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Abstract: Realistic reconstruction of angioarchitecture within the morphological landmark with three-
dimensional sonoangiography (three-dimensional power Doppler; 3D PD) may augment standard
prenatal ultrasound and Doppler assessments. This study aimed to (a) present a technical overview,
(b) determine additional advantages, (c) identify current challenges, and (d) predict trajectories of
3D PD for prenatal assessments. PubMed and Scopus databases for the last decade were searched.
Although 307 publications addressed our objectives, their heterogeneity was too broad for statistical
analyses. Important findings are therefore presented in descriptive format and supplemented with
the authors’ 3D PD images. Acquisition, analysis, and display techniques need to be personalized
to improve the quality of flow-volume data. While 3D PD indices of the first-trimester placenta
may improve the prediction of preeclampsia, research is needed to standardize the measurement
protocol. In highly experienced hands, the unique 3D PD findings improve the diagnostic accuracy
of placenta accreta spectrum. A lack of quality assurance is the central challenge to incorporating 3D
PD in prenatal care. Machine learning may broaden clinical translations of prenatal 3D PD. Due to its
operator dependency, 3D PD has low reproducibility. Until standardization and quality assurance
protocols are established, its use as a stand-alone clinical or research tool cannot be recommended.

Keywords: three-dimensional sonoangiography; three-dimensional power Doppler; three-dimensional
ultrasound; flow-volume index; prenatal; fetus; twins; placenta; umbilical cord; cervix

1. Background

Two- and three-dimensional ultrasounds (2D US and 3D US, respectively) have been
well adopted for structural and functional assessments of the fetus, the umbilical cord and
placenta, and the cervix during pregnancy [1]. Real-time ultrasound is suitable for point-of-
care (POC) management, especially in early pregnancy. Tomographic ultrasound imaging is
particularly useful for the 3D US display of the fetal brain. Subsequent volumetric analyses
of the acquired 3D US data with semi-automatic Virtual Organ Computed-aided AnaLysis
(VOCAL; GE, Kretztecink AG, Zipf, Austria) are standardized [2]. Color Doppler (CD),
power Doppler (PD), and high-definition flow (HDF) display flow data superimposed
on a B-mode image. However, they are less accurate than angiography because (1) CD
and PD exaggerate the size of vessels, and (2) Doppler flow detection is obscured by the
grey-scale signal of the overlying tissue [3]. In addition, as the course of a blood vessel is not
always within a single examination plane, a 2D Doppler image is not easily reproduced in
follow-up comparisons using the same morphological landmarks. Computed tomographic
angiography and magnetic resonance angiography can reconstruct the courses of vessels
in three orthogonal planes. Nevertheless, computed tomographic angiography is invasive,
and its ionizing radiation can damage a developing embryo [4]. Moreover, magnetic
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resonance angiography requires the intravascular injection of gadolinium-based contrast
agents, which should be used only when essential [4]. Furthermore, the motion artifacts
that are universally found in computerized tomography and magnetic resonance images of
smaller vessels limit their use during the first trimester of pregnancy [5,6].

Spectral or pulsed-wave Doppler (PWD) converts frequency shifts between the re-
flected sound waves and the short-emitted pulses to velocities using the Doppler equation.
PWD also displays the waveforms of a spectrum of frequencies. Only the Doppler shifts
recorded from an operator-defined small area (sample volume/gate) are recorded and
expressed as velocity indices during cardiac systole and diastole, i.e., the pulsatility index,
resistance index, and systolic/diastolic ratio. Standardized measurement and quality as-
surance for obstetric PWD have been established [7]. Tissue Doppler imaging uses PWD
principles to measure the velocity/amplitude of myocardial motion. Historically, blood
volume within the placenta was estimated via ex vivo injection studies [8]. It is now possi-
ble to non-invasively estimate the moving blood volume, regardless of its velocity, within
the tissue morphology (flow-volume data) without the need for the intravascular injection
of contrast agents. The ultrasound virtual-reality display of the biometry, course, and
branching patterns of blood vessels is called 3D sonoangiography [9]. It is also commonly
known as 3D power Doppler (3D PD); the initialisms CD, PD, and HDF are also used.

The basic principles of 3D PD are as follows. Color Doppler displays the direction
and high-velocity flow of larger vessels in an array of colors. Power Doppler sensitively
displays low-velocity flow within smaller vessels in an array of monochromic strengths [10].
By extending the usable dynamic range of the equipment, PD sensitively detects flow over
the grey-scale noise with less influence from the angle of insonation and less aliasing [11].
While high-definition flow sensitively displays both direction and velocity in an array of
colors, it is more susceptible to aliasing. Novel Doppler modalities have lowered the limit
of (flow) detection by enabling signal extraction at a more rapid frame rate. This allows
for the production of high-resolution images displaying slow blood flow in the smaller
parenchymal veins, venules, and capillaries uniquely found in the placenta and the renal
cortex. The current slow-flow modalities, i.e., SlowflowHD (GE GmbH, Vienna, Austria)
and Superb Microvascular Imaging (SMI; Canon Medical Systems, Tustin, CA, USA), are
not yet compatible with 3D PD [12–14].

The archived flow-volume data can be adjusted for intensity, re-rendered, and re-
analyzed. Post-scan thick slicing further improves the image quality by eliminating over-
lapping morphological structures. Elimination of the tissue opacity that obscures the flow
image and enhancement of the morphological organ/vascular boundary and cavitation are
possible with rendering algorithms that detect abrupt changes in tissue acoustic impedance,
such as HDLive Silhouette (GE, Milwaukee, WI, USA) and Hyaline (Mindray, Shenzhen,
China) [15,16]. Histogram vascularity indexing (i.e., vascularization index, flow index, and
vascularization-flow index) was originally used for the “sonobiopsy” of the endometrium
because it provides a broader perspective of parenchymal perfusion characteristics than
PWD [17]. The present study aimed to (a) summarize the technical aspects, (b) determine
the additional advantages, (c) identify the current challenges, and (d) predict the future
trajectories of 3D PD for prenatal assessments.

2. Methods

A literature search was conducted of the PubMed and Scopus databases for the past
decade (July 2011 to June 2021). This is the period when the onset of the technological
commercialization and near-maturation of 3D PD made it a viable tool for research and
clinical-care applications. The search terms were three-dimensional sonoangiography, three-
dimensional power Doppler, three-dimensional ultrasound, flow-volume index, prenatal, fetus,
twins, placenta, umbilical cord, and cervix. The inclusion criteria were published studies on
prenatal assessment, while the exclusion criteria were non-English publications.
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3. Results

In all, there were 538 articles that met one or more of the search terms. After manual
review, 307 were found to address our objectives. Those studies had a broad range of
study methodologies, indications, and technical perspectives of prenatal 3D PD. The ones
with qualitative (descriptive) methodologies (the case reports and case series) described
clinical feasibility. The technology seemed to be most promising for POC diagnoses of
the placenta accreta spectrum. The papers that employed quantitative methodologies (the
cross-sectional and case–control studies) primarily focused on the global 3D PD vascularity
indices of the first-trimester placenta for early prediction of preeclampsia, and the focal
3D PD vascularity indices of the second- and third-trimester placenta to guide prenatal
management of intrauterine growth restriction. Unfortunately, the heterogeneity of the
307 publications was too broad to conduct meaningful statistical analyses. Therefore, only
publications with important findings are presented herein, using a descriptive format. The
authors’ original fetal and extra-fetal 3D PD images are also used to augment the narration.

3.1. Fetal Central Nervous System

Early ultrasound recognition of congenital anomalies and acquired in-utero brain
damage through the sagittal cranial suture window may permit timely intervention and
obviate long-term neurodevelopmental disability [18,19]. The 3D US parameters for fetal
brains have been standardized [20]. An abnormal biometry or a defective course of
intracranial vessels can be realistically appreciated with 3D PD. Dilatation of the straight
sinus (Figure 1a), especially if accompanied by ventriculomegaly or other major brain
abnormalities, is suggestive for vein of Galen aneurysmal malformation [21]. A defective
pericallosal artery, visualized by Doppler mapping from 11 weeks of gestation, is suggestive
for maldevelopment of the corpus callosum, which is the largest white matter structure in
the brain [22]. Most of the other white matter abnormalities are subtle and challenging for
prenatal ultrasound diagnosis.

Figure 1. Fetal assessment with three-dimensional sonoangiography. (a) Vein of Galen aneurysmal malformation of a fetus
at 30 weeks of gestation; thick-slice, three-dimensional, high-definition flow (3D HDF). (b) Deep medullary veins of a fetus
at 29 weeks of gestation; thick-slice 3D HDF. (c) Diminished vasculatures (arrow) of right lung with primary dysplasia,
compared with the left normal lung, in left and right lung of a fetus at 29 weeks of gestation; thick-slice 3D HDF. (d) Primitive
hepatic vasculature of a fetus at 22 weeks of gestation; HDLive Silhouette (GE, Milwaukee, WI, USA), thick-slice 3D HDF.
(e) Mature hepatic vasculatures of a fetus at 38 weeks of gestation; thick-slice 3D HDF. (f) Confluent vasculatures of hepatic
hemangioma of a fetus at 30 weeks of gestation; thick-slice 3D HDF. (g) Complex visceral vasculatures of a fetus at 20 weeks
of gestation; thick-slice 3D HDF. (h) Primitive visceral vasculatures of an acardia at 26 weeks of gestation; HDLive Silhouette
(GE, Milwaukee, WI, USA), thick-slice, 3D HDF.
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The deep medullary veins of white matter can be prenatally visualized as fine parenchy-
mal vasculatures draining from pia mater to subependymal veins. There is a parallel
distribution pattern near the body and inferior horn (Figure 1b), and a radial distribution
pattern near the frontal horn or trigone of the lateral ventricle [23,24]. Disruption of deep
medullary vein vasculatures is associated with congenital venous malformations, stroke
(from physical trauma, engorgement, or thrombosis), viral infections, neoplasms, and
metabolic disorders of the fetus [25]. Clinical interpretation of isolated deep medullary
vein abnormalities is not possible because the functional assessment of neuronal connectiv-
ity is currently not available via US [26].

3.2. Fetal Intrathoracic and Intra-Abdominal Viscera

Fetal pulmonary vasculatures are realistically appreciated with 3D PD (Figure 1c). The
administration of betamethasone or dexamethasone in women at risk of preterm birth be-
tween 24 and 33 weeks of gestation accelerates fetal lung maturation. The response can be
demonstrated with 2D CD semi-quantitation of pulmonary parenchymal perfusion [27,28].
Defective 2D PD pulmonary vasculatures of third-trimester fetuses affected by congenital
diaphragmatic hernia (CDH) can predict lung hypoplasia at the time of birth [29]. Pul-
monary perfusion can be realistically visualized by 3D HDF after 13 weeks of gestation [30].
Moderate and severe CDH significantly affect the pulmonary volume and arterial pressure
of the fetus, and thus increase the risk of ventilation/perfusion mismatch at the time of
birth. Prenatal alleviation of these CDH-related changes after a fetal intraluminal tracheal
occlusion procedure can be demonstrated with sequential measurements of pulmonary
flow-volume indices [31–34].

The fetal liver receives its oxygenated blood from the placenta. Fifty percent of the
umbilical venous blood bypasses to the right atrium via the ductus venosus and inferior
vena cava, and the PWD velocity indices represent cardiac preload [35]. The rest of the
umbilical venous flow is distributed in a tree-like pattern with an orderly segmentation grid
to both liver lobes. Therefore, any parenchymal disruption of 3D PD is readily discernable
(Figure 1d–f). In cases of omphalopagus twinning, the sharing of large hepatic vessels that
are prenatally visualized with 3D PD may be predictive for hemorrhagic morbidity during
surgical separation [36,37].

3.3. Fetal Mediastinal and Retroperitoneal Great Vessels

Cardiac examination planes derived from spatial temporal image correlation have
been standardized in accordance with 2D CD prenatal diagnostic criteria [38]. The as-
cending aorta, pulmonary trunk, pulmonary veins, superior vena cava, and inferior vena
cava are great vessels with direct associations with the heart. They can be realistically
displayed with 3D PD [39–41]. Three-dimensional printing of these vessels aids in un-
derstanding the development of complex anomalies of the cardiac inflows and outflows
(Figure 1g,h) [42–44].

3.4. Fetal Tumors

Tumors with prenatal onset are rare. Cardiac burden, high-output failure, and per-
manent myocardial dysfunction are more common in tumors with higher vascularity,
namely, sacrococcygeal teratomas [45,46]. Integration of a sacrococcygeal teratoma’s 3D
PD vascularization index with the tumor-to-fetal volume ratio, tumor growth rate, and
combined cardiac output indexed to the estimated fetal weight may aid in prognostication,
a decision to intervene prenatally, and the timing of the delivery [47].

Overall, most cases with a prenatally diagnosed congenital pulmonary airway malfor-
mation (CPAM) carry a favorable prognosis, with over 95% neonatal survival and up to
50% spontaneous antenatal resolution [48]. However, CPAM with hydrops has over 95%
perinatal death. In-utero thoracoamniotic shunting and open fetal surgery with lobectomy
may improve survival for the macrocystic and microcystic types, respectively [48]. The
CPAM volume (measured with 3D US) to fetal head circumference ratios have been linked
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with prognosis [49]. The 3D US volume to head circumference ratios of prenatally detected
pulmonary sequestration are also predictive of perinatal outcomes [50]. However, our
search did not find any publication on the use of 3D PD for prognosticative purposes
for cases of prenatally detected CPAM or pulmonary sequestration. Primary cardiac tu-
mors in the fetus are extremely rare [51]. The most common congenital cardiac tumor is
rhabdomyoma, which has a strong genetic predilection. A positive genetic diagnosis can
assist in counseling and planning for neonatal treatment [52]. Our review did not find any
publication relating to the prenatal evaluation of cardiac tumors with 3D PD.

3.5. Placenta

Large and highly vascularized placenta may be more adaptive to maternal–fetal in-
teraction and more favorable to pregnancy [53]. The entire first-trimester placenta can be
covered with a single acquisition, and a lower placental volume was linked with preeclamp-
sia and intrauterine growth restriction [54–56]. Lower first-trimester placental vascularity
indices yield the highest accuracy for the prediction of early-onset preeclampsia when
integrated with other parameters [57–60]. Lower placental 3D PD indices of the volume
arbitrarily sampled underneath the placental insertion of the umbilical cord of the second-
trimester placenta (Figure 2a) are more predictive for intrauterine growth restriction [61,62].
A lack of consensus on standardization and quality reassurance, especially for sonobiop-
sies that can represent the entire placenta, precludes the clinical translation of placental
vascularity indices [63,64].

Figure 2. Extra-fetal assessment with three-dimensional sonoangiography. (a) Histogram flow-volume indices of the
placenta at 26 weeks of gestation; three-dimensional (3D) power Doppler (PD) with a spherical representation of the entire
placental vascular tree. (b) Normal parenchymal vasculatures of the placenta at 24 weeks of gestation; SlowflowHD (GE
GmbH, Vienna, Austria). Note the virtual absence of flow in the lake (circle). (c) Confluent parenchymal vasculatures of
placenta percreta at 29 weeks of gestation; HDLive Silhouette (GE, Milwaukee, WI, USA), thick-slice, monochrome 3D
high-definition flow (HDF). (d) Complicated vasculatures involving the entire thickness of the placenta, with extension
to the myometrial–bladder interface of placenta percreta, at 29 weeks of gestation; orthogonal multiplanar 3D HDF.
(e) Velamentous umbilical cord insertion at 25 weeks of gestation; thick-slice 3D HDF. Note the transition from coiled
umbilical vessels to chorionic vessels with the artery (blue) crossing over the vein (red). (f) Marginal placenta previa
at 28 weeks of gestation; HDLive Silhouette (GE, Milwaukee, WI, USA), thick-slice 3D HDF. Note the proximity of
the velamentous umbilical cord insertion to the internal cervical os (arrow). (g) Feeding vessels of chorioangioma at
29 weeks of gestation; thick-slice 3D HDF. (h) Parenchymal vasculatures of a normal cervix at 32 weeks of gestation;
two-dimensional HDF.

Sonolucent placental lakes have the lowest positive predictive value (PPV) for placenta
accreta spectrum (PAS), especially when there are no 2D PD signals with a sufficiently
low threshold (Figure 2b) [65]. The presence of turbulent/aliasing 2D CD signals suggests
PAS; however, a focal area of complicated vasculatures may be obscured by the vast area



Diagnostics 2021, 11, 1511 6 of 15

of the vascularized third-trimester placenta [66]. The 3D PD uniquely acquires deeper
examination planes and better depicts numerous coherent vessels affecting the entire
placental thickness with extension to the uterine serosa–bladder interface (Figure 2c,d),
which is the best single PAS diagnostic criterion (97% sensitivity, 92% specificity, and 77%
PPV) [67,68]. The majority of cases of PAS also show multiple characteristic features on
ultrasound. Integration of 3D PD findings into a scoring system further improved the
diagnostic PPV and inter-rater agreement to nearly 90%, which is comparable with that
achievable with a magnetic resonance imaging diagnosis [69–73].

Abnormal proliferation of trophoblastic cells derived from the placenta can cause
gestational trophoblastic neoplasia. The neoplasm is highly vascular and is associated with
massive hemorrhage. Selective arterial embolization can effectively control the bleeding,
and 3D PD using glass body surface rendering may aid in the POC color flow mapping of
a uterine arteriovenous malformation with high vascularity associated with a gestational
trophoblastic neoplasia [74].

3.6. Umbilical Cord

Reconstruction with 3D PD may aid in prenatal assessment of the umbilical cord
(Figure 2e,f) [37]. Simultaneous orthogonal US display may shorten the time and risks
associated with in-utero procedures [75–77]. Virtual placentoscopy using 3D PD can
demonstrate residual chorionic vessels following fetoscopic photocoagulation for severe
twin-to-twin transfusion syndrome and chorioangioma (Figure 2g) [78–80].

3.7. Cervix

A short cervix in high-risk women predicts a spontaneous preterm birth before
34 weeks of gestation that could be prevented with progesterone administration. The
clinical decision for an asymptomatic short cervix in low-risk women may be aided by the
US elastography index and strain pattern score of the cervix [81]. The entire cervix can be
covered with a single acquisition (Figure 2h); a smaller volume and a higher flow-volume
index independently elevate the risk for a spontaneous preterm birth [82–84]. Algorithmic
integration of elastography and flow-volume data with magnetic resonance elastography
reduces false positive results [85]. Elastographic sonoangiography has recently become
available for research purposes, and its clinical validation is underway.

3.8. Technical Perspectives

The quality of ultrasound assessments relies on techniques (of the operators) and
physics (of the equipment). Choosing the right ultrasound transducer is vital. Tissue
penetration is primarily determined by the center frequency of the transducer: the higher
the frequency, the shallower the penetration. A mechanical, automated sweeper is increas-
ingly being preferred, with free-hand and 2D array techniques for a more flexible volume
acquisition in challenging cases. The acquisition (sweeping) speed primarily affects the
quality of the volume data, whereas the angle of insonation and Doppler settings primarily
affect the quality of the flow data. The most influential Doppler settings are gain, signal
power, and pulse repetition frequency (PRF), in decreasing order of influence. The PRF is
the Doppler sampling frequency (kilohertz) emitted from the transducer, which determines
the maximum Doppler shifts obtainable. Therefore, the equipment should be individually
optimized to reduce artifacts for an accurate real-time diagnosis. It should begin with a
Doppler gain and signal power to produce no Doppler signals at the lowest settings, but
the highest recordable indices at the maximum settings. Then, the PRF is adjusted until
the Doppler signal is free of aliasing and is measurable at all of the different settings. Wall
motion filtering removes Doppler signals with outlier frequencies and subtly improves the
image quality without having a significant impact on the 3D PD indices. The wall motion
filter, followed by the PRF, significantly influences the 3D PD indices, but only when the
flow velocities are less than 20 cm per second [86]. An ex vivo experiment showed that PD
overestimates the flow-volume data of small vessels, similar to 2D PD, especially when
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the spatial resolution and Doppler settings are not optimized [87]. A clinical study also
showed significant differences in the flow-volume indices when calculated using PD and
HDF [88]. Correction factors remain unestablished, because a gold-standard confirmation
method that accurately measures the true blood volume in vivo does not exist [61]. Lastly,
the acquisition speed and angle are defined. A faster acquisition speed reduces all 3D PD
indices, especially the vascularization-flow index [89]. Post-scan adjustment of the Doppler
settings should be avoided because doing so may create faulty images. The initial display
of the flow-volume data enables the operator to quickly navigate, measure (the ratio, area,
and volume), convert the data to nomogram equivalents (i.e., the gestational age), reslice,
produce, and save all of the standard image planes required for diagnosis. The manu-
facturers’ software, such as 4D View or ViewPoint (GE Medical Systems–Kretztechnik,
Zipf, Austria), is increasingly being preferred to the conventional digital imaging and
communication in medicine because of their ability to integrate flow-volume data and
metadata (data of the acquired data) using various algorithmic analyses to obtain the most
personalized clinical interpretations with the least image artifacts [90,91].

The four common types of Doppler artifacts mainly arise from tissue gradients and
motion. They are (a) twinkle artifacts (occurring behind reflectors such as the fetal skull
plate), (b) edge artifacts (occurring along strongly reflective interfaces, like the fetal long
bone), (c) flash artifacts (caused by tissue or fluid motion, such as fetal movement, maternal
bowel/breathing movement, or slipping of the transducer), and (d) pseudoflow (resulting
from the nonvascular flow of other fluids, for example, urinary jets in the maternal bladder
or ascites). With the standardized limit of (flow) detection (LOD) threshold, these artifacts
are not depicted in confirmatory PWD [92]. Lowering the LOD increases the artifacts,
whereas increasing the LOD limits the detection capability. There is a higher tendency for
flash artifacts from HDF compared with CD and PD; however, this can be minimized by
using optimal Doppler settings [93]. The novel matrix-array transducer can reduce motion
artifacts by enabling faster volume rates and semi-interactive acquisition. Standardization
of the image display is possible with simultaneous display of two orthogonal morphological
planes (biplane mode) [94,95].

3.9. Current Challenges

Although prenatal 3D PD may aid in the personalized prediction of preeclampsia and
the POC diagnosis of PAS, it should be selectively used to maximize its cost benefits [96].
The technology is highly dependent on the operator; hence, low reproducibility is the most
important challenge to incorporating 3D PD in prenatal care. Although proper training
can reduce the variability of 3D US volumetric measurements, the training efficacy is
still impacted by the task-specific learning curve and the prior experience of the trainees.
For example, the learning curve to measure the fetal frontomaxillary facial angle at 11 to
13 weeks of gestation using specially acquired 3D US volume data reaches its competency
after a median of 90 training cases, with a broad range of up to 140. The required number of
training cases to reach competency was substantially lower (40) for trainees with extensive
prior experience of nuchal translucency measurements [97]. Compared with a protocol-
based imaging modality (such as magnetic resonance imaging), volumetric measurements
obtained with 3D US consistently have greater variability than magnetic resonance imaging
measurements, even in experienced hands [98]. Our literature search did not identify a
publication directly addressing the learning curve or a validated training protocol for
prenatal 3D PD. The lack of training and standardization of the techniques create major
differences between publications and between research groups.

Concern about the safety of the developing fetus has always been paramount since
the inception of ultrasound technology. During 3D US acquisition, a fetus is exposed to
an ultrasound beam for only a few seconds. This exposure is not different from real-time
B-mode scanning, and thus prenatal assessment with 3D US should be as safe as a standard
B-mode scan. However, Doppler uses a higher intensity power than B-mode ultrasound.
Animal studies have shown functional and anatomical bioeffects from prenatal exposure
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with Doppler [99]. Therefore, diagnostic ultrasound equipment has been regulated by
controlling the output pulse and continuous ultrasound waves for all of its applications,
including 3D PD. The aim is to keep the thermal index and mechanical index lower than
1.0, which is theoretically safe for prenatal use [100]. Although 3D PD is theoretically
safe during pregnancy, it is nevertheless advisable to restrict its use to situations where
the possible added benefits outweigh the potential risks. The clinical ramifications of the
current challenges of adopting 3D PD to prenatal assessments are detailed in Table 1.

Table 1. Current challenges of three-dimensional sonoangiography for prenatal assessment. Abbreviations: 3D-FMBV,
3D-fractional moving blood volume; 3D PD, three-dimensional power Doppler; ALARA, as low as reasonably achievable;
FVV, fetal vascular volume; MI, Mechanical Index; PAS, placenta accreta spectrum; PBVV, placental bed vascular volume;
PE, preeclampsia; POC, point-of-care; PPV, positive predictive value; NPV, negative predictive value; SPTA, spatial peak
temporal average; TI, Thermal Index; TOP, termination of pregnancy.

Challenges Rationale Clinical Ramifications

Critical appraisal; case reports. Feasibility
Experienced operators

Low reproducibility
Limited clinical translation [101]

Critical appraisal; cross-sectional studies
(prevalence of 3D PD findings in

study cohorts)

No proof of cause and effect
Experienced operators

Moderate reproducibility
Limited clinical translation [101]

Critical appraisal; case–control studies
(cause–effect comparison from 3D PD cases,

and matched controls in study cohorts)

Odds ratio; absolute and relative risks are
defined from a small representation of the

entire population.

Moderate reproducibilityReasonable clinical
translation [101]

Lack of high-quality longitudinal (cohort and
panel) studies, randomized controlled trials,

meta-analysis, and systematic review

Absence of consensus for the following:

• Target condition and terminology
• Performance matrix; sensitivity,

specificity, PPV and NPV
• In vivo gold-standard confirmatory

method [89]

Postnatal confirmation; either with standard
contrast-imaging techniques or

autopsy [53,102,103]
In vivo ultrasound contrast agents [104–106]

Prediction of PE from first-trimester 3D PD
placental assessment

Operator-dependent process; lack of
standardization and quality assurance; quality

of flow-volume data [61,62,107]
Standardized indices, i.e., maternal PBVV

(arcuate, radial, basal, and spiral arteries), FVV
(umbilical and villous vasculature), and

3D-FMBV [108–110]

Powerful equipment [95]
Machine automation [111]

Validation in different study populations,
algorithms, and clinical impacts [63]

Clinical interpretation of flow-volume data

Suboptimal acquisition; faulty results

• Over-detection; unnecessary anxiety,
investigation, and TOP [112]

• Under-detection; missed diagnosis [113]
• Software conflicts [114]
• Metadata; tissue harmonics

Avoid scanning too early or without proper
indications [115]

Full disclosure of 3D PD for learning and
research purposes

Cautious interpretation

Best practice and standard recommendations
for 3D PD in 11 to 13 +6 weeks of gestation.

Balancing early PE prediction vs. 3D PD safety

• Lack of evidence; guided by expert
consensus [116]

• Minimal risks; TI is related to exposure
to PWD, which is not used in 3D PD; MI
is related to output intensity, which is
defaulted at < SPTA 240 mW/cm2 in
most obstetric Doppler settings [117]

• Large variation of equipment; real-life
performance and interactive feedback

Avoid 3D PD during <11 weeks of gestation,
especially for learning and research

purposes only
Strict adherence of ALARA principle

Extrapolation of POC 3D PD for PAS. Centralization
Operator-dependent process [118]

Customized phantom training [119]
Algorithmic/scoring approach [72]

Additional costs

• Resource allocation
• Research funding

Equipment upgrades, additional training,
longer examination time,

and workflow ergometrics

Individual health economic analyses
[120–122]
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3.10. Future Prospects

The International Society of Ultrasound in Obstetrics and Gynecology recently ac-
knowledged the potential of machine-guided acquisition of the standard fetal biometric
plane, pattern recognition of anatomical aberrations, and quality assurance of fetal scan-
ning [122,123]. Deep learning automatically analyzes unstandardized prenatal 2D US
images and accurately predicts postnatal outcomes [124]. Predictions can be further im-
proved by allowing the machine to access a larger pool of outcome data [125]. It is possible
that artificial intelligence will soon be integral to prenatal 3D US [126,127]. Our theoretical
conjectures are outlined in Table 2.

Table 2. Theoretical conjectures of three-dimensional sonoangiography for prenatal assessment. Abbreviations: 3D PD,
three-dimensional power Doppler; AI; artificial intelligence; IUGR, intrauterine growth restriction.

Issues Rationale Future Prospects

Standardization 3D PD acquisition

• Prediction of IUGR from
second-trimester
placental assessment

• Matrix array transducer; rapid
acquisition with Biplane interactive
image standardization

Non-uniform flow velocities of the entire
placenta [6]

Different cardiac outputs at various
gestational ages

Cardiovascular impacts of
fetal conditions

Impacts of novel Doppler modality, for
example, slow-flow modalities

Machine automation [123,126] Robotic
transducer holder and optical

sensor [128]
Machine instant recognition and

assurance of the acquired flow-volume
data [124]

Automated segmentation of
large-volume data to detect anatomical

aberrations [129]

Machine-related changes in the
following:

• Training
• Clinical workflow
• Medical ethics and liabilities

Complete replacement of human
operators by machine [130]

Liberal use of AI negatively impacts the
skills of human operators [131]

Training on handling of the technological
novelties, and not patient-centered care;

‘Doctor–Patient–Machine’
relationship [132]

Intellectual prioritization over the
primary application [133]

Supervised use of AI [133]

• Human-controlled access to differ-
ent databases

• Locked application to prevent auto-
mated adaptations

4. Conclusions

In theory, 3D PD may offer more additional information than the standard prenatal
real-time 2D US and Doppler. It may also facilitate teaching and research. This is because
the 3D PD technology uniquely archives flow-volume data for offline navigation and
analysis with different algorithms, which is not possible with real-time Doppler ultra-
sound. However, 3D PD has a low reproducibility due to operator dependency, and the
technology remains within the areas of research and clinical trials with various levels of
experimentation. More time is needed for the maturation of the technology and the estab-
lishment of standardization and quality-assurance protocols. As for the current practice,
the use of 3D PD as a stand-alone clinical or research tool—even in expert hands—cannot
be recommended.
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