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Our living sphere is constantly exposed to a wide range of pathogenic viruses, which can

be either known, or of novel origin. Currently, there is no methodology for continuously

monitoring the environment for viruses in general, much less a methodology that

allows the rapid and sensitive identification of a wide variety of viruses responsible for

communicable diseases. Traditional approaches, based on PCR and immunodetection

systems, only detect known or specifically targeted viruses. We here describe a simple

device that can potentially detect any virus between nanogap electrodes using nonlinear

impedance spectroscopy. Three test viruses, differing in shape and size, were used to

demonstrate the general applicability of this approach: baculovirus, tobacco mosaic

virus (TMV), and influenza virus. We show that each of the virus types responded

differently in the nanogap to changes in the electric field strength, and the impedance

of the virus solutions differed depending both on virus type and virus concentration.

These preliminary results show that the three virus types can be distinguished and

their approximate concentrations determined. Although further studies are required,

the proposed nonlinear impedance spectroscopy method may achieve a sensitivity

comparable to that of more traditional, but less versatile, virus detection systems.

Keywords: virus, virus sensing, impedance spectroscopy, nanogap, nanofluidics, environmental monitoring

Introduction

Our environment is posed a constant threat of exposure by pathogenic viruses, whether to
humans or pets, domestic animals, or agricultural and marine products (plants, fish, or shellfish).
No established methodology exists for inactivating most viruses that could cause widespread
communicable viral infection. It is therefore imperative to realize a technology that canmonitor the
environment for viruses and prevent their spread and disease transmission. The key is to develop
a practical sensor that can continuously monitor the environment for viruses. Such virus sensors
could be installed at airports, seaports, and other points of entry, and where necessary at farms and
ranches, at restaurants, in air conditioning units, in sewage systems, and in other public facilities or
utilities. These sensors would continuously monitor for viruses, and if they were detected, measures
could be implemented to prevent infection, in contrast to their existing diagnostic application. In
cases where detection and countermeasures are too late to prevent an outbreak of a communicable
disease, a network of virus sensors could facilitate rapid identification of affected areas,
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allowing medical resources to be focused in those areas. This
would lead to early-stage detection and treatment, and maximize
the efficient use of medical resources.

Currently, there is no technology that can sense viruses in
our daily environment. Existing virus detection methods are
focused on diagnosing infected individuals, and can be classified
into three main categories: (1) those that utilize genomic
information and are based on the polymerase chain reaction
(PCR) and metagenomic analysis; (2) those that utilize molecular
recognition or receptor linking functions of compounds such as
antibodies, sugar chains, and peptide aptamers; and (3) those
that are based on the electrical or optical properties of viruses
(Cheng et al., 2009). In the first category, PCR-based methods
provide high detection sensitivity and accuracy but require long
analysis times, costly equipment, and specialized techniques, so
their range of use is limited in terms of location and qualified
personnel (Yang and Rothman, 2004; Espy et al., 2006; Charlton
et al., 2009; Hodneland et al., 2011; Cella et al., 2013). In
the second category, immunochromatography can provide a
relatively fast, simple, and portable means of virus detection
in clinical settings such as hospitals, and has therefore become
a mainstream technique; however, it suffers from problems
such as low sensitivity and accuracy that impede early-stage
detection (Lee et al., 1993, 2009; Patolsky et al., 2004; Reichmuth
et al., 2008; Heinze et al., 2009; Wang et al., 2009, 2011;
Hassen et al., 2011; Lum et al., 2012; Nguyen et al., 2012).
Both categories, moreover, basically involve single-use disposable
test units, and can only detect known or specifically targeted
viruses. In short, neither category is appropriate in principle for
application to continuous virus monitoring of the environment,
or detecting new or unspecified viruses. Consequently, neither
category holds significant promise for the development of a
systematic technology for comprehensive environmental virus
monitoring.

There have been fewer studies in the third category, which
are based on direct measurement of physical properties. The
methods in this category are inferior to the other two in
terms of sensitivity, and are particularly poor in their ability
to selectively distinguish viruses in the presence of numerous
contaminants. However, methods in the third category have
two key potential advantages: the ability to continuously
monitor the environment, and to detect unspecified viruses
and mutants, since biological information on genomes or
receptors is not required. A high-sensitivity, accurate virus
sensor based on direct measurement of physical properties
would enable long-term, continuous virus monitoring, which
cannot be achieved by the other two categories. This would
represent a groundbreaking advance in virus-monitoring
technology.

Most virus detection techniques based on physical properties
use optical or electrical methods. Typical optical methods use
light scattering to achieve high-sensitivity detection to confirm
the presence of virus particles. However, optical detection
has disadvantages in miniaturization of a complex optical
setup and light source (Fan et al., 2008). On hand, electrical
method for direct virus detection uses impedance spectroscopy,
while another uses dielectric relaxation (Ermolina et al., 2003).

Other recent examples include microelectrodes fabricated in
microchannels coupled with impedance spectroscopy. This
approach is aimed at identifying and quantifying baculovirus and
lentivirus in solutions, based on the impedance magnitude at the
peak frequency (Poenar et al., 2004). However, the accuracy and
sensitivity of these approaches are low compared with PCR-based
and immunochromatographic methods, and there have been few
publications regarding these techniques.

We investigated the use of impedance spectroscopy for highly
sensitive and accurate virus detection based on the nonlinear
effect of electrophoretic and dielectrophoretic forces on the
virion during measurement to enhance both sensitivity and
selectivity. The approach involves applying a sufficiently strong
electric field to cause inter-electrode virion movement and
allow control of the orientation in the case of non-spherical
virions. This active perturbation of the virion allows nonlinear
measurement of its properties.

Generally, an electric field of 105 V/m or more is
required to induce movement of nanometer-sized particles by
dielectrophoretic forces, but an applied voltage of several volts
or more ordinarily required for this purpose would also induce
prominent electrode reactions that would tend to preclude
effective for measurement (Turcu and Lucaciu, 1989; Akin et al.,
2004; Liu and Bau, 2004; Yang et al., 2008; Pethig, 2010). To
obtain an electric field of 105 V/m or more using a lower applied
voltage, we propose the use of nanogap electrodes. For example,
it is possible to generate an electric field of 200 kV/m across a
500 nm gap using an applied voltage of 0.1V, which is too low for
electrolysis to occur. This study reports a high-sensitivity virus
detection method by nonlinear impedance spectroscopy with the
use of nanogap electrodes to generate strong electric fields under
a low applied voltage.

Materials and Methods

Virus Samples
Table 1 shows the shapes and sizes of the three viruses used in this
study. The dipole moment induced in a small particle generally
depends on its size and shape, and the dipolar effect tends to
be particularly strong for long, narrow particles. We therefore
used baculovirus, tobacco mosaic virus (TMV), and influenza
virus [influenza A (H1N1)] as sample viruses with different sizes
and long/short axis ratios. The baculovirus is rod-shaped, with
a diameter of 30–60 nm and a length of approximately 260 nm
(Burley et al., 1982; Choi et al., 2012). The TMV is approximately
20 nm in diameter and 300 nm in length (Klug, 1999), and
the influenza A (H1N1) virus is spherical with a diameter of
approximately 100 nm (Tiffany and Blough, 1970; Sai et al., 2011).

TABLE 1 | Dimensions of viruses used in this study.

Virus Shape Size

Influenza Sphere 100 nm

TMV Rod 20 nm diameter and 300 nm length

Baculo Rod 30–60 nm diameter and 260 nm length
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Quantification of Virus
To date, virus concentrations is generally determined based
on the tissue culture infective dose (TCID50) or plaque
forming units (PFU) leaving the number of virions is unclear,
making it difficult to quantify the sensitivity of the sensing
and to compare the results with those of other methods.
To prevent this problem, we first visualized and counted the
number of virions by fluorescence labeling and observation,
then expressed the concentration in terms of virions per
unit volume. 1 mM KCl buffer was used, and a fluorescent
dye (SYBR-GOLD, Invitrogen Inc.) was added to solution for
labeling the viruses. The labeled virions were counted under
a fluorescence microscope. Figure 1 shows a typical result,
with each bright spot representing a single baculovirion. The
virion concentrations were estimated from the bright spot
counts using image analysis software (Image J) (Schneider et al.,
2012).

Device Fabrication
Figures 2A,B show top and cross-sectional schematic views of
the measurement device. The device is basically fabricated on
a quartz substrate patterned with two nanogap electrodes, a
polydimethylsiloxane (PDMS) sheet forming the measurement
chamber wall, and a glass plate as the chamber lid. The
nanogap electrodes were patterned with an Au (250 nm)/Ti
(1 nm) layer in strip fabricated by photolithographic lift-off,
and the strip was then cut to form opposing electrodes
with an intervening nanogap using a focused ion beam (FIB;
FB-2200, Hitachi High-Technologies Corp.) (Hatsuki et al.,
2013). Figure 2C shows a scanning ion micrograph of the
fabricated measurement region. The small grooves in the quartz
substrate between and on both sides of the nanogap are
overrun regions for cutting the parallel flat-plate electrodes
in the FIB process. The fabricated gold/metal electrodes were
250 nm in height and 5µm in width, with an intervening
gap width of 510 nm. The depth of the groove was about

FIGURE 1 | Scanning electron microscopy of baculovirus used for

counting the number of virions.

530 nm in the middle of the nanogap. A hole with a diameter
of 3mm was opened in the 0.2-mm-thick PDMS sheet to
form the wall of the cell chamber (approximately 1.5µL
volume) and the sheet was then bonded in position to form
the measurement cell. For the impedance measurements, the
chamber was filled with the sample solution and closed with the
glass lid.

Impedance Measurements
The impedance was measured using a frequency response
analyzer (1260, Solartron Analytical) with a dielectric interface
(1296, Solartron Analytical), which were controlled with SMART
software (Solartron Analytical), and the data were analyzed using
Zview software (Solartron Analytical).

The electrical impedance of liquid samples suffer from several
problems, including unavoidable electrode decomposition and
substantial changes in the conductivity due to the release of ions,
and damages to the virus with these ions in high concentrations.
These problems were apparently appeared in low frequency
region less than 100 kHz in our preliminary measurements, so
that the measurements were conducted in the range 100 kHz–
6.3MHz. Prior to each measurement, open/short calibration
was performed, and the effects of parasitic capacitance and
other parasitic components, wiring induction coupling, and
leakage were eliminated. The applied frequency for all of the
measurements was 100 kHz or higher, to prevent background
effects from the solid-liquid double layer capacitance that tends
to form at the interface of the measuring electrode (Poenar
et al., 2004); this layer is large at low frequencies but minimal
at high frequencies. The virion impedance component was
obtained by subtracting the separately measured impedance
component for the 1mM KCl buffer solution from the total
solution impedance; corrected measurements were used in all
assessments. Because the repeated measurement of the same
sample shows no apparent difference in electrical signal, it is
assumed that the application of high electric field of 105 V/m
or more would not be significantly damaging to the virus. It
is, however, not confirmed whether the effect of high electric
field is how much hazardous to the viruses in their biological
activities.

Results and Discussion

Impedance Dependence on Electric Field
Strength
We first investigated the presence of a nonlinear impedance
effect in a strong electric field by measuring the impedance
while increasing the electric field strength incrementally from
104 V/m to 2 × 105 V/m, using a baculovirus solution with 1014

virions/mL.
As shown in Figure 3, at frequencies above 1MHz, the

impedance response is very different for an electric field of 100
kV/m (50mV) or greater than for an electric field of 20 kV/m
(10mV) or less. This is presumably at least partially attributable
to the desired effect of the strong nonlinear electric field and
the related dielectrophoretic force that generally arises in strong
high-frequency electric fields. Many studies have shown that
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FIGURE 2 | (A) Schematic top view and (B) Cross-sectional view of the measurement device with nanogap electrodes. (C) Scanning ion microscopy image of the

measurement region, showing the nanogap electrodes. The gap width is 510 nm.

FIGURE 3 | Dependence of impedance response on electric field

strength.

positive dielectrophoresis (in which the force is exerted toward
higher field strength) occurs in electric fields of several 100 kV/m
to several MV/m with frequencies of several 100 kHz or higher
(Morgan and Green, 1997; Morgan et al., 1999; Hughes et al.,
2001; Park et al., 2007). This suggests that the virions between the
electrodes were moved by this force and aligned their long axes
with the field direction due to the torque by the electric field. In
some cases, the virions adhered to the electrode edges, where the
field strength was maximum in the measurement area, resulting
in a nonlinear increase in impedance. However, it was not
possible to confirm this mechanism because the excitation light
required for fluorescence measurements during the impedance
measurements would have introduced noise into the system. At
present, therefore, this explanation remains speculation.

In summary, themeasurements showed changes in impedance
that are presumably a nonlinear effect of an applied electric field
of 100 kV/m or higher at a frequency above 1MHz. In light of
these results, we used a field strength of 200 kV/m (100mV) in
the subsequent experiments.

The electric field was designed by the finite element method
using the commercially available solver COMSOL 4.4 (COMSOL
Inc.). Based on simulation, the region between the electrodes
for an electric field of 100 kV/m or higher was obtained
with a gap length of 510 nm, an electrode width of 5µm,
and a depth of groove approximately 530 nm, corresponding
to a volume of about 1.4 fL. This is a rough estimate due
to the errors inherent in the measurements; regardless, for a
sample concentration of 1011 virions/mL, this volume would
contain approximately 0.3 virions. Under the assumption that
the number of virions measured with a sample concentration
of 1011 virions/mL would actually be one to several, we set
1011 virions/mL concentration as the lower limit for subsequent
experiments.

Impedance Dependence on Virus Concentration
Our investigation of the impedance dependence on virus
concentration showed that the impedance varies with virus
concentration in the range 1011–1014 virions/mL for baculovirus,
TMV, and influenza virus, as shown in Figure 4. In the figure,
the solid and dotted lines represent the real and imaginary
impedance components, respectively. For the real component,
similar behavior is found for the baculovirus and influenza
viruses, as shown in Figure 4A and Figure 4C, respectively.
The values decrease moderately with increasing frequency
between 100 kHz and 1MHz, then fall sharply at higher
frequency, and also generally increase with increasing sample
concentration. In contrast, the imaginary component for both
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FIGURE 4 | Real and imaginary components of measured impedance for (A) Baculovirus, (B) TMV, and (C) Influenza virus.

viruses shows a peak near 1MHz that increases in height
with increasing sample concentration. As shown in Figure 4C,
however, the trends exhibited by TMV clearly differ from those
for the baculovirus and influenza viruses. The real impedance
component for TMV peaks at 1 MHz, then decreases rapidly at
higher frequency. The values generally increase with increasing
sample concentration as with the other two viruses, whereas the
imaginary impedance component for TMV tends to decrease up
to a frequency of 1 MHz, and then increase to a maximum near
3.9MHz.

As shown in Figure 4, all three viruses showed an impedance
peak and transition point near 1MHz for both the real
component and imaginary components. In Figure 5, the
vertical and horizontal axes represent the magnitude of the
impedance and the virus concentration, respectively. The
figure shows the dependence of the impedance magnitude
at 1MHz on the virus concentration for each virus.
These results clearly indicate that the impedance values
for the three virus types tend to increase with increasing
concentration and can therefore be used to quantify the virus
concentration.

Distinguish Virus Types
It would be difficult to distinguish quantitatively between
the three virus types using only the impedance spectra

FIGURE 5 | Magnitude of impedance for baculovirus, TMV, and

influenza virus solution at 1 MHz. The concentration was varied from 1011

to 1014 virions/mL.

shown in Figure 4. The baculovirus and influenza virus
spectra are similar, although they are both distinct from that
of TMV.

We therefore compared the three virus types, and particularly
the baculovirus and influenza virus, for differences in phase
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FIGURE 6 | Cluster map of Baculovirus, TMV, and influenza virus. The

data were obtained for virus concentrations of 1011–1014 virions/mL, and

plotted with the phase at 100 kHz along the horizontal axis and the phase at

the peak frequency of the imaginary component of impedance along the

vertical axis.

effects. Figure 6 shows the mapped the data obtained for
each virus at concentrations of 1011–1014 virions/mL. The
horizontal and vertical axes represent the phases of the
imaginary impedance component somewhat arbitrarily at
100 kHz and the peak frequency, fp, respectively. Although
some overlap is apparent between the three clusters of data
points, the graph clearly shows that it is possible to distinguish
between virus types on this basis, independent of their
concentrations.

It should be noted, however, that this investigation
was performed for only these three viruses, and it would
be premature to extrapolate the results to other virus
types.

Conclusions

Here we proposed a virus detection method by nonlinear
impedance spectroscopy under a strong electric field between two
nanogap electrodes.

In sweeping frequencies from 100Hz to 6.3MHz while
varying the electric field strength, we found an apparentlymarked
nonlinear effect on impedance at electric field strengths of
100 kV/m or higher. Further measurements were performed
for those electric field strengths and frequency while varying
the concentrations of baculovirus, TMV, and influenza A
(H1N1) virus solutions. The data clearly showed that the
virus concentration can be quantified by the impedance value.
Furthermore, the three virus types could be distinguished by
plotting the phase at 100 kHz against the phase of the peak
value of the imaginary component of the impedance for each
virus type.

At the minimum sample concentration of 1011 virions/mL
used in this study, one to several virions occupied the effective
measurement space. This is a rough estimate, and amore detailed
study is required for verification. The results nevertheless show
that the proposed nonlinear impedance spectroscopy method
may achieve a sensitivity comparable to that of PCR and
immunodetection systems. The response time to sweep the
frequency for each measurement was about a few minutes,
which will be enough fast for the continuous monitoring
of environment. One of the large remaining issues is to
evaluate the detection and identification ability of some specific
viruses from the heterogeneous mixture of crude sample.
That is the universal challenge for any types of biosensing
methods, and also the future work to put this method into
practical use.
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