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Glucose substitution prolongs maintenance of
energy homeostasis and lifespan of telomere
dysfunctional mice
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Veronika Wulff4, Cagatay Günes3, Rui Wang Sattler5, Zhangfa Song1, Thomas Illig5, Susanne Klaus6,
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DNA damage and telomere dysfunction shorten organismal lifespan. Here we show that

oral glucose administration at advanced age increases health and lifespan of telomere

dysfunctional mice. The study reveals that energy consumption increases in telomere

dysfunctional cells resulting in enhanced glucose metabolism both in glycolysis and in the

tricarboxylic acid cycle at organismal level. In ageing telomere dysfunctional mice, normal

diet provides insufficient amounts of glucose thus leading to impaired energy homeostasis,

catabolism, suppression of IGF-1/mTOR signalling, suppression of mitochondrial biogenesis

and tissue atrophy. A glucose-enriched diet reverts these defects by activating glycolysis,

mitochondrial biogenesis and oxidative glucose metabolism. The beneficial effects of glucose

substitution on mitochondrial function and glucose metabolism are blocked by mTOR

inhibition but mimicked by IGF-1 application. Together, these results provide the first

experimental evidence that telomere dysfunction enhances the requirement of glucose

substitution for the maintenance of energy homeostasis and IGF-1/mTOR-dependent

mitochondrial biogenesis in ageing tissues.
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T
he accumulation of DNA damage and telomere dysfunc-
tion occurs during mouse and human ageing. The
activation of DNA damage checkpoints impairs organ

maintenance and lifespan in response to telomere dysfunction by
inhibiting stem cell self-renewal as well as proliferation and
survival of regenerative cells1–5. There is emerging evidence that
telomere dysfunction and DNA damage impair mitochondrial
biogenesis through p53/p21 activation, and that this mechanism
may contribute to tissue ageing in response to DNA damage
accumulation6,7. Recent publications revealed that cellular
senescence in response to oncogene activation increases the
energy expenditure of cells8,9. Senescent cells exhibit increases in
glucose metabolism in the tricarboxylic acid (TCA) cycle and
elevated levels of ATP. Whether similar responses occur in ageing
cells and tissues in response to DNA damage or telomere
dysfunction-induced senescence is currently unknown.

In DNA repair-deficient mice, the accumulation of DNA damage
is associated with the suppression of insulin/insulin-like growth
factor 1 (IGF-1) signalling; it has been suggested that the
downregulation of the somatotrophic axis represents an adaptive
response to allocate energy to cellular repair instead of proliferation
in the context of DNA damage10. In agreement with these
interpretations, reduction in the mammalian target of rapamycin
(mTOR) and insulin/IGF-1 signalling mediate lifespan extension by
dietary restriction in Caenorhabditis elegans and Drosophila11–16,
and both pathways influence mammalian ageing17,18. However,
inhibition of mTOR and IGF-1 signalling can also result in
decreased mitochondrial function in mammalian cells15,19. Based on
the findings that telomere dysfunction impairs mitochondrial
functionality and that induction of senescence increases the energy
demand of cells, it is possible that the accumulation of DNA damage
would also lead to changes in dietary requirements of ageing tissues.

Here we analysed consequences of glucose substitution on
metabolism and lifespan of telomerase knockout (KO) mice with
dysfunctional telomeres. The study shows that telomere dysfunc-
tion increases the energy demand of telomere dysfunctional cells
and glucose content of normal diet becomes limiting for the
maintenance of energy homeostasis at the organismal level. In
this context, the substitution of glucose leads to a significant
extension of the lifespan of the mice by stimulating glycolysis,
IGF-1/mTOR-dependent mitochondrial biogenesis and oxidative
glucose metabolism.

Results
Glucose-enriched diet rescues lifespan of G3 mTerc KO mice.
Owing to long telomere reserves in the C57Bl/6J inbred mouse
strain, homozygous deletion of the RNA component of telo-
merase (mTerc) does not induce strong phenotypes in first-gen-
eration KO mice (G1 mTerc� /� ). When homozygous mTerc KO
mice are crossed to each other through successive generations, the
shortening of telomeres from one generation to the next leads to
telomere dysfunction and premature ageing in third-generation
KO mice (G3 mTerc� /� ). G3 mTerc� /� mice have a normal
body weight at birth and young adulthood, but exhibit a pre-
mature decrease in body weight during ageing when compared
with mTercþ /þ mice2. At the time the body weight loss of aged
G3 mTerc� /� mice reaches 10–15%, survival of the mice is
limited to 2–4 weeks, and the mice have to be killed because of a
rapid decrease in fitness and appearance of a moribund
phenotype (Fig. 1a,b). This premature weight loss is associated
with premature ageing of organ systems with high rates of cell
turnover2 and a shortened survival compared with mTercþ /þ

mice with long telomere reserves (Fig. 1b,c).
Analysis of weight-adjusted food intake rates of 12- to

15-month-old G3 mTerc� /� mice (with weight loss on normal

diet) and age-matched mTercþ /þ controls revealed no signifi-
cant differences in food/energy intake between the cohorts
(Fig. 1d,e). In addition, calorimetric determination of faecal
energy content of the same mice showed similar rates of energy
excretion of 12- to 15–month-old G3 mTerc� /� mice compared
with age-matched mTercþ /þ mice (Fig. 1f). Similar results were
obtained for 12- to 15-month-old gnotobiotic (microbial free) G3
mTerc� /� mice exhibiting signs of premature ageing (Fig. 1d–f).
Together, these results showed that differences in energy uptake
were not responsible for the premature weight loss and the
shortened lifespan of G3 mTerc� /� mice compared with
mTercþ /þ mice on normal diet (Fig. 1a–c).

To test whether increases in energy uptake by feeding of a
glucose-enriched diet would influence the survival of mice with
dysfunctional telomeres, G3 mTerc� /� mice were switched to a
glucose-rich diet containing an elevated total content of
carbohydrates that contain glucose instead of long-chain
carbohydrates, but with the same total amount of energy
compared with normal diet (Supplementary Table 1). Specifically,
two experiments were conducted: 12- to 15-month-old G3
mTerc� /� mice that exhibited 10–15% body weight loss on
normal diet were shifted to a glucose-enriched diet or
continuously fed with normal diet (Fig. 1a,b). In a second
experiment, a cohort of 13.5-month-old G3 mTerc� /� mice that
did not yet exhibit weight loss on normal diet were shifted to a
glucose-enriched diet or continuously fed with normal diet
(Fig. 1c). In the first experiment, the exposure of 12- to
15-month-old G3 mTerc� /� mice (that lost body weight on
normal diet) to a glucose-enriched diet led to an increase in body
weight and elongated the lifespan of the mice by 20.5% compared
with age-matched G3 mTerc� /� mice that were kept on normal
diet (Fig. 1a,b). In the second experiment, the exposure of
13.5-month-old G3 mTerc� /� mice (without body weight loss)
to a glucose-enriched diet led to a significant elongation in
lifespan compared with an age-matched control cohort of
matched G3 mTerc� /� mice that were kept on normal diet
(Fig. 1c). Together, these results provided the first experimental
evidence that glucose substitution extends the lifespan of
aged G3 mTerc� /� mice. In both cohorts (mTercþ /þ and G3
mTerc� /� ), the glucose-enriched diet showed significantly
higher digestibility rates compared with normal diet
(Supplementary Fig. 1A), indicating that the glucose-enriched
diet increased the energy uptake in both cohorts.

The premature involution of the thymus represents one of the
prominent phenotypes of premature ageing in telomere dysfunc-
tional mice20. Glucose supplementation rescued premature thymus
involution and the maintenance of T-lymphocyte progenitor cells
(CD4/CD8 double-positive) in the thymus of 12- to 15-month-old
G3 mTerc� /� mice with weight loss compared with age-matched
mTercþ /þ mice (Fig. 2a). In addition, glucose substitution of
moribund G3 mTerc� /� mice resulted in quick and overt
improvements in organismal fitness (data not shown).

Young, telomere dysfunctional mice (2- to 4-month old) were
shown to have elevated plasma glucose levels, which appears to be
due to delayed postnatal growth of the pancreatic islets21.
However, this phenotype disappears at mid-age (6- to 8-month
old) when glucose levels are normal in G3 mTerc� /� mice
compared with wild-type mice. At the age of 12–15 months,
telomere dysfunctional mice (G3 mTerc� /� ) develop a
progressive weight loss on normal diet and then exhibit
several characteristic features of fasting. The mice show a
suppression of IGF-1 levels accompanied by an elevation of
growth hormone (GH) levels (Fig. 2b). Such an uncoupling
of elevated GH levels without induction of IGF-1 is reminiscent of
previously characterized fasting response mediated by induction of
fibroblast growth factor 21 (FGF-21)22. In addition, ageing
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telomere dysfunctional mice showed increased expression of the
starvation response protein insulin-like growth factor-binding
protein 1 (IGFBP-1) in liver (Supplementary Fig. 1B), reduced
glucose levels in blood (Fig. 2c) and liver (Fig. 2d), much faster
kinetics in the depletion of labelled glucose in blood and liver after
bolus injection of overnight-starved mice (Fig. 3a and
Supplementary Fig. 1C), pathologically enhanced clearance of
glucose in the glucose tolerance test and increased insulin
sensitivity (Fig. 3b,c), decreases in hepatic fat content (Fig. 3d)
and glycogen storage (Supplementary Fig. 1D), reduced levels of
essential amino acids in blood serum (Fig. 3e) and diminished
expression of phosphorylated mTOR in liver (Fig. 3f). In line with
the accelerated glucose clearance, elevated expression of glucose
transporter 1 (GLUT-1) and glucose transporter 2 (GLUT-2) was
detected in liver of 12- to 15-month-old G3 mTerc� /� mice
compared with mTercþ /þ mice (Supplementary Fig. 1E). Glucose
transporter 4 (GLUT-4) protein expression in skeletal muscle was
not increased (Supplementary Fig. 1F).

mTercþ /þ mice (12- to 15-month old) showed no significant
changes in blood glucose and intrahepatic glucose levels when
exposed to a glucose-enriched diet (Fig. 2c,d). In contrast, feeding
of the glucose-enriched diet reverted almost all starvation
parameters in 12- to 15-month-old G3 mTerc� /� mice
exhibiting weight loss on normal diet. Specifically, in the liver,
glucose-enriched diet normalized IGFBP-1 expression
(Supplementary Fig. 1B), intracellular glucose levels (Fig. 2d),
fat content (Fig. 3d) and levels of phosphorylated mTOR (Fig. 3f).
In blood serum, glucose-enriched diet rescued plasma levels of
glucose (Fig. 2c), GH and IGF-1 (Fig. 2b), and essential amino
acids (Fig. 3e). Since the glucose-enriched diet did not contain
elevated levels of essential amino acids, these data indicated that
the glucose-mediated rescue of a catabolic metabolism in G3
mTerc� /� mice led to the recovery of essential amino acid
plasma levels.

The analysis of body weight curves showed that glucose
substitution was sufficient to increase body weights of ageing G3
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Figure 1 | Glucose feeding extends lifespan of telomere dysfunctional mice. (a) G3 mTerc� /� mice (12- to 15-month old) were fed with a glucose-rich

diet when mice lost 10–15% of body weight on normal ad libitum diet (n¼ 13 mice). The dot plot shows body weights of G3 mTerc� /� mice at the

indicated time points before (black line) and after switching the mice from a normal to a glucose-enriched diet (red line). (b) Survival curves of mTercþ /þ

and G3 mTerc� /� mice under the different diets. G3 mTerc� /� mice (12- to 15-month old) that exhibited weight loss on normal diet were shifted to a

glucose-enriched diet (red line) or continuously fed with normal diet (black line). (c) Kaplan–Meier survival curve: mTercþ /þ and G3 mTerc� /� mice

under the different diets. G3 mTerc� /� mice (13.5-month old), which did not yet exhibit weight loss on normal diet, were shifted to a glucose-enriched diet

(red dotted line) or continuously fed with normal diet (red straight line) (n¼ 50 mice). Log-rank test, **¼ Po0.01. (d–f) Analysis of daily food intake

normalized to body weight (n¼9–11 mice per group). (d) Food intake in relation to body weight in grams per day. Energy intake (e) as well as energy

excretion (f) in relation to the body weight of the respective groups per day. All statistical data were assessed using Student’s t-test and are presented as

mean±s.d. WT, wild type. *Po0.05, **Po0.01, ***Po0.001.
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mTerc� /� mice exhibiting weight loss and premature ageing
(Fig. 1a). A maximum rescue occurred 4 weeks after glucose
supplementation followed by a plateau before the reappearance of
progressive weight loss and premature ageing. These data
suggested that glucose substitution only achieved a transient
rescue in tissue maintenance of telomere dysfunctional mice. In
agreement with this interpretation, G3 mTerc� /� mice that
were rescued with a glucose-enriched diet after the first
appearance of body weight loss redeveloped a moribund
phenotype and body weight loss 2–3 months after initiating the
glucose rescue (Fig. 1a,b). Glucose-fed G3 mTerc� /� mice
at the end stage of the rescue period exhibited a strong
reappearance of starvation phenotypes such as a reduction in
hepatic glycogen levels (Supplementary Fig. 1D) and abnormally
improved glucose tolerance (Fig. 3b). A possible explanation for
the transient nature of the glucose-mediated rescue was that
alterations in energy metabolism in response to telomere
dysfunction progressively increased the need of glucose
substitution, which at some point could not be covered by the
glucose-enriched diet.

Elevated rate of glucose metabolism in ageing G3 mTerc
KO mice. G3 mTerc� /� mice (12- to 15-month old) with
reduced weight on normal diet exhibited a reduction in serum
pyruvate levels (Fig. 4a) and increased serum lactate levels
(Fig. 4b). After injection of 13C-labelled glucose, G3 mTerc� /�

mice showed increased levels of lactate production compared
with mTercþ /þ mice (Fig. 4c). Furthermore, the flux of labelled
glucose into citrate, an intermediate of the TCA cycle, was
significantly elevated in liver tissue of aged mice with telomere
dysfunction compared with the wild-type controls (Fig. 4d).
Together, these data indicated that G3 mTerc� /� mice with
weight loss used elevated rates of glycolysis and glucose oxidation

in the TCA cycle for energy production. However, the low
serum pyruvate concentration in G3 mTerc� /� mice on normal
diet suggested that substrate levels became limiting under
these conditions. In agreement with this interpretation,
analysis of plasma glucose flux after labelled glucose injection
revealed a suppression of fractional gluconeogenesis (GNG; the
fraction of GNG contributing to the total glucose flux in plasma
by recycling of three carbon lactate bodies back to glucose) in G3
mTerc� /� mice on normal diet (Fig. 4e and Supplementary
Fig. 2A).

When 12- to 15-month-old G3 mTerc� /� mice that
exhibited weight loss on normal diet were exposed to a
glucose-enriched diet, serum pyruvate increased to extraordin-
ary high levels within 2 weeks (Fig. 4a). Experiments with
labelled glucose revealed that the relative flux of glucose into
lactate as well as flux into the TCA cycle remained elevated in
these G3 mTerc� /� mice (2 weeks after initiation of the
glucose-enriched diet; Fig. 4c,d). These data indicated that
ageing telomere dysfunctional mice use elevated rates of
glucose metabolism in glycolysis and in the TCA cycle. This
results in an increased dependency of G3 mTerc� /� mice on
glucose substitution compared with mTercþ /þ controls.
Under normal diet, substrates for energy generation become
limiting in G3 mTerc� /� mice but a glucose-enriched diet
rescues substrate levels facilitating enhanced rates of glucose
metabolism for maintenance of energy homeostasis in aged G3
mTerc� /� mice.

To test whether telomere shortening would also affect the
glucose dependency of primary human cells, experiments were
conducted on BJ fibroblasts. Telomere shortening limits the
proliferative capacity of human fibroblasts to 50–70 cell divisions.
Early-passage fibroblasts (PD 38) and late-passage fibroblasts (PD
50) were exposed to a medium containing low levels of glutamine
(250 mM). When these cells were exposed to decreasing
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Figure 2 | Glucose supplementation rescues thymus atrophy and IGF-1 and glucose levels of telomere dysfunctional mice. 12–15 month old G3

mTerc� /� mice with weight loss on normal ad libitum diet and age-matched mTercþ /þ mice were analyzed under continuous exposure to normal ad

libitum diet or 2 weeks after switching to a glucose enriched diet (þGlc): (a) Percentage of double-positive CD4þ/CD8þ naive T cells in thymus (n¼ 3

per group). (b) Blood plasma levels of IGF-1 and growth hormone (GH) in ng ml� 1 (n¼4–7 mice per group). (c) Diurnal plasma glucose levels were

measured every 4 h (n¼4–5 mice per group). G3 mTerc� /� mice (12- to 15-month old) on normal diet exhibit significantly lower glucose levels compared

with all other groups (Po0.001). Glucose levels were measured in mg dl� 1. (d) Intracellular glucose levels in liver (n¼4–5 mice per group). All statistical

data were assessed using Student’s t-test and are presented as mean±s.e.m. NS, non–significant. *Po0.05, **Po0.01, ***Po0.001.
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concentrations of glucose, late-passage fibroblasts showed
significantly enhanced impairments in proliferation compared
with cells of the early passage (Fig. 4f). These findings indicate
that under condition of low glutamine substitution, late-passage
human fibroblasts with short telomeres depend more on glucose
substitution to maintain proliferation rates compared with early-
passage fibroblasts with long telomere reserves.

Glucose substitution rescues mitochondrial biogenesis. Pre-
vious studies revealed that telomere dysfunction leads to
impairments in mitochondrial biogenesis and function by acti-
vating p53/p21-dependent signalling6,7. In agreement with these
studies, 12- to 15-month-old G3 mTerc� /� mice that lost body
weight on normal diet exhibited impaired mitochondrial
biogenesis in various tissues (such as liver, skeletal muscle and
haematopoietic cells) as indicated by reduction in mitochondrial
DNA (mtDNA) copy number (Fig. 5a and Supplementary
Fig. 2B) and reduced expression of transcriptional regulators of
mitochondrial biogenesis (Fig. 5b). In line with reductions in

mtDNA, the expression of mitochondrial enzymes (cytochrome c
oxidase and citrate synthase) were reduced in liver lysates of
12- to 15-month-old G3 mTerc� /� mice with weight loss on
normal diet compared with mTercþ /þ mice (Fig. 5c,d).

Switching 12- to 15-month-old G3 mTerc� /� mice with
weight loss on normal diet to a glucose-enriched diet significantly
rescued mitochondrial biogenesis in various tissues as indicated
by increases in mtDNA copy numbers (Fig. 5a), the expression of
transcriptional regulators of mitochondrial biogenesis (Fig. 5b),
mitochondrial enzymes (Fig. 5c,d) and mitochondrial complexes
I, II, III and V (Fig. 5e). Of note, glucose-mediated improvements
in mitochondrial biogenesis were incomplete in skeletal muscle
(Fig. 5a,b). Together, these data indicated that telomere dysfunc-
tion induces impairments in mitochondrial biogenesis but these
defects were rescued by glucose substitution, especially in liver
and partially in skeletal muscle.

To assess mitochondrial respiratory activity, freshly extracted
bone marrow cells (Lin-negative) were analysed for oxygen
consumption. Although exhibiting significant reduction in
mitochondrial copy number (Fig. 5a), haematopoietic cells from
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aged telomere dysfunctional mice on normal diet showed
significantly higher basal rates of oxygen consumption and ATP
levels compared with mTercþ /þ mice (Fig. 5f,g). Glucose
substitution with subsequent increase of the mtDNA copy
number (Fig. 5a) led to a further strong increase in oxygen
consumption and ATP levels of freshly isolated haematopoietic
cells from 12- to 15-month-old G3 mTerc� /� mice compared
with all other groups (Fig. 5f,g). Together, these results indicated
that cells from aged mice with dysfunctional telomeres contain
reduced numbers of mitochondria, but these mitochondria were
hyperactive receiving an elevated flux of glucose-derived carbon
and show elevated rates of oxygen consumption compared with
mTercþ /þ mice. Increase in ATP levels in response to glucose
feeding and stimulation of mitochondrial biogenesis in glucose-
fed, 12- to 15-month-old G3 mTerc� /� mice indicated that
mitochondria were functional, which was also supported by the
normal morphology of mitochondria of G3 mTerc� /� mice in

electron microscopy (Supplementary Fig. 2C). Together, these
results showed that haematopoietic cells of G3 mTerc� /�

mice exhibit an elevated ATP production and increased
glucose degradation via glycolysis and oxidative metabolism in
the TCA cycle. Under normal diet, glucose levels were not
sufficient to cover this elevated demand for energy production
resulting in a catabolic phenotype (Fig. 3) and a starvation
response (Figs 1 and 2) in ageing G3 mTerc� /� mice.

To understand mechanisms of improved mitochondrial biogen-
esis in glucose-fed G3 mTerc� /� mice, upstream regulators of
mitochondrial biogenesis were analysed including p53, IGF-1 and
mTOR signalling. Telomere dysfunction induces p53, which in
turn can impair mitochondrial biogenesis by suppressing PGC1-a
and PGC1-b signalling6. The analysis of p53 target genes (PUMA
and p21 mRNA expression) revealed heterogeneity in p53
activation in liver and skeletal muscles of aged G3 mTerc� /�

mice with weight loss on normal diet compared with control
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Figure 4 | Glucose supplementation improves energy homeostasis of telomere dysfunctional mice by increasing glycolysis and oxidative glucose

metabolism. 12–15 month old G3 mTerc� /� mice with weight loss on normal ad libitum diet and age-matched mTercþ /þ mice were analyzed under

continuous exposure to normal ad libitum diet or 2 weeks after switching to a glucose enriched diet (þGlc): (a,b) The bar graphs show serum levels of
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glucose flux (n¼ 6 mice per group). (f) Aged human fibroblasts show a higher dependency on glucose. The graph shows the proliferation rate of BJ
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cohorts. Specifically, there was no induction of p53 targets in
liver but a significant induction in skeletal muscle of aged G3
mTerc� /� mice with weight loss on normal diet compared with
age-matched wild-type mice (Fig. 6a). Comparing levels of p53
activation with the level of glucose-mediated improvements in
mitochondrial biogenesis, 2 weeks after the diet change in
individual tissue samples of aged G3 mTerc� /� mice, revealed a
negative correlation between both parameters (Fig. 6b,c). Similar
results were obtained in an analysis focusing on p53 expression
and mitochondrial biogenesis only in the skeletal muscle tissue
(Supplementary Fig. 3A,B). Specifically, tissue samples with
elevated p53 activity exhibited weaker improvements in
mitochondrial copy numbers after glucose supplementation
compared with tissue samples with low p53 activation. These
results indicated that both, p53-dependent mechanisms and
glucose deficiency per se, contributed to impairments in
mitochondrial biogenesis in G3 mTerc� /� mice. Thus, glucose
feeding cannot completely revert defects in mitochondrial
biogenesis in tissues with elevated p53 activity. In line with this
interpretation, KO of p21—a downstream target of p53, which was
implemented in suppression of mitochondrial function in response
to telomere dysfunction7—also led to a rescue of mitochondrial
biogenesis in aged G3 mTerc� /� mice (Fig. 6d).

Alterations in metabolic signalling pathways impair mito-
chondrial biogenesis. To understand glucose-dependent
mechanisms that contribute to defects in mitochondrial biogenesis
in ageing telomere dysfunctional mice, the activity of AMP-acti-
vated protein kinase (AMPK), IGF-1 and mTOR signalling was
analysed. It was shown that AMPK-dependent activation of p53
occurs in response to glucose deprivation23. These data suggested
that glucose-mediated improvements in mitochondrial biogenesis
could involve the amelioration of AMPK-dependent p53 activation
in ageing G3 mTerc� /� mice. There was a strong induction of
AMPK (and its target phosphorylated acetyl-CoA carboxylase
(ACC)) in liver and muscle of 12- to 15-month-old G3 mTerc� /�

mice with weight loss on normal diet compared with mTercþ /þ

mice (Fig. 6e,f and Supplementary Fig. 3C–F). The glucose-
enriched food partially reduced AMPK activation in both
compartments of G3 mTerc� /� mice (Fig. 6e,f and
Supplementary Fig. 3C–F). Together, these data suggested that
glucose-mediated reduction in AMPK activation could contribute
to reduction in p53 activation and improvements in mitochondrial
biogenesis in skeletal muscle. However, in the liver, this pathway
cannot explain glucose-mediated improvements in mitochondrial
biogenesis given the lack of p53 activation in this compartment of
aged G3 mTerc� /� mice from our cohort (Fig. 6a).

0

50

100

150

***
***

*

R
el

at
iv

e 
C

S
ex

pr
es

si
on

0.0

0.5

1.0

1.5

R
el

at
iv

e 
C

O
X

ex
pr

es
si

on

***
***

*

Liver Skeletal
muscle

Hematopoietic
cells

0.0

0.5

1.0

1.5

2.0

**

* *
****

** ****

m
tD

N
A

 c
op

y 
nu

m
be

r

***

***

***

PGC-1a PGC-1β PGC-1βPGC-1a
0.0

0.5

1.0

1.5

2.0

Liver Skeletal muscle

**
*** **

***
** *

*
*

*

R
el

at
iv

e 
ex

pr
es

si
on

0

1

2

3 *

A
T

P
 (

fo
ld

 c
ha

ng
e) **

*

– – +

mTerc+/+ G3 mTerc–/– mTerc+/+ + Glc G3 mTerc–/– + Glc

0.0

0.5

1.0

1.5

2.0

2.5

**
***

***

O
xy

ge
n 

co
ns

um
pt

io
n

(f
ol

d 
ch

an
ge

)

75

50

20

30
30

Core 2 (CIII)

Glucose

NDUFA8 (CI)

30 kDa su (CII)

ATP α (CV)

GAPDH

mTerc+/+ G3 mTerc–/–

Figure 5 | Glucose supplementation rescues mitochondrial mass and increases oxygen consumption and ATP levels in G3 mTerc� /� mice. 12–15

month old G3 mTerc� /� mice with weight loss on normal ad libitum diet and age-matched mTercþ /þ mice were analyzed under continuous exposure to

normal ad libitum diet or 2 weeks after switching to a glucose enriched diet (þGlc): (a–d,g,f) Histograms showing (a) the mitochondrial DNA (mtDNA)

copy number in the indicated tissues, (b) the expression of PGC-1a and PGC-1b in the indicated tissues, (c) hepatic citrate synthase (CS) expression,

(d) hepatic cytochrome c oxidase levels (COX), (f) oxygen consumption of freshly isolated haemtopoietic cells (Lin-negative), and (g) ATP-levels of freshly

isolated haemtopoietic cells (Lin-negative). Data in all histograms are shown as relative expression levels/numbers with data for mTercþ /þ mice on

normal ad libitum diet being set to 1. (a-d,g) n¼4–6 mice per group, (f) n¼ 9–17 mice per group. (e) Representative western blot analysis of OXPHOS

enzymes ((NDUFA (CI), 30 kDa su (CII), ATPa (CV), Core 2 (CIII)) in liver homogenates. All statistical data were assessed using Student’s t-test and are

presented as mean±s.e.m. *Po0.05, **Po0.01, ***Po0.001.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5924 ARTICLE

NATURE COMMUNICATIONS | 5:4924 | DOI: 10.1038/ncomms5924 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Lifespan extension in C. elegans by inhibition of insulin/IGF-1
signalling was associated with reduction in mitochondrial
activity in some studies24,25, and IGF-1 was shown to
promote mitochondrial biogenesis in cooperation with mitogen
stimulation in mammalian Schwann cells19. In addition, IGF-1
can prevent mitochondrial autophagy in response to serum
deprivation26. IGF-1 serum levels were strongly reduced in
telomere dysfunctional mice on normal diet but glucose
substitution completely rescued IGF-1 levels (Fig. 2b). To
determine whether IGF-1 contributed to the rescue in
mitochondrial biogenesis in glucose-fed, telomere dysfunctional
mice, a cohort of aged G3 mTerc� /� mice was rescued from
weight loss and early death by glucose re-feeding. G3 mTerc� /�

mice with an extended lifespan were then re-exposed to normal
diet. Simultaneously, a treatment with subcutaneous IGF-1
application versus vehicle control was initiated. As noted

before, G3 mTerc� /� mice were highly dependent on glucose
substitution and developed a rapid weight loss and a moribund
phenotype within 7 days after re-exposure to normal diet
(Fig. 7a). The cohort treated with IGF-1 injections, although
not showing a rescue in lifespan (data not shown), exhibited
significantly blunted weight loss (Fig. 7a). Improved weight
maintenance was accompanied by higher proliferation rates in
the intestinal epithelium—a highly proliferative compartment
(Supplementary Fig. 4A). Impaired maintenance of high-turnover
organs in telomere dysfunctional mice is induced by activation of
p53-dependent apoptosis and cell cycle arrest1,3,27. However,
IGF-1 application did not alter the activation of p53-dependent
DNA damage signals in the intestinal epithelial compartment
(Supplementary Fig. 4B–D). Instead, IGF-1 application rescued
mitochondrial biogenesis as indicated by increases in the
expression of PGC-1a and TFAM (Fig. 7b), mitochondrial
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enzymes citrate synthase and cytochrome c oxidase (Fig. 7c,d),
and the mitochondrial complexes I, II, IV and V (Fig. 7b) in
liver tissue.

The IGF-1-mediated rescue in mitochondrial biogenesis in
liver of 12- to 15-month-old G3 mTerc� /� mice was similar to
the rescue mediated by feeding of a glucose-enriched diet
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(Supplementary Fig. 4E,F). In contrast to the glucose rescue of G3
mTerc� /� mice, IGF-1 application did not result in a rescue of
pyruvate serum levels (Supplementary Fig. 4G) and serum lactate
levels did not increase (Supplementary Fig. 4H). A possible
explanation for these findings indicates that G3 mTerc� /� mice
continue to depend on increased glucose substitution to maintain
energy homeostasis via elevated glucose metabolism in both
glycolysis and TCA cycle activity. Since IGF-1 treatment did not
improve substrate levels (glucose availability and pyruvate levels),
this treatment could not restore energy homeostasis although
improving mitochondrial biogenesis.

In addition to direct effects on mitochondrial biogenesis, IGF-1
signalling may also affect mitochondrial biogenesis by altering
mTOR signalling. mTOR can activate mitochondrial biogenesis11

and suppression of IGF-1 can suppress mTOR activity28, which
in turn can induce mitophagy. Aged G3 mTerc� /� mice with
weight loss on normal diet exhibited a decrease in phosphorylated
mTOR in liver, which was rescued to normal levels by glucose re-
feeding (Fig. 3f). In agreement with the hypothesis that activation
of mTOR contributed to the rescue in mitochondrial biogenesis
in glucose-fed telomere dysfunctional mice, rapamycin treatment
significantly diminished glucose-mediated increases in
mitochondrial biogenesis (Fig. 7e). Substitution of rapamycin
also reduced the increase in oxygen consumption, as well as the
ATP levels in freshly isolated haematopoietic cells of telomere
dysfunctional mice exposed to a glucose-enriched diet (Fig. 7f,g).
These data suggested that mTOR activation is linked to the
rescue in mitochondrial biogenesis and increases in oxygen
consumption in response to glucose re-feeding of telomere
dysfunctional mice.

Together, these experiments revealed that p53-dependent and
p53-independent processes contribute to impairments in mito-
chondrial biogenesis in telomere dysfunctional tissues. p53-
independent processes that suppress mitochondrial biogenesis
involve a deficit in energy homeostasis likely evolving as a
consequence of elevated energy demand characterized by
increased ATP levels, oxygen consumption and glucose metabo-
lism in haematopoietic cells of telomere dysfunctional mice
(Fig. 5f,g). In this context, energy bioavailability in the diet
becomes a limiting component required for maintenance of
energy homeostasis (Fig. 8). Similar metabolic changes occur in
senescent human fibroblasts in response to oncogene activa-
tion8,9. To test whether human fibroblasts would also show an
increased dependency on glucose substitution to maintain
mitochondrial biogenesis in response to telomere shortening,
mitochondrial copy numbers were analysed in early and late
passages of primary human fibroblasts. Of note, the reduction in
mitochondrial biogenesis in response to lowering glucose levels
was significantly increased in late-passage human fibroblasts
compared with early passages (Fig. 7h), suggesting that human
cells also exhibit an increased dependency on glucose substitution
to maintain energy homeostasis and mitochondrial biogenesis in
the context of shortened telomeres.

Discussion
The current study provides the first experimental evidence that
dietary requirements of mice change during telomere dysfunc-
tion-induced ageing. Compared with wild-type mice, progeroid
mice with dysfunctional telomeres show increases in energy
consumption characterized by compensatory increases in ATP
levels, oxygen consumption rates (OCRs) and glucose metabolism
via glycolysis and the TCA cycle. In this context, normal diet does
not provide sufficient glucose levels to maintain energy home-
ostasis resulting in catabolic metabolism (loss of fat tissue,
degradation of essential amino acids and reduction in IGF-1/

mTOR signalling), weight loss, impairments in organ function
and premature death. Different mechanisms appear to contribute
to defects in energy homeostasis in response to telomere
dysfunction (Fig. 8).

p53-dependent suppression of mitochondrial biogenesis:
in agreement with previous publications6,7, the accumulation
of dysfunctional telomeres leads to p53 and p21 activation,
which in turn suppresses mitochondrial biogenesis in some
tissues (skeletal muscle, intestine and so on). This decrease
in mitochondrial function likely contributes to the evolution
of energy deficits in telomere dysfunctional tissues and an
adaptive increase in the utilization of glycolysis for energy
production.

Increases in energy consumption: despite reduction in mito-
chondrial copy numbers, telomere dysfunctional mice show
elevated ATP levels, increased oxygen consumption and
enhanced glucose metabolism in both glycolysis and TCA cycle
compared with wild-type controls. Still telomere dysfunctional
mice exhibit defects in energy homeostasis characterized by
catabolic changes and decreases in body weight and organ
maintenance, indicating that the compensatory increases in ATP
production remain insufficient for organ maintenance. Of note,
all these phenotypes are rescued by glucose supplementation.
These findings support the conclusion that energy consumption is
increased in telomere dysfunctional mice compared with wild-
type mice resulting in compensatory increases in glucose
metabolism to maintain energy homeostasis. Recent studies
revealed that oncogene-induced senescence increases energy
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Figure 8 | Model of telomere dysfunction-induced metabolic changes

that accelerate tissue ageing. Telomere dysfunction enhances energy

consumption in ageing tissues leading to compensatory increases in ATP

production, glucose metabolism (via glycolysis and TCA cycle) and

oxygen consumption. Under these conditions, the dietary energy content

becomes limiting for the maintenance of energy homeostasis. Impairments

in energy homeostasis result in catabolic changes and suppression of

IGF-1/mTOR-dependent mitochondrial biogenesis, which is aggravated by

the activation of p53/p21-dependent DNA damage responses in telomere

dysfunctional tissues. Glucose supplementation stops this vicious circle by

increasing bioavailability of substrates for glycolytic and oxidative glucose

metabolism resulting in improvements of energy homeostasis and

activation of IGF-1/mTOR-dependent mitochondrial biogenesis. This leads

to further enhancement of oxidative glucose metabolism and ATP levels,

thus prolonging the maintenance of functional tissues in the context of

telomere dysfunction.
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demand of fibroblasts by increasing proteolytic stress via the
induction of pro-inflammatory signals as part of the senescence-
associated secretory phenotype9. It was shown that G3
mTerc� /� mice exhibit an increase in telomere dysfunction
early in life correlating with the shortened lifespan of the mice.
Interestingly, wild-type mice display similar increases in telomere
dysfunction when reaching the maximum lifespan29. It remains
an important question to analyse whether increased requirement
of glucose substitution for the maintenance of energy homeostasis
also occurs during advanced ageing of wild-type mice and more
importantly in human ageing. Of note, there is evidence for
increases in telomere shortening and DNA damage accumulation
in multiple human tissues during ageing also affecting stem cell
compartments30.

Importantly, this study shows that elevation in dietary glucose
substitution is sufficient to prolong organismal function and
survival in the context of telomere dysfunction by improving
energy homeostasis via glycolysis and glucose oxidation. The
beneficial effects of glucose substitution appear to be in part
mediated by increases in IGF-1 and mTOR signalling. In line with
this interpretation, IGF-1 application mimics glucose-mediated
increases of mitochondrial copy numbers in telomere dysfunc-
tional mice, and mTOR inhibition via rapamycin impairs
glucose-mediated increases in mitochondrial copy numbers in
the mice. The data suggest that IGF-1-dependent increases in
mitochondrial function may also contribute to the IGF-1-
mediated elongation in lifespan in other progeroid mouse
strains31,32. In addition, impairments in the maintenance of
mitochondrial copy number and function in response to mTOR
suppression may also contribute to the outcome of calorie
restriction (CR) on longevity in some recent studies. Along these
lines, it was reported that CR has negative effects on lifespan in
some mouse strains33,34. In addition, CR failed to increase
lifespan in a recent primate study despite having positive effects
on certain health parameters35. It is possible that negative effects
of CR on energy homeostasis in ageing tissues could outcompete
positive effects on health span.

The results of this study could have relevance for the
treatment of elderly humans that show accumulation of DNA
damage, dysfunctional telomeres, suppression of the somatotroph
axis and mitochondriopathies36–38. There is evidence that
1/3–2/3 of geriatric patients are malnourished, and decreased
body weight is directly associated with shortened survival in
these patients39. These data indicate that defects in energy
homeostasis represent a major factor limiting lifespan at
advanced human age. Of note, the current study provides
experimental evidence that human fibroblasts also exhibit an
increased dependency on glucose substitution to maintain
mitochondrial copy numbers and cell proliferation rates in the
context of telomere shortening. The simplicity of glucose
substitution makes it an attractive approach that should be
evaluated in clinical trials for the treatment of pathophysiological
conditions associated with coupled telomere/mitochondrial
dysfunction.

Methods
Animal experiments. For the production of the mTerc� /� mouse model, mice
with C57BL/6J background have been used as previously described40. First-
generation mTerc� /� (G1) animals and mTercþ /þ controls were derived from
heterozygous intercrosses (mixed genetic background). Following the mating
between mice of the same generations, mTerc� /� animals were produced up to
the third generation (G3) were produced. For the individual experiments, mice
aged 12–15 months were used. Furthermore, all animals were housed in a
pathogen-free area (20–22 �C) with free access to food and water. Rescue
experiments were performed on terminally ill mice that lost 20% of body weight
and in aged mice without loss of weight. These were put on a regime (SNIFF, cat
no. E15629-34) consisting of a diet with 450% glucose content. All mouse
experiments were approved by the State Government of Baden-Württemberg.

Cell culture. BJ fibroblasts at young and old passage (PD 38 and PD 50) were
seeded into six-well plates for 50,000 fibroblasts per well and cultured with DMEM
medium (Sigma, D5030) with 250 mmol l� 1 glutamine and different concentra-
tions of glucose (0.05, 0.1, 0.25, 0.5, 0.75 and 1 g l� 1). The cells were cultured at 5%
CO2, were incubated at 37 �C for 9 days and proliferation rate was measured with
crystal violet method.

Immunoblot analyses. Whole-cell extracts were prepared according to standard
protocols and tested by western blot using anti-GAPDH (Bethyl; dilution:
1:25,000), anti-IGFBP-1 (Santa Cruz; dilution:1:1,000), anti-phospho acetyl-coA-
carboxylase (Cell Signaling; dilution: 1:2,000), anti-phospho-AMPK (Cell Signaling;
dilution: 1:2,000), anti-phospho-mTOR (Cell Signaling; dilution: 1:2,000), anti-
phospho-p53 (Cell Signaling; dilution: 1:2,000), anti-p21 (Santa Cruz; dilution:
1:1,000), anti-gH2Ax (Millipore; dilution: 1:1,000), anti-b-actin (Sigma; dilution:
1:10,000), anti-PKM2 (Santa Cruz; dilution: 1:1,000), anti-PDHK1 (Cell Signaling;
dilution: 1:2,000), OxPhos Complex Kit (Anti-Rt/ms; Invitrogen), anti-TFAM
(Calbiochem; dilution: 1:1,000) and anti-PGC1a (Abcam; dilution: 1:1,000).

Plasma measurements. Plasma levels of IGF-1 (Mediagnost), GH (Millipore),
and pyruvate and lactate (Abcam) were measured by corresponding enzyme-linked
immunosorbent assays.

Glucose and insulin tolerance test. Glucose tolerance was performed after 16 h
fasting by injecting intraperitoneally (i.p.) glucose (2 g kg� 1 of body weight). For
insulin tolerance test, mice were starved for 2 h followed by an injection of
0.75 U kg� 1 of body weight insulin i.p.. Glucose levels were measured from tail
blood at indicated time points using a glucometer (One Touch Ultra).

Glycogen determination. Glycogen was measured as previously described41.

RNA extraction and real-time PCR. RNA was isolated from liver using TRIZOL
(Life Technologies) and cDNA was prepared using SuperScript III Reverse
Transcriptase (Invitrogen). Synthesized cDNA was used for real-time PCR using
fluorescent dye (SYBR Green, Qiagen). The results were normalized for
comparison by measuring b-actin mRNA levels in each sample. Primers used for
real-time PCR are described in the Supplementary Table 2.

mtDNA copy number. mtDNA copy number is measured as previously
described6. Briefly, liver and heart tissues were digested with 0.1 mg ml� 1

Proteinase K in digestion buffer (100 mM NaCl, 10 mM Tris–Cl (pH 8.0), 25 mM
EDTA, (pH 8.0) and 0.5% (w/v) SDS) at 50 �C overnight and genomic DNA are
isolated with phenol/chloroform method. Real time quantitative polymerase chain
reaction (RT-qPCR)-based mitochondrial quantification was performed with two
different primer sets for genomic and mitochondrial loci. RT-qPCR was analysed
by DDCt method.

Immunohistochemistry. Immunofluorescence was performed in paraffin-
embedded livers using primary antibodies for proliferating cell nuclear antigen
(PCNA) (Santa Cruz; dilution: 1:150), p53 (Calbiochem; dilution: 1:150) and p21
(Santa Cruz; dilution: 1:150).

Oil-red-O staining. An amount of 5 mM frozen liver sections were fixed in 10%
ice-cold formalin, washed with absolute propylene glycol and stained with 0.5%
Oil-red-O solution. Stained slides were washed with 85% propylene glycol solution
and rinsed with water. The slides were finally stained with haematoxylin and
analysed by microscopy.

Metabolite measurements. The targeted metabolomics approach was based on
the measurements with the AbsoluteIDQ p150 kit (Biocrates Life Sciences AG,
Innsbruck, Austria) allowing simultaneous quantification of 163 metabolites.
The metabolomics data set includes 14 amino acids, which concentrations are
reported in mM.

Isolation of mitochondria and measurement of respiratory chain (RC)-
complex activity. Liver homogenates were prepared by homogenizing a snap-
frozen liver piece (50 mg) in 500 ml of 10 mM HEPES (pH 7.4), 0.5 mMEDTA,
0.5 m MEGTA and 250 mM sucrose, and were used immediately. Enzyme activities
were determined spectrophotometrically as described42. Protein concentrations
were estimated by the method of Bradford using bovine serum albumin as a
standard.

IGF-1 injection. Aged telomere dysfunctional mice losing weight were rescued with
high-glucose diet. After stabilization of body weight gain mice were shifted to
regular diet and divided into saline solution and IGF-1-injected mice at a dose
0.2 mg g� 1 of body weight every 12 h.
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Rapamycin treatment. Mice were administered daily with 10 mg kg� 1 of rapa-
mycin (LC Laboratories, R-5,000) by i.p. injection for a period of 2 weeks. Rapa-
mycin was first dissolved in ethanol to 50 mg ml� 1 and then diluted 1/50 to
1 mg ml� 1 with Ringer’s solution (containing 5.2% polyethylene glycol (PEG) and
5.2% Tween 80).

Energy absorption and calorimetry. Mouse faeces were collected from each cage
every 24 h for 5 days parallel to the measurement of food intake. All faeces were
weighed and dried at 60 �C for 1 week in a standard oven. The gross energy content
of the faeces was measured using adiabatic bomb calorimetry (Gallenkamp CBA-
305, Loughborough, UK). Samples were run in triplicate.

Extraction of plasma samples. All plasma samples were aliquoted at 5 ml in 1.5 ml
Eppendorf tubes and stored at � 80 �C until analysis. For liquid extraction, 45 ml of
an ice-cold methanol/H2O mixture (8:1 v/v) was added to the 5 ml of plasma
sample. The mixture was vortexed for 10 s and shaked at maximum speed on a
thermomixer (Eppendorf) for 5 min at 4 �C. After incubation, the mixture was
centrifuged for 5 min at 4 �C at 19,600 g, and 30ml of the supernatant was trans-
ferred into a gas chromatography/mass spectrometry (GC/MS) vial for speed
vacuum evaporation at � 4 �C using a refrigerated CentriVap concentrator (Lab-
conco). Dried samples were submitted to GC/MS analysis.

Extraction of tissue samples. Pulverization. All tissue samples were weighed,
collected in Eppendorf tubes and stored at � 80 �C until analysis. On the day of the
analysis, three 7-mm grinding balls were added to each tissue sample into the
Eppendorf tube. The sample tubes were then put in liquid nitrogen for 15 s. At the
same time point, the grinding block was frozen in liquid nitrogen for 15 s. Sample
tubes were then put into the grinding block and milled in the ball mill (Retsch) for
2 min at 25 s� 1 to yield a fine powder.

Homogenization. For homogenization, five small grinding balls (1 mm) and the
appropriate amount of extraction fluid (MeOH/H2O, 40/8.5 v/v) were added to the
pulverized samples (485 ml per 100 mg tissue) and milled for 2 min at 25 s� 1

leading to a homogeneous fluid.
Extraction. A liquid–liquid extraction method was used to extract metabolites

simultaneously in each tissue type. First chloroform (400 ml per 100 mg tissue) was
added to the homogenized tissue fluid followed by H2O (200 ml per 100 mg tissue).
The mixture was incubated on a thermomixer (Eppendorf) for 20 min at
1,300 r.p.m. and 4 �C. After the incubation period, the suspension was centrifuged
for 5 min at 10,000 r.p.m. and 4 �C, and 30ml of the upper aqueous phase were
transferred into a GC/MS vial for speed vacuum evaporation at � 4 �C using a
refrigerated CentriVap concentrator (Labconco). Dried samples were submitted to
GC/MS analysis.

GC/MS analysis. Metabolite derivatization was performed using a Gerstel Multi
Purpose (MPS) autosampler. Dried polar metabolites were dissolved in 15 ml of 2%
methoxyamine hydrochloride in pyridine at 40 �C. After 30 min, an equal volume
of MSTFA (2,2,2-trifluoro-N-methyl-N-trimethylsilyl-acetamide)þ 1% TMCS
(chloro-trimethyl-silane) were added and held for 30 min at 45 �C. GC/MS analysis
was performed using an Agilent 7,890A GC equipped with a 30-m DB-35MS
capillary column. The GC was connected to an Agilent 5,975C MS operating under
electron impact ionization at 70 eV. The MS source was held at 230 �C and the
quadrupole at 150 �C. The detector was operated in scan mode and 1 ml of deri-
vatized sample was injected in splitless mode. Helium was used as carrier gas at a
flow rate of 1 ml min� 1. The GC oven temperature was held on 80 �C for 6 min
and increased to 300 �C at 6 �C min� 1. After 10 min, the temperature was
increased to 325 �C at 10 �C min� 1 for 4 min. The run time of one sample
was 59 min.

Stable-isotope labelling experiments. [U13C6] or [1,213C2] glucose was injected
i.p. (0.5 g kg� 1 body weight (BW)). Blood was taken from the mouse tail at the
respective time points. Mass isotopomer distributions were determined using the
MetabolieDetector software package43,44. Chemical formulas of respective
fragment ions were taken from45. To determine the glucose turnover in plasma, the
amount of M6 glucose isotopologues in plasma was measured 180 and 10 min post
injection. To compensate for variation caused by i.p. injection, the amount of M6
isotopologues 180 min post injection was normalized by the amount of M6
isotopologues measured 10 min post injection. Fractional GNG in liver was
determined as described by Kelleher46: (M1glucoseþM2glucoseþM3glucose )/
(2�M0lactate � (M1lactateþM2lactate þM3lactate)).

To determine the relative glucose contribution to the TCA cycle in the liver,
the mass isotopomer distribution (MID) of citrate was measured after 60 min post
injection. To compensate for variation caused by i.p. injection, the amount of
isotopically enriched isotopologues ( 1�M0citrate) was normalized by the amount
of M3 isotopologues of lactic acid: 1�M0citrate/M3lactate.

Measurement of OCR. Seahorse XF96 was used to measure the rate change of
dissolved oxygen (OCR) in the culture medium. Per well, 2.2� 105 freshly isolated

bone marrow cells were seeded in unbuffered DMEM in poly-lysine treated XF96
plates 1 h before the assay and the measurement was made over 2 min according to
the companies’ protocol.
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