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Abstract: Significant variation in impedance under a wide range of loads increases the difficulty of
frequency tracking and vibration control in high-power piezoelectric systems (HPPSs). This paper
proposed a wide operating range driving and control scheme for HPPSs. We systematically analyzed
the impedance characteristics and deduced the load optimization frequency. In order to provide
sufficient drive capability, the inverter combined with an LC matching circuit is configured. With the
aid of a transformer ratio arm bridge (TRAB) combined with a proposed pulse-based phase detector
(PBPD), the proposed scheme can control the vibration amplitude and keep parallel resonance status
under a wide range of loads. Experiments conducted under actual operating conditions verify the
feasibility of the proposed scheme under the modal resistance range from 7.40 to 500 Ω and the
vibration range from 20% to 100%. Moreover, with the aid of a laser displacement sensor, our scheme
is verified to have a vibration amplitude control accuracy better than 2% over a tenfold load variation.
This research could be helpful for the driving and control of HPPSs operating in a wide range.

Keywords: high-power piezoelectric systems; parallel resonance tracking; vibration amplitude
control; transformer ratio arm bridge; pulse-based phase detector

1. Introduction

High-power piezoelectric systems (HPPSs) are used in a large range of applications, such as
ultrasonic welding, cutting and actuators [1–4]. In high-power situations, it is crucial to effectively
convert the electrical energy into the mechanical vibration in the piezoelectric transducers (PTs) [5–8].
Generally, researchers excite PTs at their mechanical resonance frequency, that is, the series resonance
frequency ( fs), where the minimum excitation voltage is required [1,9]. However, as the vibration
amplitude increases, an additional loss near fs degrades the performance of the PTs in high power [10,11].
It is attributed to the dielectric loss which is related to the input current in HPPSs [12]. Therefore,
exciting the PTs at the parallel resonance frequency ( fp) with the minimum excitation current can
achieve the optimal efficiency. For the HPPSs operating under high vibration amplitude, high excitation
voltage is required at fp [12]. However, different materials and processes result in wide range of loads
in some ultrasonic machining, such as welding and cutting [13,14]. The load increases the required
excitation voltage, leading to the risk of electrical breakdown. Therefore, avoiding the excessive rise up
of excitation voltage under high load conditions becomes a challenge for HPPSs. Meanwhile, the wide
range of loads has a significant impact on the impedance characteristics, leading to another challenge
in providing sufficient drive capability over the operating range.

In most ultrasonic systems, piezoelectric transducers (PTs) need to be excited in the resonant
mode [1,9]. Besides, different vibration amplitudes are required for different processing materials [14,15].
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For the PT working at light loading conditions, the excitation voltage and current are almost in phase
at fs and fp, while the impedance reaches the minimum and maximum near fs and fp, respectively [16].
Therefore, the working frequency can be tracked by a phase locking loop (PLL) or impedance extremum
search [17]. Meanwhile, the vibration amplitude can be controlled through current and voltage driving
modes at fs and fp, respectively [9,16]. However, as the load increases, two pairs of zero phase
frequencies and the impedance extreme frequencies gradually deviate from fs and fp [17]. In order
to enlarge the operating load range, schemes based on the impedance or admittance calculation
are proposed, such as the maximum target impedance scheme and the admittance circle tracking
scheme [1,18]. However, these schemes require complicated software operations to calculate the
frequency deviation and the vibration amplitude. With the aid of a transformer ratio arm bridge
(TRAB), a vibration amplitude signal is obtained online in an ultrasonic motor control scheme under
different operating conditions [19]. Moreover, this signal is in phase with the excitation current at fp,
so the parallel resonance detection can be achieved by detecting the phase between the vibration and
the excitation current signals. However, the excitation current can be extremely discontinuous and
harmonic-rich in the HPPSs over a wide operating range, leading to a new challenge for phase detection.

In order to drive the HPPSs at load optimization frequency under a wide range of loads with
controllable vibration amplitudes, a driving and control scheme is proposed in this paper. We first
analyze the impact of different loads on the impedance characteristics, and propose the load optimization
frequency tracking mode. Second, in order to provide the sufficient drive capability, the effect of the
inverter combined with an LC matching circuit is analyzed under different operating conditions. Then,
the pulse-based phase detector (PBPD) is proposed to overcome the challenge of phase detection over
a wide operating range. Finally, the proposed scheme is verified under actual operating conditions in
terms of the frequency tracking and vibration control.

2. Electrical Architecture

2.1. Equivalent Models

An HPPS can be characterized by electromechanical models (A and B) deduced from an electrical
model, as shown in Figure 1 [12].
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In the electromechanical models, the dielectric property is characterized by C0 and Rd. For model
A, which is similar to the classic Butterworth-Van Dyke (BVD) model [20,21], the series R1, L1 and C1

characterize the modal damping, mass and stiffness, respectively. Under the steady state of sinusoidal
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excitation, the model A can be converted to the model B [19]. In this model, the parameters can be
calculated by 

R′1 = 1
B2

0R1

L′1 =
Cp

B2
0

C′1 = B2
0L1

, (1)

where  B0 = ωC0

Cp = C0C1
C0+C1

. (2)

In this paper, some electrical characteristics under sinusoidal excitation can be expressed in
complex vectors form written in bold letters, such as

U
′

1 = U′1e jωt

UT = UTe jωt

IT = ITe jωt
, (3)

where U
′

1 is the partial voltage of the parallel RLC part, and UT and IT are the excitation voltage and
current of the transducer, respectively. Here, Z

′

1 = U
′

1/IT is defined as the impedance of the parallel
RLC part, which satisfies the relationship

Z
′

1 = 1/
(

1
R′1

+ jωL′1 +
1

jωC′1

)
. (4)

Then, we define θ to be the phase angle of Z
′

1, that is, the phase between U
′

1 and IT. Therefore,
it can be inferred that θ = 0 at fp without the influence of R1, because the parallel RLC part resonates
at fp according to

fp =
1

2π
√

L′1C′1

. (5)

Moreover, when comparing with the electrical model, it can be noted that the partial voltage u′1 in
the model B corresponds to the piezoelectric voltage up in the electrical model, which is proportional to
the vibration amplitude [12]. Therefore, u′1 can be used for vibration and parallel resonance detection
without additional calculation.

In this paper, we use a DUKANE 20 kHz 3300 W piezoelectric transducer, a 1:1.5 transducer
amplitude transformer, and a ϕ70 mm plastic welding horn to construct a typical HPPS used for
ultrasonic welding. The parameters of the HPPS are shown in Table 1. It should be noted that, in actual
operating conditions, R1 increases from 7.40 Ω under no load condition to 200~500 Ω under high
load conditions.

Table 1. Parameters of the BVD model for the HPPS.

Parameters Rd (Ω) C0 (nF) C1 (nF) L1 (mH) R1 (Ω)

value 7.26 18.93 0.1696 370.4 7.40~500

2.2. Impedance Characteristics Analysis

To analyze the influence of wide range of loads in an HPPS, the variations in UT and IT are
calculated under a constant vibration. First, we set U′1 to be a typical value 1700 V, and IT can be
calculated as

IT =

∣∣∣∣∣∣∣U
′

1

Z
′

1

∣∣∣∣∣∣∣. (6)
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Then, UT is deduced to be
UT =

∣∣∣∣IT
(
Z
′

1 + Rd + 1/ jωC0
)∣∣∣∣. (7)

Therefore, the variations in UT and IT under different excitation frequencies are calculated and
demonstrated in Figure 2a,b, respectively, in which R1 is taken as four different typical values of 7.4, 50,
100 and 200 Ω. This analysis shows that IT increases linearly while UT increases slightly at fp as R1

increases. Therefore, it can be inferred that the wide range of loads leads to an equal variation range of
IT at fp. Furthermore, the current variation range is further expanded to over a hundred times when
the vibration amplitude is controlled from 20% to 100% in our system.
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Figure 2. Variations in excitation voltage (a) and current (b) under the same vibration amplitude.

Moreover, we analyze the influence of Rd from the perspective of the dielectric voltage drop
rate calculated as ITRd/UT, as shown in Figure 3. It shows that Rd has the greatest impact at fs,
especially under light load conditions. However, the dielectric voltage drop rate decreases to less
than 1% near fp. Therefore, the influence of Rd on the impedance characteristics can be ignored in
our scheme.
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Further, we analyze the variations of UT and IT near fp from the perspective of the phase θ
under the constant vibration amplitude (U′1 equals to 1700 V), as shown in Figure 4a,b, respectively.
The relationships of UT and IT are deduced as

IT =
U′1

R′1 cosθ
, (8)

UT =
∣∣∣U′1 + IT(Rd + 1/ jωC0)

∣∣∣. (9)Sensors 2019, 19, x FOR PEER REVIEW 5 of 15 
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Figure 4. Variations in excitation voltage (a) and current (b) under different phase θ.

The curves of UT shows that UT increases with R1 at fp, and decreases with a slope positively
related to R1 as θ increases. Meanwhile, it shows that IT is very close to the minimum near the
zero phase due to the inverse relationship with cosθ. The analysis above suggests that slight phase
difference has little influence on the impedance characteristics. Especially, an appropriate phase
difference, such as 20◦, can prevent the rise of UT under high load conditions with a negligible rise of
IT. Therefore, we suggest the load optimization frequency to be slightly lower than fp with θ near 20◦

in our typical HPPS.

3. Proposed Driving Scheme

3.1. Electrical Architecture

The proposed scheme contains a rectifier bridge, a full-bridge inverter, an LC matching circuit
and a transformer, as shown in Figure 5.
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The commercial power (220 V 50 Hz) is rectified into the DC power UDC, and then inverted to the
AC power in ultrasonic frequency. A series LC matching circuit is used for DC isolating and harmonic
filtering. More importantly, the specific configuration of Lm and Cm is also related to impedance
matching and vibration excitation, which are analyzed in the next sector. Since a transformer ratio arm
bridge (TRAB) is easy to be intergraded with little impact on the electrical circuit [16], it is adopted to
detect the partial voltage u′1 online. A tap is drawn from the secondary side of the transformer with the
coil turns satisfying n2 � n3, and a detection capacitor Cd is connected into the circuit, which satisfies

Cd =
n2 + n3

n3
C0. (10)

Therefore, the bridge voltage, that is, the transformer tap voltage ub satisfies the relationship

Ub =
n3

n2 + n3
UT − jωCdIT =

n3

n2 + n3
U
′

1. (11)

In the proposed scheme, we configure n1 = 22, n2 = 155, n3 = 4 and Cd = 752 nF according to
the analysis above.

3.2. Electrical Properties

Under the driving of the gate signals, the inverter continuously changes the switching state, as
shown in Figure 6. The input current to the HPPS iin rises up in the conduction zones and falls down
in the freewheeling zones, then iin becomes zero and the inverter enters high resistance zones. As the
duty cycle d of the gate signals increases, the conduction zones become wider, leading to the increase
in the vibration amplitude. However, the situation is much different under different d.
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In order to analyze the electrical properties under the steady state near fp, the electric architecture
is simplified by equivalent transformation, as shown in Figure 7, leading to

L′m = k2Lm

C′m = 1
k2 Cm

U′DC = kUDC

, (12)

where k is the transformer ratio. L′m, C′m and U′DC are the matching inductance, matching capacitance
and DC voltage after transformation, respectively. We also define uC as the sum voltage of C′m and C0.Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 
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leading to negligible uC. Therefore, in the conduction zones, there exists

diin
dt

=
1

L′m

(
U′DC − u′1

)
, (13)

while there exists
diin
dt

=
1

L′m

(
−U′DC − u′1

)
(14)

in the freewheel zones. iin and other related waveforms are shown in Figure 6. Since only the
fundamental wave can excite the modal vibration, we use the Fourier series to extract it in iin to consider
as the excitation current iT of the HPPS, which can be calculated as

iT =
ωp

π

∫ π
ωp

−
π
ωp

iin cos
(
ωpt

)
dt cos

(
ωpt

)
+
ωp

π

∫ π
ωp

−
π
ωp

iin sin
(
ωpt

)
dt sin

(
ωpt

)
. (15)

When we define u′1 to be in phase with sin
(
ωpt

)
, and iin should also be in phase. Therefore, the first

term in Equation (15) equals to zero. On the other hand, the conduction and freewheeling zones are
concentrated near the peak of sin

(
ωpt

)
. Therefore, Equation (15) can be approximated as

iT =
ωp

π

∫ π
ωp

−
π
ωp

|iin|dt sin
(
ωpt

)
, (16)

By consideration of Equations (13), (14) and (16), it can be deduced that

iT = 4(A + B) sin
(
ωpt

)
, (17)
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where A and B correspond to the effects of the conduction zones and the freewheeling zones, respectively,
deduced as 

A = d2

2L′m fp

(
U′DC −U′1

)
B = d2

2L′m fp

U′DC−U′1
U′DC+U′1

(
U′DC −U′1

) . (18)

According to U′1 = ITR′1 at fp, the relationship between U′1 and d can be derived as

U′1 =
−(1 + 2D) +

√
1 + 12D + 4D2

2
U′DC, (19)

where

D =
d2R′1

2L′m fp
. (20)

Therefore, Lm is inversely proportional to U′1 under the same load and duty cycle.
For the conditions where the inverter is driven with high duty cycle d, the capacitor voltage

uC is considerable, leading to Equations (21) and (22) in the conduction zones and freewheel zones,
respectively. This mechanism leads to the heaping of the current waveform, as shown in Figure 6,
which greatly increases the excitation current to the HPPS. Although it is difficult to analyze the current
waveform further, the behavior of the inverter can be analyzed from the perspective of the input
voltage uin under these situations. The conduction zones gradually dominate in the waveform of uin,
approaching to a bidirectional pulse wave with increasing d, as shown in Figure 8.

diin
dt

=
1

Lm

(
U′DC − uC − u′1

)
. (21)

diin
dt

=
1

Lm

(
−U′DC − uC − u′1

)
. (22)
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Here, it is important to configure LC matching circuit to offset the capacitive reactance of C0 and
make the circuit purely resistive at fp , satisfying

2π fp Lm −
1

2π fp Cm
= k2 1

2π fp C0
. (23)
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Therefore, it can be noted that the partial voltage u′1 is equal to fundamental wave of the output
voltage of the inverter under the matching condition above, satisfying

U′1 =
4U′DC
π

sinπd. (24)

This relationship suggests that the scheme can excite U′1 to the maximum value of 4
πkUDC without

being affected by the load.
Due to the analyzed above, we configure Lm = 143 µH and Cm = 870 nF. Here, we use

MATLAB/Simulink (MathWorks, Natick, MA, USA, 2017b) to simulate the relationship among d,
R1 and U′1, as shown in Figure 9. It shows that U′1 increases smoothly with d under different loads.
This result verifies the drive capability of our scheme under a wide range of loads with adjustable
vibration amplitude.
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4. Detection and Control

4.1. Pulse Based Phase Detector

In order to maintain constant vibration amplitude and keep operating near fp, the amplitude
of u′1 and its phase θ with Iin need to be detected. Owing to the TRAB integrated in our scheme,
u′1 is extracted via the signal ub, which is strong and pure under most conditions. Therefore, it can
be reliably digitized through the zero-crossing comparator after squelch. Meanwhile, Iin is detected
by a feed-through current transformer. However, filtering and digitizing iin is difficult due to the
discontinuous and harmonic-rich in the large variation range.

In this scheme, a pulse-based phase detector (PBPD) is proposed. Since the input current iin almost
occurs in the conduction zones, a PWM gate signal is used instead of the iin. A classical digital phase
detector based on D flip-flops is adopted to generate a phase detection signal. The timing diagram of
the relevant signals and the phase detector circuit are shown in Figures 10 and 11, respectively.
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In the proposed scheme, we use the gate signal B but not A to avoid the potential competitive risk,
and define the pulse center to be 270◦. Therefore, the phase θ can be calculated though the relationship

θ = 360◦ ∗
D + d/2

T
− 270◦, (25)

where D and T are the pulse width and the cycle of the phase signal, respectively. Affected by the
variation in the current waveform under different conditions, the phase θ obtained by PBPD has a
small deviation, which will be further analyzed in the experiment.

This signal is also used in the detection of Ub, which triggers a T/4 peak sampling timer on the
rising edge, as shown in Figure 10.



Sensors 2020, 20, 4401 11 of 16

4.2. Control Realization

Due to the perturbation of UDC and variation of load, a vibration close loop is needed in the
proposed scheme. As d is deduced to be in positive correlation to U′1, the control logic is established as

∆d = Kp,d
(
Ub,target −Ub

)
, (26)

where Ub is the feedback parameter, Ub,target is the vibration target voltage, and Kp,d is the proportional
control parameter in the vibration amplitude controller.

Moreover, due to the change of temperature and the coupling stiffness caused by the loads,
a frequency closed loop needs to be executed in parallel with the vibration close loop. Since θ is
inversely related to frequency and equal to zero at fp , the control logic is established as

∆ f = Kp, fθ, (27)

where Kp, f is the proportional control parameter in the frequency controller.

5. Experimental Results

5.1. Frequency Tracking Verification

The experimental setup is demonstrated in Figure 12. Here, the HPPS is fixed on a pneumatic
thruster and pressed against a damp cloth. We apply different loads to the HPPS by adjusting the
cylinder pressure of the thruster. Meanwhile, the waveforms of Uin, Iin, Ub and the gate signal A
are measured by a Tektronix TDS 2024B oscilloscope, and the waveforms of four extreme operating
conditions are shown in Figure 13. Here, 100% controlled vibration amplitude corresponds to about
1700 V of U′1. The sampling period of the oscilloscope is 0.04 µs in the experiments, and the accuracy is
0.04 per division for each channel. This result shows that the center of the pulse coincides with the
peak of ub, indicating that the frequency tracking meets the design. Meanwhile, the current waveforms
are basically consistent with the analysis. The difference is caused by a weak leaking current in the
high-resistance region, which may be attributed to the influence of the parasitic capacitance of the
IGBT modules in the inverter.
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vibration amplitude; (d) R1 equals 200 Ω under 100% vibration amplitude.

Further, we perform Fourier transform to extract the fundamental wave of Iin, and the actual
θ is calculated and demonstrated in Figure 14. This result shows that the phase difference is about
15◦~25◦ under most operating conditions but relatively large under no load conditions (R1 equals to
7.40 Ω). It is inferred that the load optimization frequency is slightly lower than fp, with θ near 20◦ in
Section 2.2. The experiment result verifies this inference in which the actual excitation peak voltage is
1.76, 1.58, 1.58 and 1.62 kV when R1 equals to 7.40, 50, 100 and 200 Ω, respectively.

5.2. Vibration Control Verification

In this experiment, the vibration is tracked in different amplitudes by the proposed scheme
and the actual vibration amplitude is measured by a KEYENCE LK-H008 laser displacement sensor.
The measurement setup is shown in Figure 15. Each measurement is repeated five times, as shown in
Figure 16. The result shows the linear relationship between our controlled vibration amplitude and the
actual vibration amplitude. It verifies the reliability of our scheme in vibration control, which can be
suitable for different processes.
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Figure 16. Real vibration amplitude under different control targets.

5.3. Vibration Stability under Variable Load

In order to verify the stability of vibration control in varying load condition, we set target vibration
amplitude to 30%, and increase the load gradually using water. Meanwhile, the laser senor measures
the actual vibration amplitude. The proposed scheme also calculates and records R1 in real time
according to the equation:

R1 =
IT cosθ

U′1(ωC0)
2 . (28)

The variations in the actual vibration amplitude and R1 are shown in Figure 17. It shows that
R1 gradually increases 10 times after startup, while the fluctuation in the actual vibration amplitude
is within 2%. This result verifies the feasibility in a wide range of loads. On the other hand, it also
demonstrates the dynamic adaptability of our scheme. Although the capability of frequency tracking
and vibration control is verified, the HPPSs under transient state have more complex characteristics,
which should be further considered in the dynamic process.
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6. Conclusions

This paper demonstrates that the proposed scheme is capable of frequency tracking and vibration
control under a wide operating range. First, the impedance analysis indicates that the excitation
current IT varies in a wide range under different loads near fp. The analysis also indicates that a slight
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deviation in phase θ affects the impedance characteristics little. Especially, we suggest that the load
optimization frequency with about 20◦ phase difference can help avoid the excessive rise up of the
excitation voltage under high load conditions. Second, the electrical architecture is built, and the
drive capability of the scheme is verified in wide range of loads and different vibration amplitudes.
Then, the pulse-based phase detector (PBPD) is proposed, which can get the phase signal over a wide
operating range with acceptable precision. The experiments verify the feasibility of PBPD and vibration
amplitude control under the resistance range from 7.40 to 500 Ω and the vibration range from 20% to
100%. Finally, the experiment verifies that the accuracy of the vibration control is within 2% via a laser
displacement sensor under varying load. The proposed scheme could be very useful for the HPPSs
working in complex conditions, like ultrasonic welding and cutting.
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