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Abstract: Understanding and modeling of a surface-plasmon phenomenon on lossy metals interfaces
based on simplified models of dielectric function lead to problems when confronted with reality. For a
realistic description of lossy metals, such as gold and silver, in the optical range of the electromagnetic
spectrum and in the adjacent spectral ranges it is necessary to account not only for ohmic losses but
also for the radiative losses resulting from the frequency-dependent interband transitions. We give
a detailed analysis of Surface Plasmon Polaritons (SPPs) and Localized Surface Plasmons (LPSs)
supported by such realistic metal/dielectric interfaces based on the dispersion relations both for
flat and spherical gold and silver interfaces in the extended frequency and nanoparticle size ranges.
The study reveals the region of anomalous dispersion for a silver flat interface in the near UV spectral
range and high-quality factors for larger nanoparticles. We show that the frequency-dependent
interband transition accounted in the dielectric function in a way allowing reproducing well the
experimentally measured indexes of refraction does exert the pronounced impact not only on the
properties of SPP and LSP for gold interfaces but also, with the weaker but not negligible impact,
on the corresponding silver interfaces in the optical ranges and the adjacent spectral ranges.

Keywords: Localized Surface Plasmons (LSP); Surface Plasmon Polaritons (SPP); metal-dielectric
interfaces; plasmon damping; plasmon resonance; dielectric function; dispersion relation; interband
transitions; gold; gold nanoparticles; silver; silver nanoparticles; size effects; anomalous dispersion;
quality factor

1. Introduction

Theoretical and experimental studies of surface plasmons and plasmon-active surfaces have
revealed the great potential of plasmonics basing on the exploration of properties of metal-dielectric
interfaces. Surface plasmons are defined as collective electron oscillations coupled to the
electromagnetic (EM) fields confined to the dielectric–metal interface. Strong local EM field
enhancement and concentration of light energy into nanometer-sized volumes, opened up exciting
prospects in sensing, detection, imaging and manipulation techniques at the nanoscale, as well
as enabled the realization of various plasmonic devices and applications ranging from photonics,
chemistry, medicine, bioscience, energy harvesting and communication to information processing
(e.g., References [1–19]) and quantum optics (e.g., References [20–31]).

The solid-state approach to electronic excitations on a flat semi-infinite metal boundary resulted in
understanding the very basis of surface plasmons phenomenon. The existing models of the many-body
dynamical electronic response of solids were reviewed in Reference [32]. However, the intense
developments of various plasmonic materials and metamaterials resulted in an increasing interest in
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their optical properties which are consequences of how they reflect, transmit, and absorb EM radiation.
Electromagnetic characteristics of noble-metal based plasmonic structures and nanostructures, such as
thin-films, hole-arrays or nanoparticles are known to strongly differ from their bulk counterparts,
therefore stimulating efforts in attempts to understand the intrinsic dissimilarity and in the prediction
of novel phenomena which manifests in observations and measurements.

Plasmonics is based on the excitation of surface plasmons. The surface plasmon phenomenon is
connected with excitation of long-distance correlated oscillation of free electrons from the conduction
band coupled to a transverse magnetic (TM)-polarised EM field at the metal-dielectric interface.
Excitation of such surface oscillations forms the propagating waves called Surface Plasmon-Polariton
(SSP) in the case of flat metal-dielectric interfaces, or the standing waves of Localised Surface Plasmons
(LSP) in the case of (spherical) nanoparticles. Surface plasmon EM fields peak at metal-dielectric
interfaces and decay exponentially away with distance from the interface. Losses and decoherence in
the system of collectively oscillating electrons are caused by the scattering of electrons on background
ions, phonons, and themselves (ohmic loss). Such collisional losses are augmented by the scattering
on the confining surface which effectively shortens the mean free-electrons path in the case of
smallest nanostructures.

In many applications, not the electron behavior in a plasmonic nanostructure is of prime
interest but the EM fields coupled to charge oscillations and confined to the metal-dielectric interface.
Such fields directly impact many processes that have found or are expected to be of potential in
applications using propagating SPPs or those forming the standing waves of LSPs. Prediction for
confined fields supported by the interface and their spatial distribution and dynamics are based on the
self-consistent Maxwell’s electrodynamics in absence of the illuminating fields. In such an approach,
field confinement arises from the properties of the metal-dielectric interface itself and is manifested
when the interface is properly illuminated.

The reliable dielectric function (DF) which describes the manner the EM field acts on electrons of
the materials involved, is the input parameter of EM theory. Significance of realistic description of
dielectric properties of noble metals in basic issues and applications has been a motivation to many
experimental studies intended to increase the accuracy of measurements of the indexes of refraction
of noble metals in the function of wavelength [33–38]. In studying many aspects of plasmonic
problems, it is convenient to have at hand an analytic expression for the dielectric function ε(ω)

applicable for real metals, as it reveals the role of the useful parameters which characterize bulk
metals. Such parameters are useful in predicting and shaping the plasmonic characteristics of the
corresponding nanostructures. From this point of view, the realistic model of the frequency dependence
of DF involving physically meaningful parameters and possibly small number of free parameters is of
basic importance. The complex DF which reproduces well the measured real and imaginary parts of
complex indexes of refraction of metals n(ω): εexp(ω) = n(ω)2 = (n′(ω) + in′′(ω))2 is a fundamental
quantity which is directly related to the electronic structure of metals. Such DF gives an insight into the
elementary excitations of free carriers and interband absorption and allows us to study the basic surface
plasmons characteristics supported by the interface. In particular, the model of DF for real metals must
account for all important loss mechanism such as ohmic losses (heat release), inter-band absorption
and scattering on surface. The additional damping can be caused by the limited physical dimension
of the system resulting in the restriction of the mean free path of electrons. The phenomenological
expression for the rate of this process called a “surface collision scattering rate” [39] is proportional to
vF/a where vF is the Fermi velocity and a is the characteristic dimension of the metallic object. Let us
note that such additional damping with the phenomenological “surface collision scattering rate” in
nanoscale metals can be connected with Landau damping [40,41] and quantum confinement effect
which takes place near metal-dielectric interfaces. However, in many studies, DF is modeled using a
Drude-Lorentz approach which accounts for the intraband behavior of metals only. Such models, as
well as those which approximately account for the presence of the interband transitions by a constant
added to the real part of DF (e.g., References [42,43]), are known to be unsatisfactory in reproducing
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the experimentally measured indexes of refraction of noble metals. The frequency dependence of the
interband transitions of metals is usually modeled by one or more Lorentzian-shaped contributions to
DF what requires the use of large number parameters [39,44–46]. The optical properties of gold are
more difficult to represent in the visible and near-UV region with an analytic model due to the more
important role of interband transitions in these regions (e.g., Reference [39]).

In this paper, we critically reconsider the previously used Drude-type models of the dielectric
function for gold and silver. Gold and silver nanostructures are most frequently used in either
nanoscience or nanotechnology as they stand out due to superior plasmonic characteristics resulting
from high optical conductivity and chemical inertness (especially gold) under ambient conditions.
However, for gold, the models of the Drude-Sommerfeld-like dielectric functions often used in
electrodynamic calculations are known to be fairly not perfect over the energy of 1.8 eV (e.g.,
References [42,43]) which is the lower threshold energy for the interband transitions (ITs). For silver,
it is usually assumed that the Drude-type models of the dielectric function can be successfully
used for the description of its optical and plasmonic properties, as the ITs fall in the ultraviolet.
We reconsider this assumption and show to which extent such expectation can be valid. After taking
into account the frequency-dependent contribution of the ITs in both metals we examine their role
in tailoring SPPs on flat metal-dielectric interfaces and LSPs on nanoparticles versus their size.
The SPP’s and LSP’s characteristic derived from the dispersion relations (DR) for flat and spherical
interfaces form the complete tools for predicting the plasmonic performance of realistic but smooth
gold and silver interfaces of basic architecture. Understanding the role of ITs in such elementary
geometries of interfaces is of basing importance in predicting the plasmonic performance of many
metal nanostructures with the potential application ranging from photonics, chemistry, medicine,
bioscience, energy harvesting, communication and information processing.

2. Electronic and Optical Properties of Silver and Gold

The electron configurations of gold and silver atoms which belong to transition metals are
exceptions to the Madelung (or Janet or Klechkowsky) rule which describes the filling order of the
atomic sub-shells. These elements have completely filled d-subshells (respectively 4d10 and 5d10).
Their metallic properties result from the single valence electron in the half-filled s-subshells (5s1 and 6s1

respectively). In spite of similar electron configurations, the optical properties (and color perceived) of
gold and silver are different. In Ag the electronic transition responsible for absorption is the transition
from 4d→ 5s level, in Au it is 5d→ 6s transition. However, in gold with the high atomic number (79),
the electrons are subjected to an intense electrostatic attraction. Due to relativistic effects, the energy of
the 5d orbital in Au is raised and the energy of the 6s orbital is lowered (e.g., References [43,47]) leading
to the shift of absorption from ultraviolet to lower energies which fall in the blue visible range. As a
result, gold appears yellow when illuminated with white light because the reflected light is lacking in
blue. In silver the relativistic effects are smaller than those in heavier Au—the 4d-5s distance in Ag
remains much greater; such transitions fall in the ultraviolet. Therefore, the color of silver appears to
be silvery, like most other metals that result from the fairly flat reflectance spectra in the visible range.
The absorption of light by gold and silver bulk metals takes place through intraband and interband
transitions which occur in different energy ranges.

Intraband transitions (which occur at low energies) are free-carriers process. Electrons in the
conduction band are considered as free electrons forming an electron gas and the long-range
correlations in their positions is treated in terms of collective oscillations at the plasma frequency
ωp of the system as a whole. Intraband transitions result from excitations of electrons into a higher
energy level within the same band. Intraband transitions contribute to the infrared absorption of free
electrons as in the Drude model. In such model, incident EM radiation of frequencies below the plasma
frequency ωp is reflected, because the electrons in the metal screen the electric field of the light wave.
EM radiation of frequencies above ωp is transmitted, because the electrons cannot respond fast enough
to screen it (e.g., References [48,49]).
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Interband transitions are transitions from an occupied state below the Fermi level, to an unoccupied
state in a higher band and are intrinsically a quantum mechanical process. In practice, only transitions
to few energy bands contribute as in gold [50,51] where such transitions are known to be connected
with the critical points (so-called Van Hove singularities) in the density of states which occur near
symmetry points in the Brillouin zone. The large density of states in these regions is responsible for
interband absorption (and emission) in the visible range which takes place from the top of the d band
to states just above EF in the conduction band. These transitions occur with the threshold at EL = 2.4 eV
in the visible range (below green light wavelength λ = 516.6 nm). The additional ITs in gold are due to
the excitations of electrons from the 5d-band to unoccupied states in the 6sp-band above EF with the
interband gap EX = 1.8 eV (red light wavelength λ = 688.8 nm). Both energies specific to the ITs in gold
can be easily recognized in the dependence of the real and imaginary parts of the index of refraction
n (according to Reference [34]) represented as a function of h̄ω (dots in Figure 1). These energies are
displayed as the distinct low energy threshold at EX = 1.8 eV in n′(h̄ω) dependence, and as a distinct
disturbance in n′′(h̄ω) dependence over EL = 2.4 eV.

Figure 1. Subfigures (a) and (b), black circles: the measured real n′ and imaginary parts n′′ of
index of refraction n for gold and silver [34] (Kramers-Kronig relations involved) and (c) and (d):
the corresponding real and imaginary parts of the “experimental” function εexp(h̄ω) = [n′(h̄ω) +

in′′(h̄ω)]2. Real and imaginary parts of ε f ree(h̄ω), εe f f (h̄ω) and εm(h̄ω) (Equations (1)–(3)) and the
corresponding real and imaginary parts of the indexes of refraction fitted to both εexp(h̄ω) and n(ω)

are presented with red, green and blue lines correspondingly. Vertical lines mark the threshold energies
for interband transitions for gold [50,52] and silver.

3. Models of the Dielectric Functions

In physical systems which obey causality and linearity condition, the real and imaginary parts of
the dielectric function are related by the Kramers-Kronig relations. The real part of DF determines the
polarization of the medium when it is subjected to an electric field while the imaginary part determines
the amount of absorption. The usefulness of the dielectric function model in predicting the properties
of real physical systems depends on how they are able to reproduce the measured refractive indexes in
the interesting frequency (wavelength) range.

Our aim is to study the impact of the ITs in plasmonic issues in the most accurate manner possible
using the most simplest algebraic forms with as little number of fitted parameters as possible. For that
purpose we consider the three models of DF:
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• the free-electron Drude-type DF ε f ree:

ε f ree(ω) = 1−
ω2

p

ω2 + iωγ
, (1)

which describes the low frequency intraband contribution to the polarizability,
• the simplest effective DF εe f f :

εe f f (ω) = ε∞ −
ω∗2p

ω2 + iωγ∗
, (2)

which accounts for contribution of the ITs in a form of a constant included in the real part of
DF, and

• the more realistic, broad-frequency-range DF εm:

εm(ω) = ε f ree(ω) + εib(ω), (3)

which accounts for free-electron contribution and is frequency dependent in both the real and
imaginary parts.

3.1. Free-Electron Drude-Type Dielectric Function

In many plasmonic problems, the DF have been simplified to a form given by Equation (1)
that considers the dynamics of valence electrons in a metal as a collective harmonic oscillation of the
electron charge density (e.g., References [42,53]), whose behavior is imprinted in classical polarizability.

The parameters ωp and γ of the Drude free-electron DF (Equation (1)):

ε f ree(ω) = 1−
ω2

p

ω2 + γ2 + i
ω2

pγ

ω(ω2 + γ2)
, (4)

which we propose in this work for gold (h̄ωp = 8.6 eV and h̄γ = 0.072 eV) and silver (h̄ωp = 9.0 eV and
h̄γ = 0.02 eV) allow to reproduce very well the low and high frequency range of εexp(ω) dependence
in its real part (Figure 1c), red lines) and the low range frequency dependence in the imaginary part
(Figure 1d), red lines) in gold and silver (left and right panels respectively). Accepted parameters for
gold allow a good reproduction of Re εexp(ω) and n”(ω) in the frequency range up to about 1.1 eV
and Im εexp(ω) and n′(ω) up to about 1.8 eV (red lines, left panel of Figure 2). Therefore, the modeling
of properties of plasmonic materials with the use of ε f ree in gold can be fully reliable in the IR range,
which can be eventually extended up to 1.8 eV for quantities which are mainly defined by Im εexp(ω).
For silver (see the right panel of Figure 2) the limiting spectral range of applicability of ε f ree ends at
about 3.39 eV with little inaccuracy in the range from 1.7 eV up to 3.39 eV for Im εexp(h̄ω) and n′(h̄ω)

and about 2 eV for Re εexp(h̄ω) and n”(h̄ω).
The proposed parameters, expressed in electronvolts for convenience, reproduce also very well the

low-frequency range of real and imaginary part of the measured index of refraction, as demonstrated
in Figure 1a,b, red lines. Therefore, the fitted parameters ωp and γ are well fixed to the experimental
data and are expected to possess the correct physical meaning. These are the plasma frequency
ωp = [nee2/m∗ε0]

1/2 and electron relaxation rate γ of the bulk metal accounting for all electron
scattering processes which lead to ohmic losses and result in heat release. For γ 6= 0, electrons in the
conduction band are not totally free but can move quasi-free.

Dielectric Function for Metals and Semi-Metals Versus Kramers-Kronig Relations

In plasmonics papers one can find a collection of different parameters used to define the Drude-like
DFs ε f ree (and εe f f ) (e.g., References [35,54–57]) which are declared to reproduce well the Johnson
and Christy [34] measurements. The problem of unambiguity in finding the physically meaningful
parameters of such function which represent the corresponding real and imaginary parts of εexp(ω)
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result from the fact that these functions do not fulfill Kramers-Kronig relations (KKR) which connect
the real and imaginary parts of many complex functions in physical systems that obey causality and
linearity conditions.

The parameters resulting from the well behaved fit to the low frequency range of Im εexp(h̄ω) (e.g.,
those using the relaxation time τ = (9.3± 0.9)fs (τ = 1/γ) from Reference [34]) for gold) can not be
suitable to unambiguously determine the corresponding imaginary part and vice versa. The problem
is illustrated in Figure 2. Blue dashed lines fit well to Im εexp(ω) but the same parameters do not allow
to reproduce satisfactory Re εexp(ω) dependence.

Figure 2. Illustration of the problems in choosing the reliable parameters for Re ε f ree(ω) in the
low frequency range using the parameters of the imaginary part well fitted to low-frequency
Im εexp(ω) dependence (a, blue dashed lines). The additives to ε f ree(h̄ω) (red lines) which describe
frequency dependent interband transitions (Section 3.3) are presented in insets for gold and silver
(a,b, respectively). The resulting εm(ω), Equation (3), reproduces well εexp(ω) and n(ω) in a broad
spectral range (see blue lines in Figure 1).

The mathematical reason for this problem to occur lies in the fact that the functions ε f ree

(Equation (1)) (and εe f f (Equation (2)) do not fulfil the condition of being analytic in the upper
complex half-plane as they diverge with decreasing ω’s [58]. KKRs do not apply for such a class of
functions. The resulting very basic problem of causality seems to be not fully resolved but it can
be “patched” by—either reformulation of KKRs [59] which can include limitation of the range of
integration interval of the KKRs equations [60] (this solution is often practiced), or by modification of
the model of DF using quantum or classical approach [61,62]. For example, in the generalized Drude
model of the classical approach, one lets γ to be complex and frequency-dependent. It turns out that
the real part of γ then stays rather constant up to the plasma frequency and the imaginary part is of
less importance [62].

3.2. Effective DF with Frequency Independent Contribution of the ITs

In many plasmonic studies the simplified model of Drude-like DF εe f f (ω) (Equation (2)) with
the effective parameters ε∞, ω∗p and γ∗ is used. The ITs are accounted by the constant ε∞ − 1 added to
Drude-like form of DF (Equation (1)).

The effective parameters which we accept for gold are [43,63,64]: ε∞ = 9.84, h̄ω∗p = 9.010 eV and
h̄γ∗ = 0.072 eV and for silver [63–65]: ε∞ = 3.7, h̄ωp = 8.9 eV and h̄γ∗ = 0.02 eV.

The dielectric function Re εe f f with such parameters changes the sign from negative to positive
above: h̄ω∓ = 2.87 eV for gold. With these parameters, however, gold is transparent over this frequency
which is not the case for the real metal. Accepted parameters for gold allow good reproduction of
Re εexp(h̄ω) and n”(h̄ω) in the range up to about 2.9 eV and Im εexp(h̄ω) and n′(h̄ω) up to about 1.8 eV
(see left column of Figure 2a,b and Figure 1, green lines). Therefore, the modeling of properties of
plasmonic materials with use of εe f f in gold can be reliable up to 1.8eV in the optical range. For silver
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(see the corresponding right columns in Figure 2) the limiting frequency of applicability of εe f f ends
over 3.2 eV.

The advantage of using εe f f (ω) is its simplicity, and in the frequency ranges below 1.8 eV in Au
and 3.2 eV in Ag the modeling is expected to lead to reasonable predictions. We keep the model of DF
εe f f (ω) for further considerations in order to illustrate the spectral range of applicability for modelings
surface plasmons and in order to demonstrate what are after-effects of using such function near and
over these frequencies. We also intend to show the discrepancy of such results when compared with
the more exact modeling accounting for the frequency dependence of the ITs. Keeping this model,
we can also mimic the formal solutions of the dispersion relations of SPP over the frequency of ω∓
where metal is transparent to EM radiation.

The parameters and the spectral ranges of applicability of DF functions discussed in this paper
are collected in Table 1.

Table 1. External and the best-fitted parameters of the function εm which describes the free-electrons
contribution and the frequency-dependent contribution of the interband transitions in gold and silver.

εm External Fitted Nr

Interband Contribution Free electrons Contribution

h̄ωc [eV] εup ε lo S [1/eV] A [eV2] (h̄γL)
2 [eV2] ωp [eV] γ [eV]

Au 2.4 5.6 - 5.87 7.78 0.977 8.6 0.072 7

Ag 3.9 6.37–0.54 [1/eV]·h̄ω 0.1 7.90 4.02 1.00 9.0 0.020 8

3.3. Frequency Dependence of the Its Reflected in DF for Realistically Described Gold and Silver

Realistic dielectric function εm(ω) (Equation (3)) is expected to represent all important electronic
and optical features of real gold and silver and must include the contribution of the interband
transitions, as discussed in Section 2. εm(ω) must represent correctly not only the real and imaginary
parts of εexp(ω) dependence but also that of n(ω) in possibly largest range. Therefore, it must contain
a frequency dependence of the ITs contribution εib(ω) = Re εib(ω) + Im εib(ω) which includes the
appropriate threshold parameters (see Figure 2). This obvious statement in the optical range in case of
gold will be farther extended to the higher frequency range including far ultraviolet in case of silver.
In order to follow the frequency dependence of Im εexp(ω) in the higher frequency range (Figure 2),
we propose the contribution Im εib(ω) to εib(ω) in the form of the step-like logistic function:

Im εib(h̄ω) = ε lo +
εup − ε lo

1 + eS·h̄(ωc−ω)
, (5)

where ε lo and εup are the lower and upper asymptotes, ωc is the central frequency, and S is the slope
of the step.

The function Im εib(ω) with the constant upper asymptote is suitable to reproduce well the step in
Im εib(h̄ω) up to about 4.7 eV (UV range) in gold (see the inset in Figure 2b), left column). The central
frequency is h̄ωc = EL = 2.4 eV, and the slope S must reproduce the lower-energy threshold of the ITs
at EX = 1.8 eV. [43].

Figure 2a demonstrate that the correction to Re ε(ω) would be also desirable around the
characteristic frequencies for the interband transitions ωc in both gold and silver metals. We introduce
such frequency-dependent correction in harmonic-oscillator-based representations of the dielectric
functions in the simplest possible form of the Lorentzian profile:

Re εib(h̄ω) =
A

h̄2(ω−ωc)2 + (h̄γL)2
, (6)

with two fitted parameters A and γ2
L. The many-parameter Lorentzian profiles have been previously

used in the DFs models basing for example, on critical points analysis of metal band-structure (e.g.,
References [44,46]).
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Let us note that in silver the interband transitions provoke the change of sign in Re εexp(ω) in the
frequency range between h̄ω∓ ≈ 3.9 eV and h̄ω± ≈ 4.7 eV.

Table 1 includes all the predefined and fitted parameters of εm(ω) = ε f ree(ω) + εib(ω) with
ε f ree(ω) discussed and parametrised in Section 3.1. The free parameters of εib(ω) result from the
fit to the real and imaginary parts of εexp(ω) and n(ω). The resulting real and imaginary parts of
εm(ω) and

√
εm(ω) dependencies for gold and silver are presented in Figure 1, (blue solid line)

revealing reliability of εm(ω) up to about 4.2 eV in gold and to about at least 7 eV in silver. It is usually
supposed that ITs have no influence on the plasmonic activity of SPs. Farther in the text we present the
verification of such an assumption.

In the spectral ranges of validity extended to UV and far UV (in case of silver) ε(ω) represents
all important characteristics of dielectric properties of real gold and silver which include the realistic
contribution of the ITs. Re εm(ω) describes the strength of polarization induced by an external electric
field, while Im ε(ω) characterizes all the absorption and scattering losses (heat release and re-radiation)
encountered when materials interact with EM field.

4. Characteristics of Surface Plasmons Supported by Metal-Dielectric Interfaces Derived from the
Dispersion Relations

The most desired characteristics of SPPs and LSPs are shortened wavelength and enhanced field
strength. The link between appealing spatial characteristics of surface plasmons results from the
character of the dispersion relations which connect the allowed frequencies of plasmon oscillations to
the wave vector (in the case of SPP) or to the (inverse) of the radius in the case of LSP supported by
spherical metal nanoparticle (MNP) [53,63,65–68].

The dispersion relation, which is obtained from Maxwell equations in the absence of the
illuminating radiation, and the parameters derived from, defines the inherent properties of the
metal-dielectric interface. DR allows the formulation of the conditions enabling excitation of EM
surface wave (SW) supported by the interface after the interface is properly illuminated. The solutions
of Maxwell equations for EM field at the metal-dielectric interface which fulfill the appropriate
boundary conditions (see e.g., References [42,69,70] the reviews), define the normal-mode solutions
excitable on the interface. The homogeneous wave equations in both media are the starting point for
the description; infinitesimally narrow metal-dielectric boundary, homogeneity, and charge neutrality
of both media is assumed. The dielectric functions which describe material properties of the metal
and dielectric are the external parameters of the theory. The scheme allowing to derive the necessary
conditions to excite SPPs on a flat interface and LSPs on a spherical interface is sketched in Figure 3.

The dispersion relations for SPP plasmons propagating at flat metal-dielectric interfaces is usually
solved for real ω’s and complex wave vectors k, while in the case of (spherical) metal nanoparticles
the solutions with complex ω’s and real k are searched for.

The dispersion relations, in both cases of a flat metal-dielectric interface and a MNP embedded
in the dielectric, corresponds to the poles of the scattering problem of the Fresnel coefficient (see e.g.,
Reference [69]) or scattering coefficients of Mie scattering theory [53,63,65,67,68].

4.1. Flat Metal-Dielectric Interfaces

The basic properties of propagating SPP supported by the flat metal-dielectric interfaces are
usually illustrated in the simplest case of a single flat metal-dielectric interface separating metal
and a dielectric with the complex εm(ω) and the real εd = n2

d > 0 correspondingly. In many
basic approaches it is assumed that the metal is the idealized free-electron metal described by
εm(ω) = ε f ree(ω) (Equation (1)). However, the usefulness of such modeling for real metals is limited,
and understanding the basics of the phenomenon of plasmons based on such modeling can cause
problems when confronted with reality.
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Figure 3. Schemes for deriving the dispersion relations for Surface Plasmon Polaritons (SPP and
Localized Surface Plasmon (LSP) surface waves on a flat and spherical interfaces.

The expected SPP properties are drastically dependent on the model of the dielectric function of
the metal and on the radiative and nonradiative losses (included or not). In order to visualize the issue,
we reconsider the dispersion relation and spatial profiles of SPPs for various models of DF discussed
in Section 3. DR is derived by considering standard normal-mode solutions of the Maxwell equations
with the appropriate continuity relations at the metal-dielectric interface with the use of the different
models of the dielectric functions. A flat metal-dielectric interface, formed by a nonabsorbing dielectric in
the half-space above x-axis (z > 0) adjacent to a metal which fills up the half-space below x-axis (z < 0)
is considered as usual (see e.g., References [42,69,70] the reviews) (left panel of Figure 3). We seek the
normal-mode TM oscillating solutions in the form of the plane wave propagating along the x-axis:

ei(kjr−ωt) = eik⊥j(±z) · ei(k‖x−ωt), (7)

with real ω’s and the vectors kj = x̂k‖ + ẑk⊥j allowed to be complex. However, unlike the often
studied case of simplified description of metals, we also study the case when not only Im k‖ 6= 0 but
also Re k⊥j 6= 0 (as follows from applying the DFs studied in Section 3). The resulting dispersion
relations (see e.g., References [42,69,70]):

k‖(ω) =
ω

c

√
εmεd

εm + εd
, (8)

k⊥j(ω) =
ω

c
ε j√

εm + εd
, j = m, d, (9)

form the basis for predictions of the spectral ranges in which the oscillating EM wave is confined to the
metal-dielectric interface. k‖(ω) and k⊥j(ω) are complex components of the vector kj = x̂k‖ + ẑk⊥j
which are parallel and perpendicular to the interface. The imaginary parts Im k⊥j define the exponential
decay of the plane wave (Equation (7)) in the plane perpendicular to the interface, so they decide
about evanescent confinement to the interface or localization of the plane wave at the interface. Im k‖
defines the damping of oscillations along the interface. k0 = ω/c = 2π/λ0 is the free-space wave
vector. The wavelength of EM wave with the same frequency ω in the adjacent dielectric medium is
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λd = 2πc/
√

εdω and the wavelength of the wave propagating along the interface is λ‖ = 2π/ Re k‖.
The complex components k‖(ω) and k⊥j(ω) (Equations (8) and (9)) are connected by the relation:

k⊥j =
√

ε jk2
0 − k2

‖. (10)

In the following subsections we give the formal solutions for all the real and imaginary
components of the kj(ω) dependencies resulting from the four models of the dielectric functions
εm discussed above: ε f ree(γ = 0), ε f ree, εe f f and εm (with m denoting Au and Ag for real gold and
silver) in the frequency ranges embracing the frequency dependent ITs. We present solutions based
on ε f ree(γ = 0)(ω) (black line), ε f ree(ω) (red line), εe f f (ω) (green line) and the most exact modeling
based on εm(ω) which accounts not only for ohmic losses but also for the frequency dependence of
ITs in the studied metal-dielectric interfaces (Section 3, Figure 1). We keep all the formal solutions in
similar frequency ranges (even in the case when their physical meaning in some sub-ranges is dubious)
in order to illustrate the discrepancies in the results for various quantities important in plasmonic
with the aim to demonstrate what happens when such models are employed to understand basic SPP
features by considering DR in spectral ranges where their applicability is dubious. The examples are
ε f ree(ω) or εe f f (ω) which are not applicable in the high frequency range (Sections 3.1 and 3.2) and
derivation of the “resonance frequency” (as equal to ωp/

√
2), maximal wavelength contraction or

appearance of anomalous dispersion region [42,71]) cannot be applicable to realistic metals.
In particular, we keep also the results for εe f f over the frequency h̄ω∓, as they mimic the solutions

of the dispersion relation for metal-dielectric interfaces in the frequency range where the real part of DF
for a metal change the sign and became positive, what means that at these frequencies the free-electrons
are not able to screen EM field. In particular, we discuss also the results for the silver interface within
exact modeling in the frequency range between h̄ω∓ and h̄ω± (Section 3), where Re εAg, where the
screening by free-electron is overcome by the impact of IT.

4.1.1. Ideal Free-Electron Metal—Perfect Localization

In order to meet the condition of the mode perfectly bounded to the surface (the most often
discussed case, (e.g., References [42,69,70]), the normal component of kj in each medium must be
imaginary, so each Re k⊥j = 0. Such assumption applies to the idealized, lossless metal described by
the real DF ε(ω) = ε f ree(ω, γ = 0) in the frequency range where ε(ω) < 0, εd(ω) > 0 and |ε(ω)| > εd
(see Equation (8)).

If gold and silver were metals that meet these assumptions, the dispersion relations (Equations (8)
and (9)) (and the resulting LSP properties) would be like those illustrated in Figure 4a (black solid lines
for ε f ree(ω, γ = 0) well hidden under the increasing part of the red line representing the expectations
for ε f ree(ω, γ 6= 0).

We skip here the discussion of the dispersion relation for lossless metalic interface and the
expected properties of SPP within such modeling, as it can be found in many books and review papers
(e.g., References [42,69,72,73]).
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Figure 4. Dispersion relations for electromagnetic (EM) waves propagating along the metal-dielectric
interface for metals of properties represented by various models of the dielectric functions. Blue lines
represent the dispersion relations Re k‖(ω) (Equation (4)), (a) and Re k(ω) (Equation (14)) (b) found for
εm(ω) which accounts for ohmic losses and frequency dependent interband transitions in gold (left
column) and silver (right column).

4.1.2. Lossy Metals

In lossy metals k‖ and k⊥j components are complex and in general neither their imaginary nor
real parts can be neglected a priori. The numerical calculations of k‖(ω) = Re k‖(ω) + i Im k‖(ω)

and k⊥j(ω) = Re k⊥j(ω) + i Im k⊥j(ω) (Equations (8) and (9)) involve the square roots of imaginary
numbers which, depending of the sign of the imaginary value under the roots, leads to four different
solutions, in general. The final physical criterion applied in choosing the solutions which predict the
damping in place of the amplification is:

Im k⊥d > 0, Im k⊥m < 0, (11)

Im k‖ > 0, (12)

The frequency dependence of those quantities is discussed in Section 4.1.2. The resulting SPP
propagation length in relation to other length-scales characterising SPP wavelength and localization
are discussed in Section 4.1.3.

Modification of the Dispersion Relation by the Interband Transitions

The most reliable (exact) modeling that accounts for the interband transition (blue lines in the
following figures), introduces basic modifications to the dispersion relations of the surface-waves
supported by the gold and silver interfaces in comparison with the simplified modeling.

The real parts of k‖(ω) dependence (Equation (8)) which correspond to the condition (12) are
presented in Figures 4a for all the considered models of DFs. In the lowest frequency range, Re k‖(ω)

(blue solid line in Figure 4a) almost follows the light-line ω = k0c/
√

εd (marked with dashed black
line). At these frequencies the wave propagating along the interface is grazing the surface like in



Nanomaterials 2020, 10, 1411 12 of 27

the simplified modeling (black, red and green solid lines). With increasing frequency, the dispersion
relation Re k‖(ω) (blue lines in Figure 4) moves further away from the light-line. In case of silver,
the distinct local maximum of Re k‖(ω) is reached. With still increasing frequency, DR displays a
“turn-back” and crosses the light-line. Similar crossings can be observed also in free-electron metal
(black and red lines) over the frequency equal or close to ωp and for modeling using εe f f (see Figure 4a),
green lines) over h̄ω∓ (2.8 eV for gold, and 4.1 eV for silver in very far ultraviolet). The important
discrepancies of the exact modeling (blue lines) and those resulting from the simplified ones (black,
red, and green lines) prove that near and over these frequencies, such simplified modeling is not
applicable. In particular, the value ω/

√
2 is often quoted as a frequency that corresponds to “the

resonance frequency” of SPP, is obtained with the models of DFs (black and red lines) which do not
apply in such high-frequency range as there are no real metals that can be described by those. Let us
also note that the estimation of the maximal shortening of the SPP wavelength within modeling using
εe f f in Reference [42] can not be reliable from the same reason.

However, Re k‖ is not a total wave-vector of the excitable mode at the interface, as Re k⊥j 6= 0.
Also, | Im k⊥j(ω)| on both sides of the interface responsible for EM wave localization are strongly
modified. Both introduce basic changes to the simplified understanding of LSP supported by real
metal-dielectric interfaces.

The real parts of k⊥j(ω) corresponding to the chosen solutions for Im k‖j(ω) (conditions (11)) are
presented in Figure 5a,b. For all models of DF for lossy metals (red, green and blue line in Figure 5)
Re k⊥j 6= 0.

The vector Re k⊥ of length:

Re k⊥(ω) = Re k⊥d(ω) + Re k⊥m(ω). (13)

tilts the total wave vector Re k = Re k⊥ + Re k‖ from the interface to the metal side (Re k⊥(ω) < 0,
see Figure 5c) spoiling the longitudinal character of the surface modes [69,74] and leading to the
radiation leakage from the interface. The tilt angle of the total wave vector k of length:

k =
√

Re k2
‖ + Re k2

⊥ (14)

is defined by the arctan(Re k⊥/ Re k‖).

Localization of SPP

The components Im k⊥d(ω) and Im k⊥m(ω) functions which are the measure of SPP localization,
are illustrated in Figure 6a,b for all the studied models of the dielectric functions for gold (left column)
and silver (right column) interfaces. The spectral range of relatively good localization of SW (small
Im k⊥d, Im k⊥m) is dramatically reduced, when the interband transitions (green and blue lines) are
accounted for in addition to ohmic losses included in ε f ree (red line) even in the smallest frequency
range. The SPP mode is more tightly bound to the surface from the dielectric side. The silver interface
allows much better localization than the gold one over full optical range (between 1.6 eV and 3.1 eV).

Figure 5c demonstrate that in gold (left column) and silver (right column) interfaces, the spectral
ranges in which the longitudinal character of SW is only slightly affected, is dramatically reduced,
when the ITs (green and blue lines) are accounted for in addition to ohmic losses (compare with the
red line). The silver flat surface allows much better localization of the total energy near the interface
over the full optical range (between 1.6 eV and 3.1 eV) than the gold one. In gold, the radiative leakage
from the interface due to the ITs is present even in the smallest frequency range in IR spectral range
(compare the blue and the red lines in Figure 5) and display fast increase with frequency. Let us
note (see Figure 5) that in all models of DF for gold and silver which accounted for the ITs or/and
ohmic losses (red, green and blue lines), the conditions Re k⊥(ω) = 0 (and Re k⊥j(ω) = 0) is never
reached, so the modes supported by the realistic lossy gold and silver interfaces are never of purely
longitudinal character.
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Figure 5. Radiation loss rates caused my the (a) dielectric and (b) metal and (c) the resulting Re k‖(h̄ω)

(Equations (13)) which is the measure of the total radiation losses of SPP for gold (left column)
and silver (right column) of properties represented by various models of the dielectric functions.
Blue line represents the most reliable localization rates found for εm(ω) accounting for ohmic losses
and interband transitions.

Anomalous Dispersion of Surface Waves and Sub- and Superluminal Phase Velocities of SPP

Modification of the dispersion relations k‖(ω) and k(ω) by the ITs is also reflected in the phase
velocity v‖(ω) (also in the energy propagation velocity not discussed in this paper) and in the
wavelength λ‖(ω) of the surface longitudinal wave propagating along the interface.

For the silver interface such modification takes place in a intriguing way revealing the well
pronounced region of anomalous dispersion which manifests as the decrease in k(ω) and k‖(ω)

dependencies with increasing ω (Figure 7a,b, right column, blue lines). Such anomalous behaviour
known from optics is accompanied by a dramatic and intriguing modification to the phase velocity
v‖ = ω/ Re k‖ of SPP of the surface longitudinal wave supported by the silver interface (Figure 7c,
blue line, right column), the fact just mentioned in Reference [75]. In the spectral range of the
anomalous dispersion v‖(ω) reaches the superluminal velocity (Figure 7c, blue line, right column).
As is known from optics [76], in the frequency ranges of anomalous dispersion one can expect that
the phase velocity or even group velocity of pure traveling wave can be greater than the speed of
light. Moreover, the group velocity may exceed the speed of light in vacuum or become negative but
it does not mean that such superluminal velocity corresponds to a velocity with which a signal is
propagated [76]. Anomalous dispersion occurs only in regions of high absorption. In the discussed
case of SPP on metal-dielectric interfaces, such high absorption is due to the interband transitions.
Moreover, in the wavelength scales defined by λ‖ (discussed in the next section), the oscillation length
falls down (shadowed range in Figure 7c, right column) as we show in the next subsection.
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Figure 6. The rates Im k⊥d(h̄ω) and Im k⊥m(h̄ω) (Equations (11) and (12)) which are the measure
of SPP localization from the dielectric and metal side of the interface for gold (a) and silver (b) of
properties represented by various models of the dielectric functions. Blue line represents the most
reliable localization rates found for εm(h̄ω) accounting for ohmic losses and interband transitions in
realistically described gold (a) and silver (b).

4.1.3. Lengthscales of SPP for Realistic Gold and Silver Interfaces

Inclusion of ITs into modeling redefines the lengthscales of the SPP mode supported by the
interface. Farther we illustrate the corresponding quantities for SPPs, as they are of basic importance
for SP-based photonics.

The Oscillation Length and the Propagation Length of SPP

Figure 8a illustrate the wavelength λ‖ = 2π/ Re k‖ of the surface wave propagating along
the interface found for realistic lossy metals (solid blue lines) and for free-electron metal (red solid
lines). The corresponding long-dashed lines illustrate the LSP oscillation length L‖(ω) defined as the
propagation distance over which the field amplitude decays to 1/e of its original value:

L‖ = 1/ Im k‖, (15)

and the attenuation length l‖ = L‖/2 (short-dashed lines) which is often used in the simplified
modeling in which Re k‖ = 0.

The condition: L‖(ω) ≥ λ‖(ω) can be used to establish the spectral ranges in which the SPP
oscillations exist; if L‖(ω) < λ‖(ω), the amplitude of SPP oscillations decays faster than the oscillation
lasts. Figures 8a and 9a show that for gold interface, SPP oscillations can be excited in the full studied
spectral range (at least to 4.2 eV) while in silver the oscillations are not excitable in the spectral range
between 3.5 eV and 4.2 eV (the range of wavelengths λ0 from 295 nm to 354.2 nm) which embraces the
spectral range of anomalous dispersion in the UV spectral range.
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Figure 7. Frequency dependence (a) of the on-interface and (b) of the total wave vector of the SPP
wave demonstrating the regions of the anomalous dispersion in Ag and (c) the resulting phase velocity
of the on-the-interface wave.

Figure 8. Illustration of the changes in predicted lengthscales of SPP for free-electron metals (ohmic
losses included) and for the most reliable predictions (free-electron contribution also included) for
(a) the SPP wavelength λ‖, oscillation length L‖ and the attenuation length l‖ in gold and silver
interfaces. (b) illustrate the corresponding length scales related to 50λ‖ which can be useful in the
estimation of the frequency ranges for propagating SPP in applications.
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Figure 9. (a) SPP wavelength λ‖, oscillation length L‖ and the attenuation length l‖ related to the
wavelength λ0 of the incoming field. (b) The absolute (solid lines) and relative (dot-dashed lines)
shortening of the SPP wavelength of SPP wave at gold and silver interfaces.

Figures 8a and 9a allow also to compare the SPP wavelength λ‖ with the wavelength λ0 =

λdn (blue solid and black dashed lines respectively) at the same oscillation frequency ω (the same
wavelength λ0) and to access the spectral ranges of the maximal wavelength (and field intensity)
compression. The SPP wavelength shortening λ0 − λ‖ and the corresponding relative shortening
(λ0 − λ‖)/λ0 are presented in Figures 8b and 9b revealing existence of the maximal shortening at h̄ω

= 2.3 eV (about λd = 540 nm) for gold and at h̄ω = 3.6 eV (λd = 344 nm) for silver interfaces. However,
in the case of silver, the maximum falls in the spectral range of anomalous dispersion, where the short
oscillation length L‖ disables full oscillation cycle (Figure 9a), as L‖ < λ‖ (the region shadow-marked).

Let us note that the relative wavelength contraction (λ0 − λ‖)/λ0 for gold is more effective that
for silver interface (compare blue and black dash-dotted lines (in the left Figure 9b) in the almost whole
visible range. (λ0 − λ‖)/λ0 can be treated as a measure for the electric field confinement of SPP.

Let us mention here that according to References [40,41] (and references therein) the increase of
the electric field concentration produces two primary nonlocal effects: an increase in energy dissipation
and an expansion of the region of SPP mode (diffusion). Electric field confinement enhances the loss
due to Landau damping associated with the surface collision damping (an additional nonlocal effect
resulting in the shortening of the free-electron path due to presence of the interface)) which effectively
limits the degree of confinement.

Confinement (Localization) Length of SPPs

SPP plane wave is well bounded to the metal-dielectric interface when the wave amplitude decays
exponentially in both the metal and the dielectric (Equation (7)) with the sufficiently large rate Im k⊥j.
Figure 10 (blue lines) illustrate the confinement lengths δj(λ0) of the SPP wave amplitude in both the
metal and the dielectric (Equation (7)):

δj = (Im k⊥j)
−1, j = d, m. (16)
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Figure 10. Confinement (localization) lengths δm and δd of SPP wave in the (a) metal and (b) dielectric
in the direction perpendicular to the interface. Dashed blue lines in figs (a) illustrate the optical skin
depth δα.

In the dielectric medium adjacent to the metal, the confinement length δd(λ0) of the EM wave is
smaller than λ0 (Figure 10b) falling in the evanescent-wave regime.

The diffusion length in the metal δm(λ0) is smaller than δd(λ0) by an order of magnitude
(Figure 10a). In case of gold interface δm displays the maximum at about 490 nm, in case of silver
interface δm(λ0) monotonically decreases with λ0 in the optical range. As demonstrated, the ITs
influence the diffusion length in both gold and silver interfaces in the whole visible range.

Usage of simplified models of DF which do not account for the ITs (red lines in Figure 10), the SPP
diffusion lengths δm are smaller than in the case when the ITs are accounted for (see the blue and olive
lines in Figure 10a).

Let us note also that in real metals the character of the confinement length δm(λ0) (blue solid lines
in Figure 10a) only roughly (compare e.g., Reference [1]) follows the main spectral behaviour of the
optical skin depth δα(λ0) in a metal [48] in the visible range (blue dashed lines in Figure 10a):

δα =
λ0

2πn′′
= 2/α, (17)

δα describes the exponential decay of the field amplitude of light wave propagating in a medium with
the complex index of refraction (e.g., Reference [48]). n′′ is the imaginary part of the index of refraction,
α is the absorption coefficient which describes the exponential decay of the intensity (or power) of
an electromagnetic wave inside a material (Beer-Lambert law). The difference is obvious: δα depends
on n′′ (Figure 10a, blue line), while Im δm of the SPP surface wave depends also on the real part
of the index of refraction of the metal (Figure 1) and changes with the dielectric properties of the
adjacent medium.

4.2. Localised Surface Plasmons (LSPs)

Metal nanoparticles (MNPs) are the important class of plasmonic nanomaterials of the optical
features dominated by the ability to resonate with the incoming EM radiation. In resonance,
the incoming EM field is effectively captured at the curved metal-dielectric interface forming the
standing surface cavity waves of wavelength scaling with the MNP’s dimensions, therefore being
much shorter than the incoming radiation wavelength.
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Spectral properties of Localized Surface Plasmons on the spherical interface of a single MNP
are usually described by using Lorentz-Mie scattering formalism from the analysis of the scattering,
absorption or extinction cross-sections spectra for chosen radius R of the NMP which are written
in the form of a sum of an infinite series of the spherical multipole partial waves l = 1, 2, 3, ... (e.g.,
References [76–80]).

However, for fundamental reasons and keeping in mind applications, the desired parameters
are size-dependent oscillation frequencies ωl(R) and decay rates Γl(R) (or times τl(R) = 1/Γl(R)) of
the excited oscillations of LPS’s modes l = 1, 2, 3, ... supported by MNP. ωl and Γl are not the explicit
parameters of Lorentz-Mie scattering theory.

The functions of NMP’s size ωl(R) and Γl(R) can be derived in absence of the incoming EM
wave from considering the dispersion relation [31,43,63–65] according to the scheme presented in
Figure 3 which is common for flat and spherical metal/dielectric interfaces. In the spherical system of
coordinates, dispersion relation takes the form:

√
εinξ ′l (koutR)ψl (kinR) +

√
εoutξl (koutR)ψ′l (kinR) = 0, (18)

and is composed of complex special functions of complex arguments and corresponds to the poles of
the coefficient TMBl [76] in Mie scattering theory. εin(ω, R) and εout are DFs of the metal sphere and of
the outer dielectric environment, respectively, where the dependence on R accounts for the additional
damping of free-electron movement in MNP caused by the limited particle dimension. The resulting
shortening of the mean free path of electrons is accounted in the relaxation rate γ by adding the
term AvF/R, where vF is the Fermi velocity and A is the proportionality constant [39]. We accept
A = 0.33 and vF = 1.4 · 106 m/s for gold and silver NPs [43,81,82]. kin(ω, R) =

√
εin(ω, R) · ω/c,

and kout(ω) =
√

εout · ω/c are the wave vectors inside the sphere, and in the sphere surroundings,
respectively and c is the speed of light. The complex ψl(z), ξl(z) are Riccati-Bessel spherical functions
(of complex arguments) which can be expressed by the Bessel Jl+1/2(z), Hankel H(1)

l+1/2(z) and Neuman
Nl+1/2(z) cylindrical functions of the half order.

4.2.1. LSP’s Resonance Frequencies and Damping Rates Versus MNP’s Radius

Conditions for existence of the solutions of DF (Equation (18)) are strongly dependent on the
form of DFs for the particle and its surroundings and exist only for the complex ω’s. [31,43,63–65].
Such conditions found for consecutive radii R provide the explicit size dependence of ωl(R)− i2Γl(R),
where ωl is the oscillation frequency and Γl is the damping rate of the modes l (l = 1 for the dipole mode)
of surface localized electromagnetic fields (SLEM). The size characteristics of such modes are presented
in Figure 11 for l = 1, 2...7 for gold (left column) and silver (right panel). Red, olive and blue lines
represent the results for consecutive models of DFs: ε f ree(ω, R), εe f f (ω, R) and εm(ω, R) respectively.

Figure 11 show that ωl(R) and Γl(R) became insensitive to models of DFs with increasing size
in the ranges of large and very large MNPs. Such ranges shift to higher ωl’s with increasing the
multipolarity l.

Inclusion of interband transitions (accounted in εe f f (ω, R) and εm(ω, R)) possesses an essential impact
on omegal(R) with the decreasing R. The experimentally measured resonance positions [43,83–85] (which
are usually limited to the dipole (l = 1) plasmon resonance only) are more accurately predicted by a modeling
using εm(ω). For example, in the experiment using gold nanoparticles with slight deviations from a
perfectly spherical shape embedded in oil (nout = 1.5) [83], the resonance positions are 2.18 eV (568 nm)
for the radius R = 30 nm, what coincide very well with our predictions (see the insets in Figure
11a). For gold and silver nanoparticles in water (nout = 1.33) the predictions basing on εm(ω, R) (not
presented here) also fit well to the experimental results [43,84,85].

In case of Γl(R) dependence in the same range of sizes (Figure 11b), the description of the
interband transition by the effective parameters of εe f f (ω, R) in gold is not satisfactory. For εm(ω, R),
Γl(R) is several times augmented in the smaller NP’s range when compared with the simplified
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models of DF for gold. In silver the effect is less pronounced. For smaller particles Γl ’s display a farther
increase due to the radius dependent surface damping (see insets in Figure 11b).

Figure 11. (a) Oscillation frequencies ωl(R) and (b) damping rates Γl(R) of LSP on gold (left) and
silver (right) NPs for metals of properties represented by various models of the dielectric functions.
Red, olive and blue lines represent the results for consecutive models of DFs: ε f ree(ω, R), εe f f (ω, R)
and εm(ω, R) correspondingly (Equations (1)–(3) adopted for MNPs) for gold (left column) and silver
(right column).

4.2.2. Quality Factors of LSP Modes Versus MNPs Radius

The quality factor Ql(R) for the successive EM modes l supported by a spherical interface which
we consider here is based on the definition of a quality factor of a resonator defined as the number of
oscillations required for an energy of a freely oscillating system’s to fall off to e−2π of its original energy.
The radius dependence of the quality factor Ql of a resonator formed by the spherical metal/dielectric
interface of gold and silver MNPs

Ql(R) =
τl(R)ωl(R)

2
=

ωl(R)
2Γl(R)

(19)

is presented in Figure 12. Quality factors for silver NPs is several times better than for gold NPs of the
same size up to very large NPs radii. Each Ql displays a maximum Qmax

l which undergoes the shift
with the increasing l toward larger sizes. Let us note that spherical metal/dielectric interface is not the
best resonator for the dipole l = 1 mode (Figure 12b), as Qmax

l grows with increasing multipolarity l.
Let us also note that for the regions of sizes where the quality factor in the dipole mode takes

the maximal value Qmax
l=1 , Ql’s with l > 1 are comparable or even higher (silver NPs) than those for

l = 1. With increasing size Ql=1(R) decreases. Therefore, one can expect that in MNPs of smaller sizes
not only dipole but also higher multipolarity modes contribute to the energy storage at the interface
(when the NP is illuminated), while with the increasing radius the contribution of the dipole mode
(and successively lower-polarity modes) is eliminated.
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Figure 12. (a) Quality factors Ql for the modes l = 1,2,3...7 versus radius of gold and silver nanoparticles
(NPs). Figure (b) demonstrate the zoomed results of figure (a) in order to highlight the range of sizes
experimentally available.

4.2.3. Cross-Section Spectra

The differences in ωl(R) and Γl(R) for various models of DF are clearly reflected in the spectral
positions, number of spectrally resolved modes l, amplitudes and widths of the maxima displayed
in the scattering and absorption cross-sections Cscat and Cabs, calculated on the base of Lorentz-Mie
scattering theory. Figure 13 demonstrate such spectra for the example radii of gold (left panel) and
silver (right panel) MNPs. The axes are chosen in a way allowing to compare the relation of scattering
and absorbing abilities of NPs of chosen size.

The positions of the maxima in the spectra (Figure 13) are strongly affected by ITs and the spectral
resolution of the consecutive contributions of modes l = 1,2,3... is reduced. It is the consequence of the
fact that the resonant frequencies ωl with the corresponding l = 1,2,3,... are similar in the broad range
of radii starting from small R (see Figure 11a) due to the flattening of ωl(R) dependence.

The absorption remains dominant in smaller MNPs (the example of gold and silver MNPs with
R = 5 nm, Figure 13a) but both scattering and absorption are strongly damped by the interband
transitions (compare the data represented by blue line for εm with those represented by red line ε f ree).

In larger MNPs (Figure 13b), the example for gold and silver NPs of radius R = 30 nm), scattering
abilities of NPs are augmented following the increase of the radiative contribution Γrad

l (R) to the total
rate Γl(R) (Figure 11b), blue line), as discussed elsewhere [16,64].

With still larger MNPs (Figure 13c), the example for gold and silver NPs of radius R = 75 nm),
the scattering cross-sections are still increased, due to the increase in Γrad

l (R). Let us note that Γrad
l=1

reaches the near-maximal value for silver NP of this size (see Figure 11b), blue line).
The scattering and absorption abilities of gold and silver MNPs are summarised in 3D Figure 14.

The efficiencies ( total cross-sections per unit surface) Qscat(ω, R) = Cscat(ω, R)/πR2 and Qabs(ω, R) =
Cabs(ω, R)/πR2 are presented up to the size range ( to the radius R = 300 nm) which are still
experimentally unavailable. Figures show, that the maximal optical performance of MNPs in (ω, R)
plane is shifted toward larger nanospheres than those experimentally used. Figures demonstrate also
the significant differences in the position of such maxima for scattering and absorption and between
gold and silver MNPs.
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Figure 13. Scattering and absorption cross-sections for gold (left) and silver (right) nanospheres of
radius (a) R = 5 nm, (b) R = 30 mn and (c) R = 75 nm. Blue line for εm and red line for ε f ree.

Figure 14. Scattering and absorption efficiencies Qscat(ω, R) = Cscat(ω, R)/πR2 and Qabs(ω, R) =

Cabs(ω, R)/πR2 for gold (left) and silver (right) nanospheres for nout = 1.5.
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5. Conclusions

Understanding and modeling of surface plasmon phenomena on lossy metals interfaces based
on simplified models of DF causes problems when confronted with reality. A simplified description
of plasmons (which assumes that DF is real and valid up to the high-frequency limit) not only leads
to errors in the estimation of plasmonic parameters such as oscillation frequencies or damping rates
of oscillations, but also makes the very understanding of this phenomenon inaccurate or faulty.
The example can be the often met expectation for the SPP “resonance frequency” at εp/

√
2 derived

from the high-frequency limit of the dispersion relation, in spite the free-electron dielectric function
describes the properties of metals in the range of very low frequencies only. Another example is the
incorrectly estimated localization length or wavelength shortening of SPPs. Similar discrepancies exist
for the dipole plasmon resonance frequency in MNPs which appears for the frequency much lower
than εp/

√
3 expected when the interband transitions are not accounted for. Nevertheless, εp/

√
2 and

εp/
√

3 are often cited in review papers, lectures, and repeated in Ph.D. theses and dissertations.
Let us emphasize that the dispersion relations for surface plasmons basically characterize not the

EM field which is absent but the inherent properties of the interface. The resulting self-frequencies
and damping rates are parameters which can manifest in a form of (eventually shifted and broadened)
resonances in the observed quantities when the nanostructure is properly illuminated. However, in general,
such parameters can manifest in a different manner. The spectral position of the maxima, the amplitudes,
and spectral widths can change with the quantity which is measured (e.g., References [86–88]) (see the
example of LSPs manifestation for gold and silver MNPs of diverse sizes in Figure 13) and size of an MNP.
We demonstrate that the quality factors, which are the measure of the energy stored in the oscillations of
plasmon modes in MNP are larger for MNP of larger size and multipolarity. This effect is accompanied
by the known effect of lower scattering and absorption losses in the corresponding size ranges.

In real lossy metals such as gold and silver, both the free-electron intraband and interband
transitions are frequency dependent. The result of such transitions accounted in the phenomenological
model of the dielectric function should be represented by the parameters allowing reproducing well
both the experimentally measured complex indexes of refraction n(ω) and the resulting εexp(ω) =

n(ω)2 = (n′(ω) + in′′(ω))2. Inclusion of frequency-dependent radiative losses in addition to ohmic
losses does exert the pronounced impact not only on the properties of SPP and LSP supported by gold
interfaces but also, with the weaker but not negligible impact, on the corresponding characteristics of
silver interfaces in the optical ranges and the adjacent spectral ranges.

The performance of plasmonic devices correlate with numerous parameters that need to be
studied to reach the optimum and desired properties. The performed detailed analysis of all important
surface plasmon parameters based on the dispersion relations both for flat and spherical gold and
silver interfaces allows characterizing equivalently both geometries which are basic in the experimental
practice and in applications. Discrepancy of the results for lossy metals (interband transitions included)
and free-electron hypothetical metals reveals dramatic impact reflected in the expected properties of
surface wave accepted by such metal-dielectric interfaces. Losses are an integral part of plasmonic
systems and, as demonstrated above, can have a significant impact upon the physical understanding
of surface plasmon phenomenon. In particular, consideration of the presence of frequency-dependent
transitions in the extended frequency range revealed the presence of anomalous dispersion behavior for
the silver flat interface in the near-UV, which, as far as we know, has not been experimentally studied.

The frequency-dependent interband transitions accounted in the model of the dielectric function
exert the pronounced impact not only on the properties of SPP and LSP parameters for gold flat and
spherical interfaces but also, with the weaker impact, for the corresponding silver interfaces in the
optical range and the adjacent spectral ranges. Therefore, among many experimental studies which deal
with SPPs in thin films, hybrid structures and nanowires (e.g., References [89–91]), the experimentally
obtained dispersion relation bends to the higher frequencies (“to the right of the dispersion curve”),
if compared with predictions based on simplified models of DFs. In particular, in a case of nanowires
(e.g., Reference [89], the conclusion of slowing down the propagation velocity of SPP compared to
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the corresponding planar interface is not fully justified as the bending of the experimental dispersion
curve can result from the presence of interband transitions which are not accounted in the modeling.

Inclusion of interband transitions (accounted in εe f f (ω, R) and εm(ω, R)) possesses also an
essential impact on predicted self-energies ωl(R) of spherical metal interfaces. The experimentally
measured spectral positions of LSPs manifestation [43,83–85] (which are usually limited to the dipole
plasmon resonance (l = 1) only) are very well predicted by the presented modeling using εm(ω) for
nout = 1.5 (the case studied above) and, as we checked also for nout = 1.33 (i.e., for MNPs embedded in
the immersing oil and water correspondingly).

Therefore, in order to understand quantitatively the dispersion, localization, and attenuation
characteristics of surface plasmons over a wide range of wavelengths it is necessary to consider the
metal as described by empirically determined indexes of refraction [92]. The analysis presented in this
paper which is based on the form of the dielectric functions with the physically meaningful parameters
(and able to reproduce the frequency dependence of such empirical indexes) allows analyzing the
role of the individual parameters which characterize electronic and dielectric properties of metals.
Such approach forms a common platform for describing plasmons localized on curved (spherical) and
an extensively studied flat metal-dielectric interfaces.
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