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Abstract

Spatial integration during the brain’s cognitive activity prompts changes in

energy used by different neuroglial populations. Nevertheless, the organisation

of such integration in 3D -brain activity remains undescribed from a quantita-

tive standpoint. In response, we applied a cross-correlation between brain

activity and integrative models, which yielded a deeper understanding of infor-

mation integration in functional brain mapping. We analysed four datasets

obtained via fundamentally different neuroimaging techniques (functional

magnetic resonance imaging [fMRI] and positron emission tomography

[PET]) and found that models of spatial integration with an increasing input

to each step of integration were significantly more correlated with brain activ-

ity than models with a constant input to each step of integration. In addition,

marking the voxels with the maximal correlation, we found exceptionally high

intersubject consistency with the initial brain activity at the peaks. Our

method demonstrated for the first time that the network of peaks of brain

activity is organised strictly according to the models of spatial integration inde-

pendent of neuroimaging techniques. The highest correlation with models

integrating an increasing at each step input suggests that brain activity reflects

a network of integrative processes where the results of integration in some

neuroglial populations serve as an input to other neuroglial populations.
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1 | INTRODUCTION

In recent decades, functional neuroimaging techniques—
blood-oxygen-level-dependent (BOLD) imaging in
functional magnetic resonance imaging (fMRI), oxyhe-
moglobin (HbO) and deoxyhemoglobin (HbR) imaging in
functional near-infrared spectroscopy (fNIRS) and
regional cerebral blood flow and energy metabolism
imaging in positron emission tomography (PET) and
single-photon emission computerised tomography
(SPECT)—have focused on measuring brain function
related to the brain’s consumption of energy. All of those
approaches assume that brain activity reflects energy
turnover levels in the brain and relates to information
processing (Aubert et al., 2007; Shulman et al., 2004). In
earlier work, we defined the term activation as the
information-driven reorganisation of energy flows in and
among populations of neuroglial units that prompt a total
increase of energy use in those populations (Strelnikov,
2010). Neurons and glia (astrocytes) are tightly coupled
for energy turnover and cognitive functions (Santello
et al., 2019), forming functional units (Giaume
et al., 2010). In that definition, energy flows refer to coher-
ent spatial and temporal changes in the energy turnover
of neuroglial units accompanying stimulus treatment
(Strelnikov, 2010). From this point of view, it is quite nat-
ural that information about interactions between sensory
molecular structures and the external world is further
transmitted within the brain as neuroglial molecular
interactions and causes measurable energy changes in
neuroglial populations. Brain activation can be under-
stood as the energy level in an ensemble of neuroglial
units, a level, which can be reflected by different methods
(e.g., BOLD fMRI and 15O-water PET) (Raichle &
Gusnard, 2002; Shulman et al., 2007). However, studies
on the connection between energy levels in neuroglial
populations and the models of information propagation
have been few.

In our recent theoretical exploration (Strelnikov,
2014; Strelnikov & Barone, 2012), we suggested that tight
coupling occurs between the amount of perceived infor-
mation and brain energy during integrative cognitive
processes. In our approach, we aim to explore the link
between brain energy and information contained in
cognitive stimulation. Our definition of information is
that of entropy, in which energy is needed to reduce
entropy in the brain, that is, to reduce uncertainty
(Shannon, 1948). According to our hypothesis, informa-
tion in sensory input is coded by interactions between
molecular structures, which require an increase of energy
input to these molecular structures. Accordingly, there is
more energy turnover in neurons and astrocytes
with each more integrative stage of processing, which

combines information on stimulus properties from previ-
ous stages of stimulus processing. Biochemical studies
have demonstrated that one bit of information costs 104

adenosine triphosphate (ATP) molecules at a chemical
synapse and up to 109 ATP molecules for spike coding
(Laughlin et al., 1998; Lennie, 2003). Considering the
total amount of energy at each integrative stage of sen-
sory processing, the difference in energy levels between
the stages should correspond to the difference in the
amount of information coded by neuroglial populations
at those stages. For example, the coupling between
energy turnover and information integration was recently
demonstrated for fMRI activity, which showed an ampli-
fication of local changes from low-level acoustic cortical
regions to high-level cortical regions that accumulate and
integrate information (Yeshurun et al., 2017).

It has been demonstrated that the propagation of
information in the brain tends to follow the direction of
activity gradients (spatial increments between adjacent
voxels) with significant divergences of gradients in the
sensory cortices and convergences in the brain’s integra-
tive centres (Strelnikov & Barone, 2012). In that context,
the propagation of cortical activity in the direction of its
spatial gradients has been attributed to large-scale
travelling waves (Roberts et al., 2019), as confirmed in
studies on electric field dynamics in the cortex
(e.g., (Alekseichuk et al., 2019)). Likewise, optogenetic
investigations have suggested that perceptually relevant
information is pooled across functionally confined local
cortical populations and that such pooled information is
further transmitted to more integrative areas (Andrei
et al., 2019).

While some studies indicate that there is an increase
in brain activity related to the integration of stimulus
properties, these studies use the term “integration” in the
purely descriptive sense suggesting on the ground of
cognitive reasoning that there is an accumulation of
information processed between cortical sites. None of the
studies explored whether the sites of information integra-
tion can be detected in the brain according to the integra-
tion model, in which each voxel integrates information
from other voxels. The principle of energy optimisation
demonstrated by the above discussed studies suggests
that energy turnover in the brain should closely match
information processing needs. This has led us to the idea
that using cross-correlation, one can detect voxels in the
brain, in which energy turnover closely matches the
modelled integrative functions as suggested by integrative
neural models (Kuzma, 2019; Strelnikov, 2014).

To combine the mentioned experimental and theoret-
ical evidence of the propagation of information in the
direction of increased brain activity, in our study, we
sought the possibility to detect integrative patterns of
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brain activity in neuroimaging data. To that end, we used
an integrative model corresponding to approximately the
same amount of information received by each neural
node and transmitted to the next one (Figure 1a).
Another tested option was the linearly increasing input
to each voxel (Figure 1b). The model depicted in Figure 1
(Kuzma, 2019; Strelnikov, 2014) served as the initial theo-
retical guess for the choice of integrative functions. For
the non-linear modelled input, we chose non-trivial zeros
of the Riemann zeta function because they are associated
with energy levels at the atomic level (Schumayer &
Hutchinson, 2011) (Bogomolny, 2007) and cannot be
expressed as an arithmetic combination of linear func-
tions. If supported, our hypothesis would explain the
observed increase of the modelled information content in
the direction of activity increase (i.e., in the direction of
activity gradients) because more energy is needed for
a greater amount of information en route to being
integrated.

2 | MATERIALS AND METHODS

2.1 | Datasets

We used data from two fMRI studies, one of which is
publicly accessible, along with data from two PET activa-
tion studies using H2

15O. Contrast images reflect the
average difference between the stimulation and baseline

condition (they are not the same as t-maps). In addition,
to verify the robustness of the analysis, we created ran-
dom images of brain activity (“Random dataset”) using a
uniform distribution. For the first dataset, referred to as
“WH2015,” freely available data were chosen from the
study of Wakeman and Henson (Wakeman &
Henson, 2015) conducted with 16 participants (ftp://ftp.
mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_
hensonrn/). The MATLAB scripts attached to the origi-
nal dataset were used for preprocessing and statistical
analysis using the MATLAB SPM toolbox, which resulted
in contrast images in the MNI space with 3-mm isotropic
voxels. In the original study, the subjects were presented
with grayscale images of familiar and unfamiliar faces, as
well as faces scrambled by a 2D Fourier transform, all of
which were cropped using a mask based on a combina-
tion of the familiar and unfamiliar faces. We used the
contrast “Faces (familiar + unfamiliar) > scrambled” for
the analysis.

The second fMRI dataset, called “fMRI auditory,” was
for auditory processing and originated from our research
on speech processing conducted with 15 participants
(Strelnikov, Rouger, Belin, et al., 2011; Strelnikov &
Barone, 2012). Participants lay in the scanner with eyes
closed and listened to 13 disyllabic words, one of which
was randomly repeated, and the participants were
instructed to press the button when they heard the
repeated word. The dataset comprised the contrasts
“Words > silent baseline” per subject.

F I GURE 1 Presumable schemes of information integration by a series of voxels. (a) After each voxel (node of the model) in the array

receives the same quantity of information, the voxels transmit the information among each other, thereby increasing brain activity, which

corresponds to the increase in the amount of treated information. (b) The input to each voxel is already the result of integration

(i.e., ‘integrative activity’ in (a)), and as the voxels transmit information from left to right, they prompt the increase of their activity, which

corresponds to the further integration of information. For other graphical representations and explanations of the integrative functions used

in our analysis, see Figure S1 in supporting information
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In the first PET study, we used our dataset about
word perception, dubbed “PET S2011,” with five partici-
pants (Strelnikov, Rouger, Eter, et al., 2011). The refer-
ence condition was purely visual and consisted in
recognising visually presented signs (i.e., either “+” or
“�”) that appeared one by one in a randomised order on
the screen. Each participant was instructed to click the
PC’s mouse: one button for “+” and another for “�”.
During the auditory condition, words and non-words
were presented binaurally, such that each participant had
to identify whether he heard a word or a non-word. We
analysed the contrasts between the word/non-word iden-
tification and the baseline.

For the second PET dataset, called “PET S2015,” we
used our data on audiovisual word processing with six
participants (Strelnikov et al., 2015). During the baseline
condition, participants lay in the scanner with their eyes
closed and without any auditory stimulation. The audio-
visual speech condition involved presenting videos with
sound, and we asked participants to identify words by
using a computer mouse (two-alternative forced choice).
We analysed the contrasts between audiovisual stimula-
tion and the baseline.

2.2 | Data analysis

To model integrative activity (Figure 1), we used the
vectors of 100 values. Activity with the constant input
(Figure 1a) was modelled with the function g(t) = t, in
which t runs from 1 to 100. Afterwards, to obtain the vec-
tors of 100 integrated values from the linear and zeta
non-trivial zero values as inputs, we applied the following
integral function:

I xð Þ¼ ð

x

0
g tð Þdt

Riemann’s zeta values for non-trivial zeros (imagi-
nary parts) were obtained using the zeta zero function in
the Python package mpmath. (See Figure 2 for the flow-
chart of the further analysis.)

Contrast images of brain activity were transformed to
NIfTI format using MRIcron and imported using
the Python package NiBabel. Next, 3D images were
vectorised in ascending order while preserving the initial
position indices, and intensities were normalised between
0 and 255. One percent of the smallest values was dis-
carded as artefacts of the non-neural origin.

Both vectors (i.e., the probe and the one obtained
from the 3D image) were normalised considering the
mean and standard deviation. Thereafter, the vector
obtained from the 3D image was cross-correlated with

the probe vectors of 100 values to obtain the position of
maximum correlation (i.e., cross-correlation with Fourier
transform). At this position, the Pearson correlation coef-
ficient was calculated.

Next, we calculated spatial overlap between the voxels
issued from cross-correlation and the peaks of activity in
the initial images. Voxels from the image vector at the
highest correlation site were marked by adding 255 to the
initial normalised values, after which the initial 3D posi-
tion was restored. Thus, we obtained 100 marked voxels
in the 3D space of the initial contrast images. The
resulting image was saved in neuroimaging informatics
technology initiative (NIfTI) format.

To calculate spatial overlap of the restored images
with the initial images of brain activity, the initial images
were thresholded using the value at which the maximum
correlation with the model occurred. Images issued from
the cross-correlation were thresholded so as to preserve
only the marked voxels (i.e., with the threshold of 255).
After that, the initial and restored thresholded images
were binarised and multiplied. After the multiplication,
the sum of non-zero voxels served to calculate the per-
centage of spatial overlap between the images issued
from cross-correlation and the peaks of activity in the
initial images.

The significance of correlation coefficients for
different models and functions was assessed using boo-
tstrapping with bias-corrected and -accelerated (BCa) per-
centile algorithm for confidence intervals (i.e., resampled
10,000 times with a BCa percentile algorithm for
confidence intervals; Carpenter & Bithell, 2000). Paired
bootstrapping was also performed to compare correlation
coefficients using Bonferroni correction for the number
of comparisons. Furthermore, in an additional analysis,
given the small number of subjects in both PET datasets
(due to the invasive nature of PET), we combined them
into one set of 11 subjects (i.e., five subjects of the PET
S2011 dataset and six of the second) in order to perform
the same bootstrapping analysis because increasing the
sample size increased the statistical power.

Next, we calculated the derivatives and the derivatives
of the natural logarithm of the brain activity for all the
datasets to check if the slopes of the vectors were similar
or different between the subjects’ brain activities.

Lastly, we performed another analysis using three
randomised probe vectors to check for possible random
effects on cross-correlations. The first one contained
100 permuted values taken from the 100 highest values
in the vectorised 3D images; the second was taken from
the middle of the vectorised 3D images, and the third was
built from a uniform distribution in the range of the
image intensities. Those vectors were cross-correlated
with the vectorised activity obtained from the 3D image.
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3 | RESULTS

Data analysis revealed an important difference between
the integrative model with a spatially constant input and
the integrative models with the spatially increasing input.
After the cross-correlation analysis of probe vectors
with one-dimensional brain activity, we restored voxels’
spatial positions at the loci of the maximum cross-
correlation. We found that those positions spatially over-
lapped with peaks of activity in the initial images.

In the following, we describe the results obtained
using the fMRI and PET datasets.

3.1 | fMRI data

The analysis of the fMRI datasets showed a significantly
higher correlation for the integrative models with the
increasing input (linear and non-linear increase) com-
pared with the constant input model, as indicated by the
absence of overlap between the constant input model’s
95% bootstrapped confidence interval (CI) and the CI of
the models with increasing input (p < 0.05, paired boot-
strap; Figure 3a,b and Table 1). Correlations for the
model with linear input were significant and higher than
for the model with non-linear input (p < 0.05, paired
bootstrap; see supporting information for the correlation
coefficients per image and supporting information
Figures S1 and S2).

Those results indicate that the integrative models
with increasing input are more representative than the
integrative models with the constant input with respect
to brain activity in our analysis of the BOLD signal in the
“stimulation versus baseline” contrast maps.

3.2 | PET data

We found that the integrative models with the increasing
input in the PET S2011 and combined PET datasets have a
significantly higher correlation than the integrative model
with the constant input (Figure 4 and Table 1; p < 0.05,
paired bootstrap). However, no significant differences were
found between the correlations with the linear and non-
linear inputs in the PET S2011 dataset, possibly due to the
sample’s insufficient size (see supporting information for
the correlation coefficients per image).

In the PET S2015 dataset, the integrative models with
the increasing input have also significantly higher corre-
lation than the constant input one (Figure 4, Table 1).
The linear increasing input model’s correlations were
slightly but significantly superior to the non-linear input
model in the PET S2015 dataset and the combined two
datasets (p < 0.05, paired bootstrap; see supporting infor-
mation for the correlation coefficients per image).

Thus, separate and combined results on PET datasets
are in line with results on fMRI datasets and indicate that
the integrative models with the increasing input are more
representative than the integrative constant input models
with respect to the brain activity as reflected by the
regional cerebral blood flow in “stimulation versus base-
line” contrast maps.

In all of the fMRI and PET datasets, we compared the
distribution of brain activity in contrast images with nor-
mal distribution and found that it differed significantly
from normal in each image (D’Agostino–Pearson test for
moderate and large samples, p < 0.001).

We also tested the model fit using PCA and R2

estimations, which confirmed that models with the
increasing linear and non-linear inputs had a better fit

F I GURE 2 The flowchart of the

analysis. The 3D activity was

transformed into the 1D array.

Afterwards, we searched for the

fragments of activity, which are the most

similar to the modelled ones, using

cross-correlation as a measure of

similarity. Having found the most

similar to the model fragment of the 1D

array, we restored the 3D positions of

these voxels

SADOUN ET AL. 7145



than the model with the constant input (see supporting
information).

3.3 | Random dataset

Cross-correlation analysis of random brain activity
resulted in random locations, far from the maximum
values and variable for different integrative models pre-
cluding the comparison between their correlation values.
Correlations with random probe vectors were extremely

low (see supporting information Figure S3). These results
indicate that random effects cannot explain the reported
correlations in fMRI and PET datasets.

3.4 | Spatial overlap

We calculated the percentage of spatial overlap between
the voxels resulting from the cross-correlation and the
peaks of activity in the initial contrast maps. The analysis
revealed an overlap of 99% (Figure 5) for all datasets and

F I GURE 3 Results of the correlations obtained for each model in the fMRI datasets. Panels (a) and (b) display results of the

correlations for each dataset and for each model: Linear = linear model (i.e., with the constant input). Linear integ = linear integrated

model. Zeta integ = model with integrated Riemann’s zetas’ non-trivial zeros (i.e., models with the increasing input). Error bars represent

95% bootstrapped confidence intervals of correlation values (resampling 10,000 times with a bias-corrected and accelerated percentile

algorithm for confidence intervals (Carpenter & Bithell, 2000). These are unpaired bootstrap confidence intervals, which test the

significance of each correlation with respect to zero, depicted here for illustrative purposes. Paired bootstrap was used to estimate the

differences between the models (which are reported in the results section). ** = significant

TAB L E 1 Summary of correlation results, with mean values and 95% bootstrapped confidence intervals (CI) indicated for each probe

vector and dataset

Datasets

Mean Bootstrapped CI [inf, sup]

Linear Linear_integ Zeta_integ Linear Linear_integ Zeta_integ

fMRI fMRI auditory 0,928 0,976 0,968 [0.912, 0.936] [0.968, 0.981] [0.958, 0.974]

fMRI WH2015 0,943 0,984 0,978 [0.928, 0.954] [0.974, 0.988] [0.967, 0.984]

PET PET images S2011 0,946 0,983 0,978 [0.919, 0.977] [0.978, 0.990] [0.967, 0.989]

PET images S2015 0,937 0,978 0,972 [0.885, 0.960] [0.953, 0.988] [0.940, 0.986]

PET images S2011 and S2015 0,941 0,980 0,975 [0.913, 0.960] [0.966, 0.986] [0.957, 0.984]

Note: These are unpaired bootstrap confidence intervals, which test the significance of each correlation with respect to zero. Paired bootstrap was used to

estimate the differences between the models (see Section 3).
Abbreviations: fMRI, functional magnetic resonance imaging; PET, positron emission tomography.
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all subjects except the 16th one in the 1st fMRI dataset
(WH2015), who had 93.39% spatial overlap. For that sub-
ject, the number of voxels at the peak of activity was
106 and larger than the probe vector’s size, which con-
tained only 100 values. That surprisingly robust result
indicates that all of the voxels corresponding to the
highest correlation values with integrative models were
situated within the peaks of brain activity as reflected by
contrast maps during cognitive loads.

The result with 99% spatial overlap is valid for all
types of integrative models in our analysis. In turn, it fol-
lows that integrative processing occurs at peaks of brain
activity.

Given the results of control analyses on random
datasets, our cross-correlation results on real datasets
indicate that (a) the highest correlations for integrative
models are very consistently found at the peaks of activity
and (b) they are higher for the integrative models with
the increasing input compared with the constant input
integrative model.

4 | DISCUSSION

We examined the integrative patterns in brain activity
originating from stimulus-specific contrasts provided by

fMRI and PET neuroimaging techniques. According to
our hypothesis, brain activity contains sequences of
voxels that integrate inputs to these voxels (Figure 1). To
test that theoretically driven hypothesis, we constructed
probe vectors with mathematical models of the two possi-
bilities of integration:

F I GURE 4 Results of the correlations obtained for each model concerning the PET datasets. Panels (a), (b) and (c) display the results of

the correlations for each dataset and each model. Panel c demonstrates the confidence intervals (CI) for the combined datasets (i.e., S2011

+ S2015). Linear = linear model model (i.e., with the constant input). Linear integ = linear integrated model. Zeta integ = model with

integrated Riemann’s zetas’ non-trivial zeros (i.e., models with the increasing input). Error bars represent the 95% bootstrapped CIs of

correlation values, resampled 10,000 times with a bias-corrected and -accelerated percentile algorithm for CIs (Carpenter & Bithell, 2000).

These are unpaired bootstrap confidence intervals, which test the significance of each correlation with respect to zero, depicted here for

illustrative purposes. Paired bootstrap was used to estimate the differences between the models (which are reported in the results section).

** = significant

F I GURE 5 Example of initial thresholded image and image of

voxels issued from maximal cross-correlation with integrative

models. In the initial image (a), activity peaks were present in the

occipital and orbitofrontal cortex. The same localisations were

detected using cross-correlation with all types of integrative models

(b). The example is for subject 5, WH2015 dataset
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1. with the same quantity of information received per
voxel (Figure 1a)

2. with increasing input of information received per
voxel (Figure 1b)

For the second type of mathematical model, we tested
both the linear and non-linear increase of the input; the
chosen non-linear function corresponded to Riemann’s
non-trivial zeros. Correlations aimed to compare, which
theoretical predictions are a better match for brain activ-
ity, the constant input to the voxels or the linearly
increasing input.

The constant input corresponds to the linear function,
and the linear/non-linear input corresponds to the inte-
gral of the linear/non-linear function (Figure 1). We
obtained high correlations with both types of models,
and both models pointed to the same set of voxels, which
were the most active ones. Having restored those voxels’
spatial location, we found that they corresponded exactly
to the spatial peaks of brain activity. Although correla-
tions were strong for the model with the constant input,
they were significantly higher—up to 0.99 for some
subjects—for the probe vector modelling the integration
of the increasing input to voxels. That finding implies
that integrative models with spatially increasing input
can more precisely describe between-voxel activity at
peak levels. Within the peaks of activity, the treatment of
sensory stimuli is likely to be organised according to the
integration of their properties. According to our results,
the input to each voxel at peaks of activity was already
the result of the integration of information from less
active voxels (Figure 1b). Transmitting the information
between the voxels as shown in Figure 1 seems to
increase the activity, which corresponds to the further
integration of information.

Furthermore, we found the same pattern of informa-
tion integration at all peaks of activity during the presen-
tation of complex stimuli (i.e., faces and words). Because
processing complex stimuli requires different functions
(e.g., processing colour, shape, and edges in the visual
domain), the existence of such patterns of integration
may support the hypothesis that stimuli features are not
processed at the same time; information about each fea-
ture needs to be integrated on the basis of the previously
integrated information. Another probable hypothesis is
that information about several stimuli features may
arrive at higher-activity areas at the same time, and in
that case, such information might be integrated with
previously memorised information. Both of those mecha-
nisms may exist in the brain and contribute to the
observed integrative activity.

In one of the PET datasets (PET S2011) no significant
differences were found between the correlations with the

linear and non-linear inputs, possibly due to the sample’s
insufficient size. In all datasets, the highest correlation
values were observed at the loci of the one-dimensional
brain activity with the highest slopes (See supporting
information Figures S4 to S8). In that context, a higher
slope indicates a higher difference between voxels, mean-
ing that voxels at peaks of activity have the highest differ-
ences in activity between the adjacent voxels (i.e., spatial
gradients). The transfer of integrated information along
the gradient vectors of brain activity has been shown
with fMRI data (Strelnikov & Barone, 2012) and later
explained by the large-scale propagation of travelling
waves (Roberts et al., 2019).

Thus, our method permitted us to reliably identify
peaks of brain activity using integrative models with spa-
tially increasing inputs. Being aware of the possible tech-
nical and data-processing issues that can result in
correlations, we applied our method to the data of differ-
ent fMRI and PET machines using different subjects and
different types of stimulation, and we obtained the same
results concerning the correlations of integrative models
of brain activity within peaks of activity.

With all of those datasets, contrasts were created
using MATLAB SPM software. By extension, following a
supporting explorative approach, we investigated a set of
random, unprocessed 3D images obtained using different
fMRI and PET scanners, including ones from our labora-
tory, and found that all of them followed the same rule as
reported here for contrasts, with correlations of up to
0.99 at peaks of activity in the case of integrative func-
tions, albeit in different regions. Thus, the correlations
obtained with integrative models exist even in the
unprocessed raw data, though they correspond to differ-
ent loci than in the contrasts images, and these correla-
tions did not result from the treatment of images
performed to obtain stimulation-specific contrasts. At the
same time, they were specific neither to a particular scan-
ner nor to a particular brain-imaging technique. There-
fore, our results provide evidence that peaks of activity in
“stimulation vs. baseline” contrasts correspond to loci
where spatial integration in stimulus-induced activity
exceeded that in the baseline activity.

Nevertheless, even having examined various sources
of technical artefacts, we cannot definitely reject their
absence. Such uncertainty follows from the logic that
although it is possible to prove the existence of a phe-
nomenon (e.g., a certain artefact), it is impossible to
prove its absence. Even in the case that some unknown
technical artefacts generate the highest correlations with
integrative probe vectors at peaks of activity, the method-
ological value of our results remains intact because the
existence of those correlations was proven with high
certainty with various datasets and neuroimaging
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techniques. To our knowledge, no such method of peak
detection is described in the literature on neuroimaging.

With the mentioned precautions in mind, we can
return to our neurophysiological and neuroenergetic
hypotheses that spurred our investigation. The average
level of metabolic activity (i.e., metabolic energy) in a
voxel, which can be indirectly measured by fMRI and
PET, indicates the level of interaction between different
molecules. In turn, that level approximately corresponds
to the internal energy of the voxel or the free energy
according to the thermodynamic interpretation of the
free energy theory (Friston & Stephan, 2007). If the level
of energy is higher in the given voxel, at least from a
purely mechanical perspective, then a spread of energy
from that voxel to the adjacent ones can be expected, sim-
ilarly to air moving in space from locations with high
pressure to locations with lower pressure. Ultimately, the
result would be the decrease of the differences in energy
between adjacent voxels during stimulation. However,
we have shown the existence of stimulation-specific
spatial differences (i.e., gradients) between the adjacent
voxels (Strelnikov & Barone, 2012). We suggested
that some general forces are related to information
processing, which maintain the observed local differences
(i.e., gradients) of activity. Our present results go further
and suggest that persistent stimulation-specific differ-
ences are the highest between the voxels at the peaks of
brain activity and can be considered as a sequence of
integrative activity. Although that observation does not
follow the free-energy minimisation principle at the local
scale, it does not contradict the principle at the global
scale of the brain–environment interaction.

In quantum physics, the Montgomery–Odlyzko con-
jecture (Odlyzko, 1987) states that the distribution of
spaces between successive non-trivial zeros of a suitably
normalised Riemann zeta function is statistically identi-
cal to the distribution of eigenspaces in the Gaussian
unitary ensemble (a mathematical model used to
describe energy levels in quantum mechanics). Although
Riemann’s non-trivial zeros could be a better predictor
than a linear function for metabolic energy, our study
revealed that the correlation of brain activity with the
integral of the linear function is slightly but significantly
higher than for Riemann’s non-trivial zeros. That result
could be attributed to both technical and theoretical rea-
sons. The technical reason is that PET and fMRI do not
measure metabolic energy directly but provide an indi-
rect measure related to blood flow and oxygenation,
which may blur the subtle quantum effects. The theoreti-
cal explanation, by contrast, may rest in the fact that the
Gaussian unitary ensemble describes isolated quantum
phenomena, which are not implicated in information
processing. The brain may be a unique organ that couples

information with quantum energy so that information
processing may impose specific laws of energy transfor-
mation in complex molecular systems. Both explanations
can contribute to the overall linear integrative effect
observed in our study.

From a physiological point of view, however, the con-
stant increase of energy turnover due to the integration
of a large amount of information may prompt energy
levels beyond the capacity of glucose and oxygen supply
to neuroglial populations. To cope with that problem, a
mechanism of energy-based feedback may exist, in which
rescaling activity constantly occurs but does not influence
the spatial coding of information (Kuzma, 2019). The
necessity of downscaling energy expenditure can explain
a large network of feedback mechanisms, all of which
rescale energy-related differences between the stages of
information integration to match the physiological capac-
ities of energy turnover. Such energy-saving downscaling
allows the brain activity to maintain the representation
of stimuli-related information in spatially organised pat-
terns of brain activity (Sadoun et al., 2020). The advan-
tage of that mechanism is that coding can be maintained
not by energy levels per se but by the spatial differences
in energy that can be adjusted according to updated stim-
ulations from the environment and neuronal feedback.

Our study has demonstrated that brain activity peaks
contain voxels, which follow the models of integration
almost exactly. The question of what happens in voxels
outside the peaks of activity remains, however. Although
they should also accumulate information and transmit it
to other voxels, smaller amounts of information may be
processed with lower amounts of energy, which are
nearly within the limits provided by normal blood flow
and oxygenation. Thus, our integrative models may not
apply to other voxels simply because relatively low meta-
bolic processes in other voxels do not sufficiently change
blood flow and oxygenation, which underlie PET and
fMRI signals. When amounts of treated information
require significant additional energy input from
extracerebral sources, the integrative law of energy con-
sumption becomes evident with the techniques, which
measure events outside neuroglial tissue. Given those
assumptions, our findings do not reject integrative
models of information–energy coupling for the entire
brain but nevertheless confirm integrative models in
neuroglial populations with the highest activity.

5 | CONCLUSIONS

In several fMRI and PET datasets, the statistical compari-
son confirmed the higher match for integrative models,
in which the input increases at each step of integration
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between the nodes of the model. In this way, we provide
the first evidence that one can computationally detect
sites, which closely follow the law of spatial integration
in the brain. Interestingly, the correlated with integrative
models sites are situated at the peaks of activity in the
fMRI and PET data. These findings suggest that the net-
work of brain activity at its peaks is spatially organised
according to models of information integration.
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