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Cohort design and natural language processing to reduce bias
in electronic health records research
Shaan Khurshid1,2,3,16, Christopher Reeder4,16, Lia X. Harrington2,3, Pulkit Singh4, Gopal Sarma4, Samuel F. Friedman4,
Paolo Di Achille 4, Nathaniel Diamant 4, Jonathan W. Cunningham 3,5, Ashby C. Turner6,7, Emily S. Lau1,2,3, Julian S. Haimovich2,8,
Mostafa A. Al-Alusi1,2, Xin Wang2,3, Marcus D. R. Klarqvist 4, Jeffrey M. Ashburner9,10, Christian Diedrich11, Mercedeh Ghadessi11,
Johanna Mielke11, Hanna M. Eilken11, Alice McElhinney3, Andrea Derix11, Steven J. Atlas9,10, Patrick T. Ellinor 2,3,12,
Anthony A. Philippakis4,13, Christopher D. Anderson2,6,7,14,15, Jennifer E. Ho 1,2,3, Puneet Batra 4,17 and Steven A. Lubitz 2,3,12,17✉

Electronic health record (EHR) datasets are statistically powerful but are subject to ascertainment bias and missingness. Using the
Mass General Brigham multi-institutional EHR, we approximated a community-based cohort by sampling patients receiving
longitudinal primary care between 2001-2018 (Community Care Cohort Project [C3PO], n= 520,868). We utilized natural language
processing (NLP) to recover vital signs from unstructured notes. We assessed the validity of C3PO by deploying established risk
models for myocardial infarction/stroke and atrial fibrillation. We then compared C3PO to Convenience Samples including all
individuals from the same EHR with complete data, but without a longitudinal primary care requirement. NLP reduced the
missingness of vital signs by 31%. NLP-recovered vital signs were highly correlated with values derived from structured fields
(Pearson r range 0.95–0.99). Atrial fibrillation and myocardial infarction/stroke incidence were lower and risk models were better
calibrated in C3PO as opposed to the Convenience Samples (calibration error range for myocardial infarction/stroke: 0.012–0.030 in
C3PO vs. 0.028–0.046 in Convenience Samples; calibration error for atrial fibrillation 0.028 in C3PO vs. 0.036 in Convenience
Samples). Sampling patients receiving regular primary care and using NLP to recover missing data may reduce bias and maximize
generalizability of EHR research.
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INTRODUCTION
Electronic health record (EHR) databases are increasingly recog-
nized as powerful tools for biological discovery and clinical
insight1. EHR databases provide favorable statistical power for
large-scale association (e.g., epidemiological, genetic) analyses,
rich and diverse feature sets including clinical risk factors,
laboratory results, free-text notes, and raw imaging data2–5, and
repeated measures to support modeling of disease progression
and clinical trajectories6.
However, there is increasing recognition that EHR data may be

subject to multiple biases related to patient selection, data
acquisition, and misclassification or measurement error7. Two
particularly important sources of bias include ascertainment bias
resulting from the acquisition of data on the basis of clinical
need3,8,9, as well as selection bias secondary to missingness4,10,11.
Although pragmatic, the practice of sampling all individuals with
relevant data for a particular modeling application may amplify
ascertainment bias and missingness, leading to spurious associa-
tions and poor generalizability2,7,9,11–13. In contrast, intentional a
priori sampling of individuals receiving regular primary care may
reduce ascertainment bias by providing a mechanism for
longitudinal data acquisition outside the context of illness

(e.g., health maintenance visits). Furthermore, analysis of
unstructured data, such as free text notes, may provide an
opportunity to reduce bias related to missing data. Overall, both
strategies attempt to reduce bias by constructing the EHR sample
such that it more closely resembles a traditional research cohort,
which may in turn increase the validity of applying established
analysis methods typically utilized in the cohort study setting
(e.g., survival analysis)9.
In the current study, we developed the Community Care Cohort

Project (C3PO), a multi-institutional EHR-based cohort intended to
empower discovery research in cardiovascular disease and
designed to achieve two major goals: (1) to mitigate ascertain-
ment bias, and (2) to minimize data missingness. We developed
and implemented a deep natural language processing (NLP)
model to recover four vital sign features using unstructured notes,
and compared effective sample sizes before and after missing
data recovery. We then deployed two established clinical risk
scores, and compared model performance in C3PO to that
observed in Convenience Samples constructed from the same
parent EHR but including all individuals with sufficient data to
calculate each score (i.e., with no requirement for regular in-
network primary care). We hypothesized that such risk scores
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derived in prospective cohort settings would perform more
favorably in C3PO, providing evidence of reduced bias.

RESULTS
C3PO cohort
In total, C3PO comprised 520,868 individuals (mean age 48 years,
61% women) with a median follow-up time of 7.2 years (quartile-1:
2.6, quartile-3: 12.9) (Fig. 1). Individuals in C3PO had a median of
30 office visits (14, 62), and 13 (6, 26) primary care office visits. By
comparison, individuals in the Convenience Samples had shorter
follow-ups and fewer office visits (Fig. 2 and Supplementary Fig 1).
Characteristics of individuals in C3PO and each Convenience
Sample are shown in Table 1. A summary of the diverse array of
data types available for individuals in C3PO is shown in
Supplementary Table 1.

NLP-based vital sign recovery
Using tabular data alone, 286,009 individuals (54.9%) had height,
weight, systolic, and diastolic blood pressure available at baseline,
which increased to 358,411 (68.8%) after deep learning-enabled
NLP recovery (31% reduction in missingness, Fig. 3). NLP recovery
rates stratified by vital signs are shown in Supplementary Table 2.
An example clinical note with NLP-extracted vital sign values is
shown in Supplementary Fig 2.
When compared to a regular expression algorithm, the NLP

approach resulted in a greater yield of each vital sign
(Supplementary Table 3). Correlation between NLP-derived and
tabular vital signs obtained on the same day was excellent (height
r= 0.99, weight r= 0.97, systolic blood pressure r= 0.95, diastolic
blood pressure r= 0.95, p < 0.01 for all, Fig. 4). Intra-individual
agreement was good (95% limits of agreement for height:
−2.97 cm–2.99 cm; weight: −8.64 kg–9.29 kg; systolic blood

Fig. 1 Overview of C3PO construction and data pipeline. Depicted is a graphical overview of the construction of the Community Care
Cohort Project (C3PO). C3PO comprises the electronic health record (EHR) data of 520,868 individuals aged 18–90 at the start of sample
follow-up, selected from an ambulatory EHR database on the basis of receiving periodic primary care (i.e., ≥2 visits within 1–3 consecutive
years, see text). C3PO is structured as an indexed file system containing protected health information-minimized data of various types (bottom
panel). The C3PO database can readily accommodate updating of existing data, integration of new data features, and construction of
composite disease phenotypes based on multiple data features.
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pressure: −9.85 mmHg–9.67mmHg; diastolic blood pressure:
−8.3 mmHg–8.2 mmHg). Bland–Altman plots did not suggest
systematic bias (Fig. 4). High agreement was consistent by year
of extraction (Supplementary Fig 3).
Where NLP-derived and tabular vital signs differed, specific

failure modes included repeat measurements performed on the
same day (e.g., repeat blood pressure measurement), transcrip-
tion/typographical errors (e.g., 5'6'' entered as ‘56’ inches in the
tabular data), and values referenced from prior encounters.

Failure modes resulting in lack of vital sign detection by NLP
included ambiguous labeling (e.g., “VS–142/92”) and atypical
notation (e.g., “wgt 183”).

Myocardial infarction (MI)/stroke analyses—Pooled Cohorts
Equations (PCE)
A total of 198,184 individuals were included in incident MI/stroke
analyses (Supplementary Fig 4). Of the 198,184 individuals, 49,289
(24.9%) would have been excluded in the absence of NLP-recovered

Fig. 2 Distribution of office visits in C3PO versus Convenience Samples. Depicted are boxplots demonstrating the distribution of office
visits (a) and primary care physician (PCP) office visits (b) in the C3PO analysis samples (AF [blue] and MI/stroke [green]) versus the respective
Convenience Samples (AF [red] and MI/stroke [purple]). In each boxplot, the black bar denotes the median number of office visits per
individual, the box represents the interquartile range, and the whiskers represent points beyond the interquartile range. Points greater than
quartile 3 plus 1.5 times the interquartile range and points smaller than quartile 1 minus 1.5 times the interquartile range are not depicted.

Table 1. Baseline characteristics.

C3PO1

(N= 520,868)
C3PO – MI/stroke
(N= 198,184)2

MI/stroke Convenience
Sample (N= 340,226)2

C3PO – AF
(N= 174,644)2

AF Convenience Sample
(N= 501,272)2

Mean ± SD, Median (quartile 1, quartile 3), or N (%)

Age (years) 48.4 ± 17.1 57.0 ± 10.3 56.2 ± 10.4 60.9 ± 10.0 61.4 ± 10.5

Women 315,577 (60.6%) 116,448 (58.8%) 195,039 (57.3%) 106,279 (60.9%) 288,334 (57.5%)

White 389,755 (74.8%) 154,712 (78.1%) 270,002 (79.4%) 140,746 (79.6%) 422,266 (84.2%)

Black 38,104 (7.3%) 13,805 (7.0%) 21,248 (6.2%) 11,103 (6.4%) 22,787 (4.5%)

Hispanic or Latino 33,762 (6.5%) 9401 (4.7%) 15,142 (4.5%) 6804 (3.9%) 14,115 (2.8%)

Asian or Pacific Islander 21,701 (4.2%) 7807 (3.9%) 13,219 (3.9%) 6003 (3.4%) 14,329 (2.9%)

Mixed 27 (0.05%) 11 (0.06%) 24 (0.07%) 7 (0.04%) 23 (0.04%)

Other 18,774 (3.6%) 5716 (2.9%) 8937 (2.6%) 4467 (2.6%) 9023 (1.8%)

Unknown 18,745 (3.6%) 6732 (3.4%) 11,654 (3.4%) 5514 (3.2%) 18,729 (3.7%)

Height (cm) 167.4 ± 10.4 – – 166.6 ± 10.4 167.4 ± 10.3

Weight (kg) 78.3 ± 20.3 – – 79.4 ± 19.5 79.8 ± 19.8

Systolic blood
pressure (mmHg)

123 ± 17 126 ± 17 127 ± 18 128 ± 17 130 ± 19

Diastolic blood
pressure (mmHg)

75 ± 10 – – 76 ± 10 77 ± 11

Current smoker 27,202 (5.2%) 14,720 (7.4%) 12,652 (3.7%) 14,031 (8.0%) 22,020 (4.4%)

Anti-hypertensive use 147,898 (28.4%) 77,827 (39.3%) 119,954 (35.3%) 78,219 (44.8%) 173,235 (34.6%)

Diabetes 58,159 (11.2%) 29,307 (14.8%) 43,966 (12.9%) 27,953 (16.0%) 52,180 (10.4%)

Heart failure 12,555 (2.4%) – – 3334 (1.9%) 16,786 (3.3%)

Myocardial infarction 17,937 (3.4%) – – 6641 (3.8%) 18,260 (3.6%)

Total cholesterol (g/dL) 189 ± 39 195 ± 39 194 ± 40 – –

HDL cholesterol (g/dL) 55 ± 18 57 ± 18 57 ± 18 – –

Follow-up, years 7.2 (2.6, 12.9) 7.3 (2.8, 11.9) 7.4 (3.5, 11.8) 6.5 (2.5, 11.1) 5.4 (2.2, 9.8)

1Values shown exclude missing data.
2Only variables relevant for each risk score (CHARGE-AF for AF, PCE for MI/stroke) are depicted.
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data (Fig. 3). At 10 years, there were 10,201 MI/stroke events
(cumulative risk 8.0%, 95% CI 7.8–8.1; incidence rate 8.4 per 1000
person-years, 95% CI 8.2–8.5). PCE model fit, discrimination, and
calibration are summarized in Table 2. The sex- and race-specific
PCE scores were each strongly associated with incident MI/stroke
(hazard ratio [HR] per 1-standard deviation [SD] range 2.04–2.51
across the four scores), with moderate discrimination (c-index
range 0.724–0.768) and some miscalibration (Greenwood-Nam-
D’Agostino [GND] χ2 range 21–487; Integrated Calibration Index
[ICI] range 0.012–0.030). Recalibration to the sample average MI/
stroke risk did not improve calibration (GND χ2 range 18–1689; ICI
range 0.010–0.034; calibration slope range 0.60–0.88). The model
for White women had the highest discrimination (c-index 0.768,
95% CI 0.760–0.775) while the model for Black men was the best
calibrated (GND χ2 21, ICI 0.012, 95% CI 0–0.025, calibration slope
0.88, 95% CI 0.77–1.00). The distribution of predicted MI/stroke risk
before and after recalibration is shown in Supplementary Fig 5.
Cumulative risk of MI/stroke stratified by predicted risk using the
original PCE models is shown in Supplementary Fig 6. Detailed
assessments of PCE calibration before and after recalibration are
shown in Supplementary Fig 7, 8. Results were similar in models
deploying the White PCE algorithms only in White individuals
(Supplementary Table 4). Model assessment excluding NLP-
recovered values demonstrated similar performance metrics but
with less precision (Supplementary Table 5).

We performed an analogous assessment of the PCE models
within the MI/stroke Convenience Sample, which comprised
340,226 individuals. Compared to C3PO, the MI/stroke Conve-
nience Sample had lower rates of cardiovascular comorbidity
(Table 1). However, the observed 10-year MI/stroke risk was higher
(cumulative risk 10.6%, 95% CI 10.5–10.7; incidence rate 11.7 per
1000 person-years, 95% CI 11.5–11.8). Cumulative risk curves
demonstrated an abrupt rise in incident MI/stroke diagnoses
shortly after the start of follow-up, which was not observed in
C3PO (Fig. 5). Discrimination of MI/stroke risk was similar to that
observed in C3PO (c-index range 0.727–0.770, Fig. 6). Calibration
was worse than C3PO for all four models, although the difference
was not statistically significant for Black men (GND χ2 range
36–1,797; ICI range 0.028–0.046; calibration slope range 0.56–0.87,
Fig. 7 and Supplementary Figs 7, 8). Recalibration to the baseline
hazard of the Convenience Sample did not correct miscalibration
(GND χ2 range 13–4,923; ICI range 0.012–0.047, Fig. 7 and
Supplementary Figs 7, 8).

AF analyses—CHARGE-AF
A total of 174,644 individuals were included in incident AF
analyses (Supplementary Fig 4). Of the 174,644 individuals, 38,528
(22.1%) would have been excluded in the absence of NLP-
recovered data (Fig. 3). At 5 years, there were 7,877 AF events

Fig. 3 Yield of NLP-based missing data recovery. Depicted is a summary of the yield of our deep natural language processing (NLP) based
model for missing data recovery in C3PO. a–c Compare effective sample sizes with versus without NLP recovery, where error bars depict 95%
confidence intervals. a The y-axis depicts the total number of individuals with a baseline height, weight, and blood pressure, and the hashed
line indicates the total sample size of C3PO. b The y-axis depicts the total number of individuals with a complete Pooled Cohort Equations
(PCE) score at baseline and the hashed line indicates the total number of individuals eligible for PCE analysis (i.e., within age 40–79 years, with
available follow-up data, and without prevalent MI/stroke). c The y-axis depicts the total number of individuals with a complete CHARGE-AF
score at baseline and the hashed line indicates the total number of individuals eligible for CHARGE-AF analysis (i.e., within age 45–94 years,
with available follow-up data, and without prevalent AF). d Depicts the total number of vital sign extractions obtained using the rule-based
method (light shades), BERT (medium shades), and Bio+DischargeSummaryBERT (Bio+DS BERT, dark shades).
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Fig. 4 Agreement between tabular and natural language processing-extracted vital signs. Depicted is agreement between vital signs
obtained from tabular data and those obtained from our NLP model among individuals with values obtained on the same day. a Depict height
values, b depict weight values, c depict systolic blood pressures, and d depict diastolic blood pressures. For individuals with multiple eligible
values, only the pair most closely preceding the start of follow-up was used. Left panels show the distribution of values obtained from tabular
versus NLP sources. Middle panels show the correlation between tabular values (x-axis) and NLP values (y-axis). Right panels are Bland–Altman
plots showing agreement between paired tabular and NLP values. The x-axis depicts the increasing mean of the paired values, and the y-axis
depicts the difference between the paired values, where positive values denote tabular values greater than corresponding NLP values and
negative values denote tabular values lower than corresponding NLP values. The colored horizontal lines depict the mean difference between
sources, and the hashed horizontal lines depict 1.96 standard deviations above and below the mean. The values corresponding to the bounds
and percentage of values contained within those bounds is printed on each plot.
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(cumulative risk 5.8%, 95% CI 5.7–6.0; incidence rate 12.1 per 1000
person-years, 95% CI 11.8–12.3). Details of CHARGE-AF model fit,
discrimination, and calibration are shown in Table 2. The CHARGE-
AF score was strongly associated with incident AF (HR per 1-SD
2.56, 95% CI 2.50–2.61), with moderate discrimination (c-index
0.782, 95% 0.777–0.787), although CHARGE-AF substantially
underestimated AF risk (GND χ2 1,856, ICI 0.028, 95% CI
0.027–0.030). After recalibration to the baseline AF hazard in
C3PO, calibration was improved (GND χ2 1,367; ICI 0.019, 95% CI
0.018–0.021; calibration slope 0.77, 95% CI 0.75–0.79). The
distribution of predicted AF risk before and after recalibration is
shown in Supplementary Fig 5. The cumulative risk of AF stratified
by predicted AF risk is shown in Supplementary Fig 6. Detailed
assessments of CHARGE-AF calibration before and after recalibra-
tion are shown in Supplementary Figs 7, 8. Model assessment
excluding NLP-recovered values demonstrated similar perfor-
mance metrics but with less precision (Supplementary Table 5).
We performed an analogous assessment of CHARGE-AF within

the AF Convenience Sample, which comprised 501,272 individuals.
Similar to observations with MI/stroke, individuals in the AF
Convenience Sample had lower rates of cardiovascular comorbid-
ity (Table 1), yet higher 5-year AF risk (cumulative risk 6.9%, 95% CI
6.9–7.0; AF incidence rate 15.1 per 1000 person-years, 95% CI
14.9–15.3). Cumulative risk curves again demonstrated an abrupt
rise in incident AF diagnoses shortly after the start of follow-up,
which was not observed in C3PO (Fig. 5). Discrimination of AF risk
using CHARGE-AF was similar to that observed in C3PO (c-index
0.781, 95% CI 0.778–0.784, Fig. 6), but calibration was significantly
worse (GND χ2 7188; ICI 0.036, 95% CI 0.035–0.036; calibration
slope 0.69, 95% CI 0.68–0.70, p < 0.01 for comparisons of ICI and
calibration slope to C3PO, Fig. 7). Calibration remained less
favorable in the Convenience Sample after recalibration to the
baseline hazard (GND χ2 8322; ICI 0.028, 95% CI 0.027–0.029; Fig. 7
and Supplementary Figs 7, 8).

DISCUSSION
In the present study, we demonstrate that intentional sampling of
individuals from a large multi-institutional EHR on the basis of
longitudinal primary care encounters, and recovery of missingness
using deep learning, enable EHR-based prediction with validity
exceeding a conventional EHR sampling approach10,14,15. C3PO
comprises over a half-million individuals receiving longitudinal
care over a decade of follow-up and, owing to the fact that it more
closely mirrors the design of epidemiologic cohort studies, is likely
to facilitate more generalizable insights7,9. When compared to
Convenience Samples derived from the same parent EHR with no

requirement for longitudinal primary care, C3PO appeared less
biased and offered greater data density. Leveraging neural
network-based NLP models using unstructured notes, we
achieved a 31% reduction in missingness of baseline vital signs.
The JEDI Extractive Data Infrastructure (JEDI) pipeline under-

lying C3PO, which we have made publicly available, provides a
modular framework for processing and updating diverse EHR data
in a manner conducive to multiple modeling approaches. We
submit that JEDI, along with the principles underlying the
development of C3PO, may enable future discovery by facilitating
novel statistical and machine learning-based prediction and
classification models utilizing diverse EHR data types available at
scale and in a manner that reduces bias (Fig. 8). The principles
guiding the development of C3PO and the coding infrastructure
for our analyses are widely extendable to external EHR datasets.
There is increasing recognition that EHR datasets represent a

potentially powerful resource for the development of tradi-
tional10 and machine learning-based14,16 prognostic models, yet
at the same time may be particularly susceptible to biases which
may lead to systematic error in effect estimates or poor
generalizability7,9,17. To that end, our observations provide
important evidence that EHR samples enriched for individuals
receiving longitudinal primary care may offer a particularly
efficient method for developing novel disease-related models in
a manner that reduces bias. In the current study, we performed
incident disease modeling using C3PO versus Convenience
Samples including all individuals with complete data but with
no requirement for longitudinal primary care. Despite para-
doxically lower rates of documented cardiovascular comorbidity,
MI/stroke and AF incidence rates were higher in the Conve-
nience Samples as opposed to C3PO. We suspect that this
asymmetry in disease incidence may be related to ascertainment
bias such that individuals in the Convenience Samples are more
likely to have complete data acquired because of higher disease
risk. We acknowledge that alternative methods for assessing and
mitigating bias exist, such as identification of specific missing-
ness mechanisms and application of inverse probability weight-
ing9. Future work is warranted to assess how such methods
compare or add to bias mitigation strategies taken at the level of
sample construction. Nevertheless, we submit that selecting for
individuals receiving longitudinal primary care appears to reduce
ascertainment bias by providing a mechanism for data acquisi-
tion outside the context of a specific illness (e.g., health
maintenance visits)9.
Similarly, we observed abrupt increases in incident diagnoses

shortly after the start of follow-up in the Convenience Samples. It
is possible that such a pattern may represent misclassification of

Fig. 5 Cumulative event risk in C3PO versus Convenience Samples. Depicted is Kaplan–Meier cumulative risk of MI/stroke (a) and AF (b)
observed in C3PO (blue [left] and green [right]) versus the Convenience Samples (red [left] and purple [right]). The number of individuals
remaining at risk over time is labeled below each plot. Note an initial rapid inflection in MI/stroke and AF incidence observed in the
Convenience Samples but not in C3PO.
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prevalent disease as an incident. By defining the start of follow-up
as the second of the two qualifying PCP visits required for
inclusion in C3PO, we submit there is a greater likelihood for
prevalent conditions to be appropriately recorded within the EHR
prior to the onset of time-to-event analyses, reducing misclassi-
fication of prevalent disease. Taken together, the performance of
established risk models, each derived in traditional prospective
cohorts, was more consistent with expectations when deployed
within C3PO as opposed to the Convenience Samples. Specifically,
the discrimination performance of the PCE and CHARGE-AF scores
in C3PO was comparable to metrics reported in each score’s
original validation study18,19. Furthermore, when compared to the
Convenience Samples, model calibration was favorable in C3PO,
demonstrating a relationship between known risk factors and
outcomes more consistent with prior evidence18,19. Nevertheless,
we note model calibration in C3PO was still not optimal. Future
work is needed to better understand whether differences in

performance may be related to residual bias versus differences in
baseline comorbidity profiles20, and whether more advanced
recalibration or reweighting techniques utilizing EHR data may
provide an opportunity to optimize the performance of traditional
risk models21.
We acknowledge that selecting a primary care population may

introduce alternative biases (e.g., more likely to have insurance),
which requires further study. Of note, EHR sample construction
predicated on the needs of a specific analysis may also produce
datasets that are less adaptable to other analytic frameworks22–24.
In contrast, the C3PO sampling design is readily amenable to an
array of epidemiologic analyses (e.g., cross-sectional, retrospective
cohort, case-control).
Our findings also imply that deep learning models applied to

unstructured data have the potential to substantially reduce
missingness, another potential source of bias in EHR-based
analyses7. We leveraged neural network-based NLP methods to

Fig. 6 Model discrimination in C3PO and Convenience Samples. Depicted are time-dependent receiver operating characteristic curves for
the Pooled Cohort Equations (PCE, left panels) and the CHARGE-AF score (right panels) in C3PO (top panels) versus the respective
Convenience Samples (bottom panels). Each plot shows the discrimination performance of each risk score for its respective prediction target
(i.e., 10-year MI/stroke for the PCE, 5-year incident AF for CHARGE-AF). Since the PCE score comprises four models stratified on the basis of sex
and race, the curves for each score are represented separately (see legend). The c-index calculated using the inverse probability of censoring
weighting method28 is depicted for each model.
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accurately extract vital signs for an additional 80,000 individuals
using unstructured text, reducing missingness by roughly one-
third. Use of NLP resulted in substantially more vital sign
extractions at high accuracy when compared to regular expres-
sions alone, with consistent performance over time. Importantly,
vital signs obtained from tabular and NLP sources were
consistently very highly correlated, with good agreement. We
anticipate that analogous NLP models may be able to extract
additional clinical parameters, such as laboratory values, which
continue to exhibit substantial missingness in C3PO. Importantly,
such future models may require the ability to harmonize values
across a wider range of potential units of measure and varying
assays. We note that although risk model performance metrics in
C3PO did not change substantively with NLP recovery, metric
estimates had less uncertainty, suggesting that the primary effect
of NLP recovery in our sample was an improvement in statistical
power. The ability to provide more precise risk estimates (i.e., less
uncertainty) may be clinically important. Given that missingness
mechanisms in EHR samples are frequently complex and non-
random9, we submit that recovery of actual data where possible is
preferable to other methods of accounting for missingness, many
of which rely on missingness at random. Nevertheless, future work

is needed to better understand how NLP-based recovery
compares to substitution methods such as multiple imputation25.
We submit that large and comprehensive EHR samples like

C3PO have the potential to facilitate broad-ranging discovery
leveraging diverse data types, provided that sufficient infrastruc-
ture exists to efficiently process, store, and analyze data within a
unified framework. To that end, we have developed the JEDI
pipeline, which automates the processing and unification of
diverse EHR data types within a harmonized, indexed file system
amenable to a variety of statistical and machine learning-based
approaches. Specifically, C3PO includes over 2.95 million ECGs,
450,000 echocardiograms, and millions of free-text notes. Through
linkage to the MGB Biobank biorepository, we anticipate that
biological samples will be available within over 40,000 individuals.
Facilitated by the JEDI pipeline, we expect that future models built
within C3PO leveraging some or all of these data types will result
in more accurate and generalizable disease prediction and
classification models. Importantly, although the EHR data compris-
ing C3PO is not sharable owing to concerns about data
identifiability, the principles governing C3PO are widely applicable
to EHR datasets and the JEDI pipeline is publicly available to

Fig. 7 Model calibration in C3PO and Convenience Samples. Depicted is model calibration performance in C3PO versus the Convenience
Samples. a Depicts the calibration slope for the PCE models (x-axis, left) and CHARGE-AF (x-axis, right) in C3PO (blue, green) versus the
Convenience Samples (red, purple). The y-axis depicts the calibration slope, a measure of the relationship between predicted event risk and
observed event incidence, where a slope of one indicates an optimal relationship (horizontal hashed line), with corresponding 95%
confidence intervals. b, c Compare calibration error in C3PO versus the Convenience Samples. Calibration error is depicted on the y-axis
using the Integrated Calibration Index (ICI, see text), where lower values indicate better absolute agreement between predicted risk and
observed event incidence. b Depicts ICI values using the original models, while c depicts ICI values after recalibration to the baseline hazard
of each sample. In all plots, statistically significant differences between values in C3PO versus the Convenience Sample (p < 0.05) are depicted
with an asterisk.

Fig. 8 Conceptual overview of C3PO analysis methods. Depicted is a graphical overview of the potential analyses enabled by the
Community Care Cohort Project (C3PO). By integrating diverse data types (e.g., diagnoses, imaging, vital signs, diagnostic test data, genetics),
C3PO may enable methods such as traditional statistical modeling and deep learning to facilitate more accurate disease risk prediction
models and enable deep phenotyping including disease subgroup identification.
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catalyze future research efforts related to the development of
clinical models using rich and diverse EHR data.
Our study should be interpreted in the context of design. First,

despite our intent to reduce bias by selecting individuals receiving
regular in-network primary care, residual indication bias is
inevitable using EHR data. Nevertheless, by applying clinical risk
scores and assessing disease incidence rates, we demonstrate that
the approach taken to developing C3PO appears to reduce bias.
We acknowledge that alternative methods for quantifying bias
(e.g., assessment of phenome-wide associations, genetic associa-
tion testing) exist, but opted to focus on clinical risk scores given
their clinical utility. Second, although we successfully employed
NLP to reduce missingness rates for vital signs by roughly one-
third, missingness of other features (e.g., cholesterol) remains
considerable. We anticipate that similar NLP approaches will have
utility in reducing missing data further, although we acknowledge
that certain features (e.g., imaging characteristics, laboratory
values) may be more challenging to extract. Third, the perfor-
mance of our NLP model in other datasets remains unknown,
although we anticipate that our overall approach of utilizing pre-
trained language models with fine-tuning in the same or similar
samples as those in which implementation is intended is likely to
result in good performance across datasets. Fourth, although we
utilized previously validated algorithms to define the presence of
disease, some degree of misclassification of exposures and
outcomes remains likely. Fifth, we identified individuals for
inclusion in C3PO using EHR-based codes to identify office visits
and a manually curated list of in-network primary care practice
locations. Although two forms of validation support the accuracy
of our selection methods, we acknowledge that the process is
imperfect and would not easily extend to other EHRs. Sixth, most
individuals included in C3PO are White, and therefore general-
izability to populations with varying racial composition may be
limited. However, we note that the absolute number of individuals
of color within C3PO compares favorably to several other cohorts
and EHR-based studies26–28. Seventh, current results are observa-
tional and should not be used to infer causality.
In conclusion, we have developed C3PO, an EHR-based

resource comprising over a half-million individuals within a
large networked healthcare system. By sampling the full range of
EHR data for individuals receiving regular primary care and
providing a mechanism for the use of NLP to recover data from
unstructured notes, EHR samples such as C3PO offer the
potential to substantially reduce biases related to patient
selection and missing data. By providing a broad array of data
types, longitudinal measurements, and a flexible data structure
conducive to multiple modeling frameworks, we anticipate that
C3PO—and similarly constructed EHR datasets—will facilitate
impactful discovery research.

METHODS
Cohort construction
Mass General Brigham (MGB) is a multi-institutional healthcare network
with a linked EHR spanning seven tertiary care and community hospitals
with associated outpatient practices in the New England region of the
United States. Participants were identified using an MGB-based data mart
containing tabular EHR data for >3.6 million individuals with ≥1
ambulatory visit between 2000–2018. Given our intent to identify
individuals receiving primary care within MGB, we developed, validated,
and applied rule-based heuristics to identify primary care office visits
using Current Procedural Terminology (CPT) codes (Supplementary Table
6) and a manually curated list of 431 primary care clinic locations. To
select individuals receiving longitudinal primary care within MGB, we
restricted the cohort to individuals with at least one pair of primary care
visits occurring between 1–3 years apart. To facilitate ascertainment of
baseline clinical factors, we defined the start of follow-up for each
individual as the second primary care visit of that individual’s earliest
qualifying pair (Supplementary Fig 9)4. Study protocols complied with the

tenets of the Declaration of Helsinki and were approved by the MGB
Institutional Review Board.

Cohort validation
We validated the construction of C3PO using two methods. First, we
assessed overlap between individuals selected for C3PO and an existing
sample from a curated Massachusetts General Hospital (MGH) primary care
practice registry, to which we applied analogous selection methods.
Specifically, we analyzed individuals who were represented in the MGH
registry in ≥2 consecutive years between 2005-2017.
Of 280,815 individuals in the MGH registry meeting the specified

temporal selection criteria, the substantial majority (n= 206,868; 73.7%)
were represented in the candidate C3PO cohort (Supplementary Fig 10).
The remaining discrepancy was attributed to differences in the application
of temporal selection criteria (1–3 year windows based on exact dates in
C3PO, versus only calendar year data available in MGH registry), as well as
the exclusion of individuals aged <18 years at the start of follow-up in
C3PO. Without the application of temporal or age selection criteria,
277,780 out of 297,718 (93.3%) of the MGH registry was represented in
C3PO (Supplementary Fig 10).
Second, we performed manual validation of the EHR for C3PO

candidates. Two clinical adjudicators blinded to C3PO selection algorithm
status performed a manual chart review of 200 randomly selected
algorithm-positive individuals (“algorithm-positive”) and 200 randomly
selected individuals with ≥1 office visit but none in a primary care location
(“algorithm-negative”). A total of 60 algorithm-positive and 60 algorithm-
negative records were overlapping between the adjudicated sets in order
to assess inter-rater reliability. In certain locations within MGB, the clinically
accessible EHR lagged behind the availability of data sources from the data
mart. As a result, the ability to adjudicate the presence of primary care
office visits in the earliest years of the C3PO cohort was limited. Frequently,
there was indirect evidence of longitudinal primary care (e.g., notes
making explicit mention of previous visits not available in the clinical EHR).
As a result, we specified a priori two levels of adjudication for algorithm-
positive individuals. In Tier 1, algorithm-positive individuals would be
adjudicated as positive only if there was a narrative note confirming a
primary care office visit (within ±7 days) on each of the two visit dates of
interest. In Tier 2, algorithm-positive individuals would be adjudicated as
positive if there was at least one pair of narrative notes confirming two
primary care office visits 1–3 years apart (i.e., the inclusion criteria for
C3PO) at any time in the individual’s EHR history. In all cases, algorithm-
negative individuals were adjudicated as correct if there was not a primary
care office visit on both the index date (within ±7 days) and within
1–3 years following the index date (i.e., the inclusion criteria for C3PO). The
results of the adjudication process are summarized in Supplementary Table
7. Inter-rater agreement was excellent (kappa range 0.78–1). Both case and
non-case algorithms met pre-specified criteria for sufficient algorithm
accuracy (PPV ≥ 85%) to proceed with C3PO construction.

Data ingestion pipeline
After identifying a candidate set of 523,445 individuals in C3PO, we
obtained a comprehensive range of EHR data including demographics,
anthropometrics and vital signs, narrative notes, laboratory results,
medication lists, and radiology/cardiology diagnostic test reports using
the Research Patient Data Registry (Boston, Massachusetts), a data
repository containing the complete EHR data of all individuals receiving
care within MGB29. We then developed a standardized data ingestion
pipeline (the JEDI Extractive Data Infrastructure [JEDI]), which integrates a
series of distinct files containing an array of different EHR data types into a
unified, indexed file system (Hierarchical Data Format [HDF] 530). To
facilitate interactive data exploration and epidemiologic modeling, we also
developed egress pipelines capable of producing customized long-format
files (i.e., each row is a distinct observation within the EHR) and wide-
format files (i.e., each row is a unique individual and columns represent
data summarized from multiple observations).
The JEDI pipeline is implemented in Python with minimal dependencies

allowing it to be run on most common platforms. Since MGB source data is
restricted, all data processing for this study utilized JEDI run on a secure
MGB Linux cluster. A one-time ingestion process to convert plain text data
to HDF5 (mean size 34 MB) takes about 1 min per individual’s full EHR
record. Once in this format, long-file and wide-file processing scales with
the number and complexity of the features under consideration. For
example, to extract a broad range of features relevant for cardiovascular
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disease, we are able to produce ~5 long-format files (mean size 260 KB) per
minute and 300 wide-format file rows per minute (500 MB for full file). To
maximize runtime efficiency, JEDI is designed to schedule an arbitrary
number of jobs through the IBM (Armonk, NY) Spectrum LSF workload
management platform.
For C3PO, we removed individuals aged <18 or ≥90 years at the start of

follow-up, as well as an additional 21 individuals with missing demo-
graphic data, resulting in 520,868 individuals in the final cohort (Fig. 1).

Implementation of clinical scores to assess bias
We then sought to assess the validity of C3PO by implementing two well-
validated cardiovascular risk prediction models, each derived in traditional
community-based cohorts: (1) the Pooled Cohort Equations (PCE)17, and (2)
the Cohorts for Aging and Genomic Epidemiology Atrial Fibrillation
(CHARGE-AF) score19. Since both scores have exhibited relatively
consistent discrimination and calibration (i.e., an agreement between
predicted risk and observed disease incidence) in multiple community
cohorts18,19,31,32, we considered systematic error in score performance
(e.g., miscalibration, or disagreement between predicted risk and observed
disease incidence) as probable evidence of bias present within the
underlying sample9.
Relevant exposures were derived from the EHR. Demographics including

age, sex, and race were extracted from dedicated demographic fields.
Height, weight, blood pressure, and smoking status were derived from
tabular EHR data extracted from clinical encounters, where the value most
closely preceding the start of follow-up (within 3 years) was used, with the
exception of height for which any value in the EHR was accepted. The PCE
score includes a term for systolic blood pressure, and the CHARGE-AF score
includes terms for height, weight, systolic blood pressure, and diastolic
blood pressure (full components of each score shown in Supplementary
Tables 8, 9). Prevalent diseases were defined using previously published
groupings of International Classification of Diseases, 9th and 10th revision
(ICD-9 and 10) diagnosis codes and CPT codes4,33. All exposure definitions
are shown in Supplementary Table 10.
Primary outcomes included the prediction targets for each risk score (i.e.,

MI/stroke for PCE and AF for CHARGE-AF). AF was defined using a
previously validated EHR-based AF classification scheme (PPV 92%)34. MI
and stroke were defined using the presence of ≥2 ICD-9 or ICD-10 codes
using previously validated code sets (PPV ≥ 85%)33.

Construction of MI/stroke and AF Convenience Samples
We then assessed whether C3PO may exhibit less bias as compared to an
alternative EHR sampling approach. Specifically, we compared the
performance of the PCE and CHARGE-AF scores in C3PO to that observed
within samples derived from the same parent EHR but constructed solely on
the basis of available score components (“PCE Convenience Sample” and
“CHARGE-AF Convenience Sample”). We utilized convenience sampling as a
comparator because convenience sampling may maximize statistical
power17, and has been utilized in several recent EHR-based studies2,9–11.
From the source mart (N= 3.6 million, Fig. 1), all individuals with

available data for each component of the PCE (MI/stroke Convenience
Sample) and each component of the CHARGE-AF score (AF Convenience

Sample) were identified, with no requirement for primary care office visits.
To maximize the available sample size, we defined the start of follow-up
for each individual as the earliest time at which all score components were
available for that individual. We then excluded individuals who did not
have all score components available within 3 years prior to each
individuals’ start follow-up date. We also excluded individuals with no
follow-up data of any kind, as well as those having the relevant outcome at
the start of follow-up. Disease-related exposure and outcome ascertain-
ment was performed on the basis of at least one ICD, CPT, and/or EHR-
specific diagnosis code present in the EHR mart corresponding to the
relevant disease. In each Convenience Sample, the start of follow-up began
at the earliest time all necessary data became available, and the end of
follow-up was defined as the last encounter of any type in the EHR.
Individuals with zero follow-up time were not included in incident
analyses. Flow diagrams summarizing the construction of the Convenience
Samples are shown in Supplementary Fig 11.

Natural language processing to reduce vital sign missingness
NLP methods have recently shown promising results for extracting
information from unstructured text-based data35. Advanced neural
network models such as Bidirectional Encoder Representations from
Transformers (BERT)36 have immense expressive power as their repre-
sentations are derived from training on large corpora of text. These
models can also be further pre-trained on domain-specific languages,
such as biomedical and clinical text. This has been shown to improve
performance on a number of clinical NLP tasks when compared to general
language embeddings, including tasks such as named entity recognition
and diagnostic inference37,38. This bio-clinical-specific pre-training allows
such models to be fine-tuned using relatively small amounts of “weakly”
labeled data generated by a rule-based approach and perform
exceptionally well on downstream tasks such as feature extraction from
free-text notes. In the current study, we utilized Bio+ Discharge Summary
BERT, a deep contextual word embedding model that has been pre-
trained consecutively on a large corpus of general English text (e.g.,
Wikipedia), biomedical text (PubMed abstracts and PubMed Central full-
text articles)38, and physician-written Discharge Summaries (from the
MIMIC-III v1.4 database)37,39.
Given high missingness rates for baseline vital signs (>40%), we

employed Bio+ Discharge Summary BERT to recover height, weight, and
systolic and diastolic blood pressures from unstructured notes. To label
potential vital signs, we created a regular expression rule-based approach
to automatically label the position of vital sign values in several different
types of clinical notes. Table 3 demonstrates the context words, unit tokens,
and text patterns we considered for each feature, in addition to an example
of labeled text in each case. To build the dataset we selected 900
individuals and labeled all 34,310 eligible notes in the 3 years prior to the
start of follow-up. The distribution of note types in the training set was as
follows: inpatient or outpatient history and physical (n= 32,186, 93.8%),
discharge summary (n= 1,316, 3.8%), cardiology note (n= 796, 2.3%), and
endoscopy report (n= 12, 0.03%). This resulted in a total of 116,644
instances of labeled vitals—37,679 instances of blood pressure, 58,910
instances of weight, and 20,055 instances of height. We also created two
additional independent sets for evaluation and testing respectively.

Table 3. Regular expression rule-based approach for vital sign labeling.

Vital Sign Context Words Units Considered Text Patterns Labeled Example In format: word {LABEL}

Height “height”, “height:”,
“ht”, “ht:”

‘inches’, ‘in’, ‘feet’, ‘ft’, ‘m’, ‘meters’, ‘cm’,
‘centimeters’, ''' (for feet) '''' (for inches)

[number] Ht: 63.5 {HEIGHT}

[number] [unit] Patient height is 63.5 {HEIGHT} inches
{HEIGHT_UNIT}

[number] [unit]
[number] [unit]

Height: 5 {HEIGHT} feet {HEIGHT_UNIT} 11
{HEIGHT} inches {HEIGHT_UNIT}

Weight “weight”, “weight:”,
“wt”, “wt:”

‘pounds’, ‘lbs’, ‘lb’, ‘ounces’, ‘oz’,
‘kilograms’, ‘kg’, ‘grams’, ‘g’

[number] Wt: 180 {WEIGHT}

[number] [unit] Current weight is 65.9 {WEIGHT} kg
{WEIGHT_UNIT}

[number] [unit]
[number] [unit]

Patient’s weight is 170 {WEIGHT} lbs
{WEIGHT_UNIT} 9 {WEIGHT} oz {WEIGHT_UNIT}

Blood
Pressure

“pressure”, “bp”,
“bp:”

– [number]/[number] Blood pressure is 128/70 {BP}
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We sampled 2038 notes from 50 individuals to use as the evaluation set,
which contained 7230 vital identifications—2167 instances of blood pressure,
3979 instances of weight, and 1084 instances of height. Similarly, we labeled
1852 notes from another 50 individuals to produce an independent test set,
which comprised 6178 vital identifications—2025 instances of blood
pressure, 3032 instances of weight, and 1121 instances of height. The
training set consisted of 80-word spans surrounding these labeled tokens in
order for the model to learn the context in which vital signs tend to appear.
We also included some spans of the same length with no labeled values, so
that the model could learn the overall structure of the notes.
Bio+Discharge Summary BERT was fine-tuned for 5 epochs with the task

of labeling the values identified by the rule-based approach. Categorical
cross-entropy was used as the training metric. We did not employ any
additional regularization methods, and early stopping was not used.
Training and evaluation curves for model fine-tuning are illustrated in
Supplementary Fig 12. Given some suggestions of potential overfitting
with 5 epochs of training, we assessed a version of Bio+ Discharge
Summary BERT trained for 2 epochs, which had a similar post-processed
performance as the original model but had substantially fewer successful
blood pressure extractions (Supplementary Table 11). We also compared
our model utilizing Bio+ Discharge Summary BERT to an analogous model
trained using the original BERT36, which demonstrated similar high
accuracy (96% for weight, 100% for height, and 100% for blood pressure),
but lower yield for each vital sign (Supplementary Table 3).
To estimate the amount of training data that would be needed to

recreate our approach, we also created four additional training sets that
corresponded to subsets of our current training data. We held all other
parameters constant, and fine-tuned four additional Bio+Discharge
Summary BERT models for 5 epochs each. Supplementary Fig 13 illustrates
the final training and evaluation loss for models trained on different sizes
of training data. We see that both the training and evaluation loss continue
to decrease as training set size increases and that a larger number of
labeled vital signs boosts model performance.
We performed inference using our Bio+Discharge Summary BERT-based

model on 9,522,262 notes for the 401,826 patients who had ≥1 eligible
note within the 3 years prior to the start of follow-up. The distribution of
notes used for inference was: inpatient or outpatient history and physical
(n= 9,074,155, 95.3%) and discharge summary (n= 448,107, 4.7%). We
then performed the following post-processing on NLP-extracted values:

1. Checked model identifications and extended identified tokens to
include additional significant figures or unit tokens.

2. Harmonized model identifications into a single unit for each vital
sign (i.e., kg for weight, cm for height, and mmHg for blood
pressure) using a rule-based system to convert text patterns to
numeric values.

3. Imposed physiological constraints for each feature, to ensure that
each extraction was biologically plausible. The following constraints
were used:

a. 91–305 cm for height
b. 20–450 kg for weight
c. 50–300mmHg for systolic, and 20–200mmHg for diastolic blood

pressure

4. Filtered out “optimal weights” that appeared in notes in addition to
patient weights (a common model failure mode) using a regular
expression that discarded weight identifications that were followed
by variations of the phrase “for BMI of 25”.

To assess the effect of each post-processing step on accuracy and yield,
we performed an ablation study. A study cardiologist (SK) reviewed
predicted vital sign identifications—weight, height, systolic, and diastolic
blood pressure—after each post-processing step in an independent
holdout set, producing an additional 400 validated vital sign values. The
results from this analysis are presented in Supplementary Table 12.
Supplementary Table 2 depicts the final NLP model yield and recovery rate
for each vital sign. SK then performed a manual review of 50 randomly
selected values for each vital sign (along with surrounding context from
the note) obtained from an independent holdout set. For validation,
references to prior values of the target vital sign (e.g., weight at last
encounter) were adjudicated as correct. All 200 values reviewed accurately
represented the true vital sign of interest. Since our primary goal was to
ensure that the vital signs we extracted were accurate (rather than
ensuring that every potential vital sign instance was detected), we did not

validate negative examples. However, to qualitatively assess failure modes
resulting in false negatives, SK reviewed 50 randomly sampled notes with
no vital signs detected by NLP.
An analogous validation process was performed for the regular

expression rule-based approach. We also compared the number of
predicted values across models as a surrogate for overall yield. We
ultimately ran inference with the NLP model on 9,522,262 notes for the
401,826 patients who had eligible notes in the 3 years prior to the start of
cohort follow-up and utilized NLP values in our prediction models for
individuals in whom baseline values were missing in the tabular data.
In addition to the primary agreement analyses between NLP and

tabular vital sign values, we also assessed for potential temporal effects
by assessing agreement stratified by year of extraction (Supplementary
Fig 3). Furthermore, to better understand potential causes of discrepan-
cies between tabular and NLP-based values, SK manually reviewed 80
pairs of tabular and NLP-extracted vital signs (20 each for height, weight,
systolic blood pressure, and diastolic blood pressure), where each pair
differed by a clinically meaningful amount (i.e., 6 cm for height, 5 kg for
weight, 20 mmHg for systolic blood pressure, and 10 mmHg for diastolic
blood pressure). We utilized NLP recovery in C3PO but not in the
Convenience Samples.

Statistical analysis
We tabulated the number of cardiac imaging studies, cardiac diagnostic
tests, and unstructured text notes available within C3PO. We also cross-
referenced the number of individuals in C3PO in whom genetic data are
available for analysis through participation in the MGB Biobank
biorepository. We assessed agreement between vital signs obtained using
tabular data versus NLP by comparing sets of values obtained from each
respective source on the same day within 3 years of the start of follow-up.
We plotted paired values, calculated Pearson correlations, and assessed
agreement using Bland–Altman plots. To estimate the magnitude of
missing data reduction, we tabulated sample sizes for the PCE and
CHARGE-AF analyses before and after NLP recovery.
We calculated the cumulative incidence of events at their respective

time horizons (i.e., 5-year AF for CHARGE-AF, 10-year MI/stroke for PCE)
using the Kaplan–Meier method. We also calculated incidence rates per
1000 person-years and corresponding Wald confidence intervals using the
normal approximation. For longitudinal analyses, person-time ended at the
earliest of an outcome event, death, last encounter of any type in the EHR,
age 90, or the administrative censoring date for C3PO (August 31, 2019,
Supplementary Fig 9).
The linear predictors of the CHARGE-AF19 and PCE scores18 were

calculated using their published coefficients. The analysis set for each score
was restricted to individuals without the disease of interest at baseline and
within the published age range for each score (i.e., CHARGE-AF:
46–90 years, PCE: 40–79 years). For CHARGE-AF, the coefficient associated
with the White race was attributed to White individuals, but not to
individuals of other races4,10,40. Since dedicated PCE models are available
only for White and Black individuals, as performed previously41 the models
developed for Black individuals were utilized for individuals identifying as
Black, while the models developed for White individuals were utilized for
individuals of all other races. We performed a secondary analysis in which
the White equations were deployed only among White individuals. Scores
were converted into predicted event probabilities at their respective time
horizons using their published equations.
We assessed model performance by fitting Cox proportional hazards

models with the linear predictor of each model as the covariate of interest
and tabulated the HR per 1-SD increase in score. Model discrimination was
assessed using the inverse probability of censoring weighted c-index42.
Model calibration was assessed in four ways: (1) visual inspection of
predicted versus observed event rates within each decile of predicted risk
(with corresponding fitted curves43), (2) the GND test, in which a greater
chi-squared value and smaller p-value suggest miscalibration44, (3)
calibration slope, where a value of one indicates optimal calibration45,
and (4) the ICI, a measure of the average prediction error weighted by the
empirical risk distribution43. We assessed calibration for the original
models as well as after recalibration to the sample-level baseline
hazard20,45. Confidence intervals for the ICI were obtained using boot-
strapping (500–1000 iterations based on stratum sample size).
We plotted the cumulative risk of AF and MI/stroke according to level of

predicted risk using CHARGE-AF and PCE, respectively. For these analyses,
we used a threshold of <7.5% vs ≥7.5% for MI/stroke risk (the threshold
used to determine candidacy for statin therapy in current American Heart
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Association/American College of Cardiology primary prevention guide-
lines46) and <2.5%, ≥2.5–5%, and ≥5% for AF risk (the thresholds used in
the CHARGE-AF validation study19).
We repeated the analyses described above within the AF and MI/stroke

Convenience Samples to compare the results of contrasting EHR sampling
approaches. We assessed for differences in model calibration by comparing
calibration slopes and ICI values using bootstrapping (500-1,000 iterations
based on stratum sample size).
Analyses were performed using Python v3.847 and R v4.048. Two-sided

p-values < 0.05 were considered statistically significant.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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