the ACL-RSI performed in the highest AUC dur-
ing the test model (AUC, 0.835 [good]; F1, 0.732).

For feature permutation importance, age, 60 deg/s
extensor peak torque deficit, and 60 deg/s flexor peak tor-
que deficit were the top 3 predictors of SRPAS for IKDC
12 months after ACLR in the gradient boosting model.
The age, 60 deg/s extensor peak torque deficit, and 60
deg/s flexor peak torque deficit were notable contributors,
with AUC decreases of 0.045, 0.017, and 0.015, respec-
tively. In addition, 180 deg/s extensor mean power deficit,
180 deg/s flexor mean power deficit, and age were the top 3
predictors of SRPAS for ACL-RSI 12 months after ACLR in
the gradient boosting model. The 180 deg/s extensor mean
power deficit, 180 deg/s flexor mean power deficit, and age
were notable contributors, with AUC decreases of 0.022,
0.020, and 0.012, respectively. In Shapley Additive Expla-
nation summary plot, the y-axis displayed predictive vari-
ables arranged by importance, with the most critical
factors at the top. Each red point on the x-axis represents
an individual’s contribution to the overall Shapley Additive
Explanation value, with positive contributions extending
further to the right. In the gradient boosting model, the
top 3 predictors of SRPAS for IKDC at 12 months after
ACLR, based on Shapley additive explanations, were
young age and low deficits in the 60 deg/s flexor and exten-
sor peak torque. Additionally, low 180 deg/s extensor and
flexor mean power deficit and low 60 deg/s flexor peak tor-
que deficit were the top 3 predictors of SRPAS for ACL-RSI
12 months after ACLR in the gradient boosting model.

TABLE 2
For SRPAS of IKDC, Performance Metrics of 5 Machine Learning Algorithms in the Training and Test Seta

Performance metrics of 5 machine learning algorithms in the training set
Model AUC Acc F1 Precision Recall
Gradient boosting 0.814 0.813 0.802 0.797 0.813
Random forest 0.754 0.857 0.839 0.851 0.857
Support vector machine 0.682 0.780 0.694 0.624 0.780
Logistic regression 0.640 0.824 0.781 0.820 0.824
Decision tree 0.636 0.714 0.724 0.736 0.714
Performance metrics of 5 machine learning algorithms in the test set
Model AUC Acc F1 Precision Recall
Gradient boosting 0.844 0.818 0.889 0.800 1.000
Random forest 0.719 0.773 0.865 0.762 1.000
Decision tree 0.708 0.773 0.848 0.824 0.875
Support vector machine 0.688 0.773 0.865 0.762 1.000
Logistic regression 0.573 0.727 0.842 0.727 1.000

aAUC, area under the curve; Acc, Accuracy; IKDC, International Knee Documentation Committee; SRPAS, successful recovery of patient
acceptable symptom state.
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DISCUSSION

Whenever feasible, interpretable machine learning models
should be developed and applied for musculoskeletal disor-
der prevention by training and evaluating multiple models
for comparison.10,18,28 The present study selected 9 predic-
tive variables (age, BMI, 60 deg/s extensor and flexor peak
torque deficit, 180 deg/s extensor and flexor mean power
deficit, and YBT in the anterior, posteromedial, and pos-
terolateral directions) 3 months after ACLR and 2 outcome
variables of SRPAS (IKDC and ACL-RSI) 12 months after
ACLR to validate a total of 10 machine learning models,
with 5 machine learning algorithms for each clinical out-
come. Our study identified the best-performing gradient
boosting models during the test model predicting SRPAS
for IKDC (AUC, 0.844 [good]; F1, 0.889) and ACL-RSI
(AUC, 0.818 [good]; F1, 0.732). Age and 60 deg/s extensor
and flexor peak torque deficits were the top predictors of
SRPAS for IKDC in the gradient-boosting model of feature
permutation importance. The 180 deg/s extensor and flexor
mean power deficits and age were the top predictors of
SRPAS for ACL-RSI in the gradient-boosting model of fea-
ture permutation importance. The variables from our
study can serve as guidelines for therapy during the early
rehabilitation stage for SRPAS, focusing on subjective
symptoms and psychological readiness at 12 months after
ACLR. The superiority of the gradient boosting model in
our study not only underscores the potential of machine
learning in rehabilitation strategies but also invites com-
parison with traditional approaches documented in the
existing literature.

The threshold for the IKDC in SRPAS, indicative of an
overall health state where patients consider themselves to
be ‘‘feeling well,’’ was determined to be a score of 75.9, with
a sensitivity of 0.83 and a specificity of 0.96.35 Attaining an
SRPAS for the IKDC suggests enhanced function,
increased sports participation, and improved knee-related
quality of life. Menzer et al33 reported that factors such
as age, single-leg hop for distance, triple hop for distance,
and mean knee extensor power at 180 deg/s exhibit

significant associations with IKDC scores, with correlation
coefficients of 20.243 (P = .002), 0.346 (P = .002), 0.282 (P =
.011), and 0.222 (P = .038), respectively, in patients with
ACLR around 6 months after ACLR.33 When these varia-
bles were analyzed through a stepwise linear regression
model, age and single-leg hop symmetry emerged as signif-
icant predictors, accounting for 17.7% of the variance in
IKDC scores (P = .02). Our study introduces a significant
methodological advancement by leveraging a gradient-
boosting machine learning model. The gradient boosting
model likely outperformed other machine learning models
in our study due to its ability to effectively capture com-
plex, nonlinear relationships between the predictor varia-
bles and the SRPAS outcomes. Gradient boosting is an
ensemble technique that combines multiple weak learners
(decision trees) to create a strong predictive model. It iter-
atively trains each decision tree to focus on the instances
that were misclassified by the previous trees, allowing
the model to progressively improve its predictions by learn-
ing from its mistakes. In contrast to traditional regression
models, this model does not assume linear relationships
among variables. Rather, it progressively improves its pre-
dictions by learning from traditional regression mod-
els,33,49 enabling it to effectively manage diverse and
complex data related to ACLR recovery. This capability is
important, considering the intricate combination of factors,
such as physical rehabilitation progress, that might not be
completely captured by linear models. The superior perfor-
mance of our gradient boosting model, as indicated by the
AUC values of 0.814 during training and 0.844 during
external validation, can be attributed to several key fac-
tors. First, gradient boosting effectively harnesses the
power of ensemble learning, where multiple weak predic-
tive models combine to form a strong predictor.3,47 This
approach inherently improves the model’s robustness and
accuracy. Second, the model’s flexibility allows for the
incorporation of a wide range of variables, including
dynamic balance measures and detailed isokinetic muscle
strength assessments 3 months after ACLR. While previ-
ous research has laid the groundwork for understanding

TABLE 3
For SRPAS of ACL-RSI, Performance Metrics of 5 Machine Learning Algorithms in the Training and Test Seta

Performance metrics of 5 machine learning algorithms in the training set
Model AUC Acc F1 Precision Recall
Gradient Boosting 0.930 0.824 0.824 0.836 0.824
Random Forest 0.903 0.802 0.802 0.802 0.802
Decision tree 0.789 0.758 0.758 0.761 0.758
Support vector machine 0.780 0.703 0.701 0.704 0.703
Logistic Regression 0.593 0.549 0.542 0.546 0.549
Performance metrics of 5 machine learning algorithms in the test set
Model AUC Acc F1 Precision Recall
Random Forest 0.835 0.782 0.732 0.750 0.745
Gradient Boosting 0.818 0.782 0.732 0.750 0.745
Decision tree 0.798 0.682 0.588 0.833 0.455
Support vector machine 0.620 0.500 0.421 0.500 0.364
Logistic regression 0.273 0.273 0.273 0.273 0.273

aACL-RSI, Anterior Cruciate Ligament–Return to Sport after Injury; AUC, area under curve; Acc, Accuracy; SRPAS, successful recovery
of patient acceptable symptom state.
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Figure 2. (A) Feature permutation importance of gradient boosting model in the training set for predicting SRPAS of the IKDC. (B)
Shapley additive explanation analyses of gradient boosting model in the training set for predicting SRPAS of the IKDC. (C)
Receiver operating characteristic curves of 5 machine learning algorithms in the training set for predicting SRPAS of the
IKDC. AP, average power; AUC, area under the curve; BMI, body mass index; FP, false positive; IKDC, International Knee Doc-
umentation Committee; PT, peak torque; SRPAS, successful recovery of patient acceptable symptom state; TP, true positive;
YBT, Y-balance test.
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Figure 3. (A) Feature permutation importance of gradient boosting model in the training set for predicting SRPAS of the ACL-RSI.
(B) Shapley additive explanation analyses of gradient boosting model in the training set for predicting SRPAS of the ACL-RSI. (C)
Receiver operating characteristic curves of 5 machine learning algorithms in the training set for predicting SRPAS of the ACL-RSI.
ACL-RSI, Anterior Cruciate Ligament–Return to Sport after Injury; AP, average power; AUC, area under the curve; BMI, body mass
index; FP, false positive; PT, peak torque; SRPAS, successful recovery of patient acceptable symptom state; TP, true positive;
YBT, Y-balance test.
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ACLR recovery,33,49 our application of gradient boosting
models represents a significant methodological leap, offer-
ing a more nuanced analysis of the complex interplay
between variables affecting SRPAS.

Regarding psychological readiness for SRPAS, previous
studies have focused on demographic and clinical varia-
bles, often overlooking the critical early rehabilitation
physical performance measures, which typically resulted
in modest predictive accuracies with AUC values around
0.75.24,46 Previous studies have highlighted the importance
of psychological readiness in understanding the multifac-
eted recovery process after ACLR.7,39,43 Our study diverges
by embracing a more comprehensive approach that inte-
grates both physical performance metrics and patient-
reported outcomes at 3 months after ACLR. In our
research, the random forest algorithm models for predict-
ing SRPAS for ACL-RSI displayed superior performance,
achieving an AUC of 0.835 and an F1 score of 0.732 during
the test model. These results could be attributed to the ran-
dom forest algorithm’s robustness in handling complex
data sets, its ability to perform effective feature selection,9

and its capacity to capture the intricate interactions
between variables influencing psychological readiness for
SRPAS. The ensemble approach of the algorithm, which
aggregates predictions from multiple decision trees,9 sig-
nificantly reduces the risk of overfitting, thereby enhanc-
ing the model’s accuracy and generalizability in
predicting SRPAS based on ACL-RSI scores. Combined,
these methodological advancements not only refine our
understanding of ACLR but also have direct implications
for rehabilitation practice, suggesting more personalized
and targeted approaches based on the predictive insights
provided by our models.

The predictive outcomes for IKDC scores were sub-
stantially better than those for ACL-RSI in our study.
This difference in predictive performance could be attrib-
uted to the selection of independent variables, which may
have been more closely aligned with the functional
aspects assessed by the IKDC. The IKDC primarily
focuses on knee-related symptoms, function, and sports
activity, which are more directly influenced by the phys-
ical performance measures included in our study, such as
isokinetic strength and power deficits. On the other
hand, the ACL-RSI encompasses psychological factors,
such as emotions, confidence, and risk appraisal, which
may not be as strongly linked to the physical performance
measures assessed in our study. This discrepancy high-
lights the importance of incorporating a broader range
of psychological and functional measures in future stud-
ies to improve the predictive accuracy of models for
ACL-RSI outcomes.

For feature permutation importance and Shapley addi-
tive explanation, we identified differences in the key pre-
dictors of the SRPAS of IKDC and ACL-RSI within the
machine learning model. The identification of 60 deg/s
extensor and flexor peak torque deficit as key predictors
for IKDC and 180 deg/s extensor and flexor mean power
deficit for ACL-RSI could be interpreted as the differential
effect of muscle strength and power at varying speeds on
functional recovery and psychological readiness for return

to sports. Knee flexor and extensor peak torque deficits are
primary predictors of IKDC, highlighting the essential role
of muscle strength in functional recovery.5,12,14 At a slower
speed of 60 deg/s, extensor, and flexor peak torque meas-
urements provide a direct assessment of maximal muscle
strength, reflecting the patient’s ability to generate force
during controlled movements. This could be relevant in
the early stages of rehabilitation, where restoring muscle
strength is paramount for achieving basic functional goals
and ensuring the structural stability of the knee. The peak
torque deficit at this speed highlights the importance of
addressing significant strength deficits to improve overall
knee function, which is directly related to higher IKDC
scores, indicating successful functional recovery. Con-
versely, the 180 deg/s flexor and extensor mean power def-
icit role as a key predictor for ACL-RSI highlights the
importance of muscle power and the ability to perform
rapid, dynamic movements in determining psychological
readiness for return to sports. The ACL-RSI, which evalu-
ates psychological factors such as emotions, confidence,
and risk appraisal related to returning to the sport, is
influenced by the individual’s perception of his or her
knee’s capacity to handle high-speed, sport-specific
tasks.40,42,49 At 180 deg/s, flexor, and extensor mean power
measurements can assess the muscle’s ability to quickly
generate force, a critical component of sports performance
that involves running, jumping, and changing directions.8

The focus on 180 deg/s flexor and extensor mean power def-
icits at this higher speed suggests that improvements in
muscle power, particularly in the ability to execute quick
and powerful movements, could be important for enhanc-
ing an individual’s confidence and reducing fear of rein-
jury, thereby positively influencing ACL-RSI. The
differential emphasis on peak torque deficit at 60 deg/s
for IKDC and mean power deficit at 180 deg/s for ACL-
RSI reflects the multifaceted nature of ACLR recovery,
which encompasses both physical and psychological dimen-
sions. Although IKDC scores are more directly influenced
by the foundational strength of the knee, which is essential
for basic functional activities and stability, ACL-RSI scores
are affected by an individual’s confidence in the ability to
perform high-speed, dynamic tasks without fear of rein-
jury. This distinction underscores the need for a compre-
hensive rehabilitation approach that addresses both
muscle strength at lower speeds for functional recovery
and muscle power at higher speeds for psychological read-
iness, facilitating a holistic recovery process that optimizes
both objective functional outcomes and subjective readi-
ness for return to sports. However, it is important to note
that the approach of focusing on muscle strengthening at
lower speeds, followed by muscle power training at higher
speeds once dynamic control has been achieved, is a funda-
mental principle in ACL rehabilitation.

YBT measures did not significantly contribute to the
prediction of SRPAS outcomes in our study. Although the
YBT is a widely used tool for assessing dynamic balance
and neuromuscular control, its predictive value for long-
term outcomes after ACLR may be limited. This finding
is intriguing and warrants further discussion. It is possible
that the YBT, while useful for evaluating postural control
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and identifying asymmetries, may not capture the specific
functional demands required for successful return to
sports. Future studies could explore alternative tests for
coordination, proprioception, and balance, such as the
single-leg hop tests or dynamic postural control assess-
ments, which may provide better predictive value for
long-term outcomes.

These findings highlight the importance of targeted
early rehabilitation interventions focusing on improving
muscle strength and power at different velocities. While
our models offer clinicians the ability to accurately forecast
SRPAS as early as 3 months after ACLR, it is important to
note that the use of an isokinetic dynamometer for
strength testing may limit widespread clinical application.
Future research should focus on incorporating more clini-
cally feasible measures to enhance the utility of these pre-
dictive models in guiding targeted rehabilitation
interventions for patients at risk of suboptimal recovery
after ACLR.

Limitations

Although our findings offer promising directions for
enhancing ACLR rehabilitation, it is crucial to acknowl-
edge the limitations inherent in our study design, which
may affect the generalizability and applicability of our pre-
dictive models. The sex-specific imbalances identified in
the present study represent significant limitations that
could affect the generalizability and accuracy of our find-
ings. The overrepresentation of male participants in our
study could restrict the relevance of our findings across
a more varied and inclusive demographic group. This dis-
crepancy highlights the importance of incorporating
a more equitable gender representation in future studies
to ensure that outcomes are representative of the entire
population after ACLR. Second, the disproportion between
the number of SRPAS for IKDC within our data set intro-
duces a potential for bias, which could tilt the model’s accu-
racy in favor of the predominant group. Employing
strategies to correct this disproportion could improve the
effectiveness of the model in accurately distinguishing
between individuals from diverse categories. Third, the
retrospective design and reliance on data from a single
institution may have limited the generalizability of our
findings. Future studies could use a multicenter approach
to validate our model across diverse patient populations.
Fourth, our study did not involve graft type as a potential
predictor variable. Graft type has been shown to influence
outcomes after ACLR, with differences in healing proper-
ties, donor-site morbidity, and postoperative rehabilitation
protocols. However, due to the relatively small sample size
in our study, including graft type as a predictor variable
may have led to overfitting and reduced the generalizabil-
ity of our models. Future studies with larger sample sizes
should consider incorporating graft type as a potential pre-
dictor to provide a more comprehensive understanding of
the factors influencing SRPAS outcomes. Fifth, our study
focused exclusively on patients undergoing single-bundle
anatomic ACLR, excluding those with different surgical

techniques or concomitant injuries, which may have
affected the applicability of our results to all individuals
recovering from ACLR. Additionally, the exclusion of psy-
chological measures beyond the ACL-RSI meant that other
relevant psychological factors influencing recovery were
not considered. Sixth, machine learning models perform
best when trained on very large data sets, such as those
from national registries. Our study’s sample size of 81.0%
(n = 91) for modeling and 19.0% (n = 22) for testing may
limit the definitive conclusions that can be drawn from
our model and its usefulness in a clinical setting. Future
studies should aim to include larger sample sizes to
improve the robustness and generalizability of the predic-
tive models. Seventh, our study did not incorporate meas-
ures of physical examination, such as knee effusion,
laxity, pivot shift, and ROM, which could potentially influ-
ence SRPAS outcomes. Future studies should consider
including these clinical factors to provide a more compre-
hensive assessment of the patient’s recovery status.
Eighth, we did not account for the type and level of sports
activity in our patients, which may have had an effect on
their rehabilitation progress and SRPAS outcomes. Incor-
porating information about the patient’s specific sport
and competitive level could provide valuable insights into
the factors influencing their recovery. Ninth, our study
did not consider the time from injury to surgery, which
may have affected the patient’s preoperative status and
subsequent rehabilitation outcomes. Future studies should
include this variable to assess its potential effect on SRPAS
outcomes. Finally, our study did not assess other tests that
have been used to predict return to sports, such as hop
tests. Incorporating these additional measures could pro-
vide a more comprehensive evaluation of the patient’s
functional recovery and readiness to return to sports.
While our machine learning models demonstrated good
predictive performance, the complexity of these models
may pose challenges for implementation in clinical settings
without specialized expertise. Future research should aim
to simplify these models without compromising their pre-
dictive accuracy or enhancing their utility for clinicians.

CONCLUSION

The present study demonstrates the effectiveness of
machine learning models in predicting the achievement of
SRPAS at 12 months after ACLR based on early rehabilita-
tion outcomes at 3 months. Machine learning analysis
revealed that younger age and greater isokinetic strength
at 60 deg/s at 3 months after ACLR were the most signifi-
cant predictors for attaining SRPAS of IKDC at 1 year.
Additionally, greater isokinetic strength at 180 deg/s at 3
months after ACLR was found to be the most predictive fac-
tor for achieving SRPAS of ACL-RSI at 1 year.
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