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1*, José R. H. Carvalho1, Osvaldo A. Rosso2

1 Instituto de Computação (IComp), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas,

Brasil, 2 Instituto de Fı́sica, Universidade Federal de Alagoas (UFAL), Maceió, Alagoas, Brasil
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Abstract

Automatic monitoring of biodiversity by acoustic sensors has become an indispensable tool

to assess environmental stress at an early stage. Due to the difficulty in recognizing the

Amazon’s high acoustic diversity and the large amounts of raw audio data recorded by the

sensors, the labeling and manual inspection of this data is not feasible. Therefore, we pro-

pose an ecoacoustic index that allows us to quantify the complexity of an audio segment

and correlate this measure with the biodiversity of the soundscape. The approach uses

unsupervised methods to avoid the problem of labeling each species individually. The

proposed index, named the Ecoacoustic Global Complexity Index (EGCI), makes use of

Entropy, Divergence and Statistical Complexity. A distinguishing feature of this index is the

mapping of each audio segment, including those of varied lengths, as a single point in a 2D-

plane, supporting us in understanding the ecoacoustic dynamics of the rainforest. The main

results show a regularity in the ecoacoustic richness of a floodplain, considering different

temporal granularities, be it between hours of the day or between consecutive days of the

monitoring program. We observed that this regularity does a good job of characterizing the

soundscape of the environmental protection area of Mamirauá, in the Amazon, differentiat-

ing between species richness and environmental phenomena.

Introduction

It is well established that animal species are sensitive to their environmental conditions. In

addition, recent research shows that climate change modifies the Earth’s natural soundscapes

[1]. These two observations have driven many researchers to monitor the variations of animal

populations through time using acoustic measures and indices, and to use them as indicators

of environmental degradation [2]. Currently, there are several ways to achieve this goal, and

two of the most employed are: by acoustic surveys or by acoustic diversity indices. Acoustics

surveys are the most widely used method for monitoring animal populations, taking advantage

of the animal vocalization capability [3]. However, a solid survey in remote tropical areas, such

as the Amazon rainforest, demands a significant investment of both human and financial
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resources as well as expert knowledge. Diversity indices, on the other hand, belongs to a

broader class of methods capable of quantifying diversity without needing to recognize each

particular sound or the species that produce it [4–6].

Currently, most ecoacoustic recognition methods rely on supervised classifiers to automati-

cally identify and catalog species. Researchers apply these methods to a variety of species,

including frogs, birds, whales, dolphins, elephants, mosquitoes, gibbons, among others [7–13].

Fully automatic multi-species monitoring systems have also been proposed, integrating hard-

ware and software on a single platform [14]. Although the ultimate goal of supervised methods

is to monitor specific species, these methods can also be used as indicators of soundscape

changes due to variability in the detection of monitored species [15, 16]. However, all of these

works are faced the same challenge: the manual labeling of large databases of long audio

recordings by a collaborator with expert knowledge. Furthermore, a well known shortcoming

of the supervised methods is the decrease in classification performance as the number of clas-

ses increases. [17].

An alternative way to deal with these issues is through the use of unsupervised methods

[16]. Clustering methods do not require labeled data and are particularly well suited in analyz-

ing the acoustic diversity within given soundscapes, such as a tropical environment [18]. How-

ever, determining the number of clusters and validating the content of each recording group

not only requires expertise but is also time consuming and subjective. Moreover, the fact that

clusters can be heterogeneous in distinctive ways transforms assigning biodiversity scores to

each group into a substantial task.

Another class of unsupervised methods has emerged within the last decade. Most of them

define an acoustic index, usually linked to the acoustic richness of the audio recordings. Meth-

ods based on acoustic indices are particularly suited for ecoacoustic data analysis. Some exam-

ples of such indices are the Vocal Activity Index (VAI) [16], the Acoustic Complexity Indices

(ACI) [6, 19, 20], the Bioacoustic Index (BI) [21], the Acoustic Entropy Index (Ha) [4], the

Acoustic Diversity Index (ADI) [22], the Acoustics Evenness Index (AEI) [22], and the Nor-

malized Difference Soundscape Index (NDSI) [23, 24]. However, there is no consensus about

the acoustic index that best describes a landscape configuration [25]. As pointed out by Fair-

brass et. al. [26], most of the mentioned indices are biased due to their positive correlation

with anthropogenic or geophonic noises.

The difficulty of having a non homogeneous characterization of a soundscape using differ-

ent acoustic indices is that most of them are altered by environmental noise in the recordings

[25]. It is known that any real signal recorded in the field, X is formed by the composition of

two components (X ¼ X þN ) [27, 28]. Being X , the deterministic component, possibly

caused by animals with regular singing patterns or vocalizations, and the stochastic compo-

nent N , commonly labeled as background noise. This composition might be seen in the spec-

trograms of Fig 4d. Consequently, two records with similar acoustic patterns but distinct

background noise can lead to differing ecoacoustic characterizations. This is particularly true

for indices based only on Shannon’s entropy.

Several indices have been defined based on Shannon’s entropy [4, 22, 29]. There is also a

consensus in the ecoacoustic literature to consider entropy as a synonym for complexity;

therefore, the higher the entropy, the higher the complexity [24]. Entropy is a global attri-

bute capable of quantifying uncertainty. When used to characterize a physical system,

entropy describes a state’s disorder, not its complexity [30]. A classic example of this

dilemma is an isolated ideal gas system, in which the behavior of gas particles tends to bal-

ance with maximum entropy (H! 1). Since the state of the system itself is quite simple and

easy to describe, complexity should be minimal (C! 0) [31]. For a richer discussion on the
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differences between entropy and complexity, please refer to the seminal articles on this

topic [28, 30, 31].

This article summarizes our effort to bring these concepts to the ecoacoustic field. By anal-

ogy, we can consider the soundscape as our physical system, where recordings are the system’s

measurable outputs. Thus, by defining an appropriate methodology to represent the probabili-

ties of the states from the outputs, we can quantify the complexity of the soundscape. We

adopted the definition of complexity illustrated in Fig 1a, where the complexity is zero for

both states of the system: totally ordered and totally disordered [32]. Ordered systems are

those having predictable acoustic patterns (H! 0 and C! 0), and disordered systems are

those with only white noise (H! 1 and C! 0), or totally unpredictable acoustic patterns.

The contributions of this work are two-fold: a new methodology for processing ecoacoustic

signals that allows us to obtain a measure of complexity and represent any record as a unique

two-dimensional point, and a detailed data analysis using a set of real recordings from an

acoustic monitoring program applied in an environmental preservation area. The proposed

index, named the Ecoacoustic Global Complexity Index (EGCI), is able to track the ecoacous-

tic status of a given landscape. The index promotes a better understanding of variations in

the soundscape caused by animal vocalizations and environmental phenomena. The EGCI is

unsupervised, meaning that no human expertise is needed to label and classify long audio rec-

ords. The EGCI benefits from three Information Theory quantifiers: the Shannon entropy, the

Jensen-Shannon divergence, and the Generalized Statistical Complexity, which, when com-

bined, are able to differentiate between a broad range of signal features, in both temporal and

frequency domains.

The EGCI is derived from the Entropy-Complexity HxC-plane, a well-established tech-

nique in physics used to study the dynamics of complex systems [28, 33]. With this plane, it is

possible to characterize samples from a specific soundscape. We also present a detailed data

Fig 1. Boundaries of the HxC-plane and the color noises reference line. (a) Maximum and minimum boundaries of the Generalized Statistical Complexity represented

according to the chosen time lag τmax. Here, the blue dashed line shows the variation of the correlated noises according to α. (b) Distribution of some acoustic samples

from our dataset when τ = 512. Points p1, p2 and p3 have a singular spectrum with equal entropy but different complexity. The color gradient illustrates regions of the

plane in which the samples have similar divergence.

https://doi.org/10.1371/journal.pone.0229425.g001
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analysis on a set of continuous recordings, generated by a sensor node positioned at a pre-

served floodplain area known as the Mamirauá Reserve, located in the central Amazon rainfor-

est in Brazil. Therefore, if we consider a soundscape as a complex physical system, the EGCI

enables us to study and interpret the acoustic dynamics of that system not only for a specific

set of species, but as a whole.

Related works

The existing acoustic indices can be categorized into two main categories: the Alpha and the

Beta indices [24]. Alpha indices were developed in order to quantify the acoustic richness of a

given soundscape while the Beta indices were proposed as a way to asses the level of acoustic

disparity between recordings of different soundscapes. Here we focus on the Alpha indices.

The authors of the Vocal Activity Index (VAI) proposed training a binary classifier to pre-

dict whenever there is a bird call in a recording segment [16]. After that, the number of seg-

ments predicted as the positive class is divided by the total segments recorded over the same

time period. Then, the results obtained by the supervised classifier are used to validate and

estimate this index employing an unsupervised cluster method. All of these processing steps,

along with manually adjusting the optimal number of clusters, make it difficult to analyze

large data sets or to deploy this method in a low-cost acoustic sensor.

One of the Alpha indices most frequently found in literature is the Acoustic Complexity

Indices (ACI) [19]. This index is based on the rate of change provided by each frequency

band of the spectrogram, where the spectrogram can be obtained with the Short-Time Fourier

Transform (STFT) algorithm. This algorithm makes this index simple and computationally

fast. Modern hardware can perform STFT without any difficulty. However, the number of

rows and columns of the spectrogram changes as we change both the STFT resolution and the

signal length. This mutual dependence between temporal- and spectral-resolution makes it dif-

ficult to compare results when the sampling frequency changes, due to hardware updates, or

when the temporal length of recordings varies. Furthermore, this index was also used as a fea-

ture for a supervised classification method [20]. In order to attain more details on the calcula-

tion of this index please refer to S1 Appendix in S1 File.

The Bioacoustic Index (BI) is obtained through the integration of the sound intensity curve

(measured in dB) varying between the frequency bands from 2 kHz to 8 kHz [21]. Again, fre-

quency spectra can be obtained by using FFT, and a minimum threshold can be used to filter

out background noise. With BI, it is possible to quantify the signal energy accumulated at dif-

ferent times of the day, when there is higher activity of the birds’ singing. However, the integral

of the intensity curve of a frequency spectrum with high energy peaks in narrow frequency

bands could have the same integral of a spectrum with uniformly distributed energy. This

makes the distance between the sound source and the microphone an essential factor in the

quantification of diversity by BI.

The Acoustic Diversity Index (ADI) uses Shannon’s entropy to calculate the dispersion of

spectral energy accumulated over time and spread in ten frequency bands equally distributed

between 0 kHz and 10 kHz [22, 34]. Four steps must be performed to obtain the vector of prob-

abilities necessary to calculate the entropy: a) generate the spectrogram and normalize it in

order to reach a maximum value of zero, b) apply the dB logarithmic transformation relative to

full scale, c) binarize the spectrogram by thresholding, which then causes the values below -50

dB to become 0’s and the values above -50 dB to become 1’s, and d) to add the values in each

band in order to obtain the discrete energy accumulated over time. Additional normalization

can be used to transform the accumulated values into a Probability Mass Function (PMF). The

two key points that differentiate this index from others are the use of binarization, which acts as

PLOS ONE Ecoacoustic Global Complexity Index (EGCI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0229425 July 27, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0229425


a filter for environmental noise or distant sounds, and the discretization of frequency bands. In

comparison, EGCI achieves a noise filtering effect through naturally selecting the most repre-

sentative eigenvalues (see Methods section). Furthermore, it was demonstrated by Fairbrass et.
al. [26] that ADI does not positively correlate with biotic acoustic activity or diversity.

The Acoustic Evenness Index (AEI) is the Gini coefficient applied to the frequency bands

(or PMF) obtained using the same methodology as the ADI [22]. This index measures the dis-

tribution of energy accumulated over time between ten frequency bands, and it can vary from

0 to 1, with 0 representing a perfect equal distribution and 1 representing perfect inequality.

The purpose of the Normalized Difference Soundscape Index (NDSI) is to estimate the dis-

turbance caused by the anthropogenic noise in a given soundscape [23]. Similar to ADI, the

FFT is applied to obtain the signal’s power spectrum discretized into 10 frequency bands. The

bands between 2 kHz and 8 kHz are considered biophonic, i.e. where there is a higher bioacous-

tic concentration. Among them, the band with the highest Power Spectral Density (PSD) is cho-

sen, and this value is then used to compose the α coefficient. The remaining frequency bands,

ranging from 0 kHz to 2 kHz and from 8 kHz to 10 kHz, are considered anthropogenic noise.

The highest PSD value between these secondary bands is chosen to form the β coefficient.

Finally, the NDSI estimate is obtained using the quotient (β − α)/(β + α), where NDSI = 1 indi-

cates a signal that does not contain anthrophony disturbance. Although this index is capable of

measuring the level of disturbance caused by humans in the soundscape, it does not appropri-

ately quantify the acoustic diversity, since it considers a single biophonic frequency band.

Recently, Sueur et al. [4] proposed multiplying the Spectral Entropy (Hf) and the Temporal

Entropy (Ht) to compute the Acoustic Entropy Index (Ha). To calculate Hf it is assumed that

the normalized frequency spectrum, obtained by the Fast Fourier Transform (FFT), is a histo-

gram. Similarly, one should assume that oscillations in the amplitude envelope of the signal

can be used as a PMF to obtain Ht. To see the calculation details of these entropies please refer

to S1 Appendix in S1 File. Then, the final index is the product Ha = Hf ×Ht, so the closer Ha to

one, the greater the acoustic diversity. One may notice that short-term impulsive noises can

drastically alter the value of this index. Unfortunately, the multiplication of two entropy values

lacks physical interpretation. However, this index captures global signal properties, and there-

fore inspired our proposal, as we believe that Information Theory quantifiers are natural

choices for quantifying diversity.

We identified three issues when using the indices mentioned above. First, the increase

in quasi-white random noise spreads energy evenly across the spectrum, thus increasing the

level of entropy. Hence, entropy values close to 1 cannot always be interpreted as high acoustic

diversity produced by vocalization patterns from different species. Second, as they are affected

by STFT’s multi-resolution dilemma, they depend directly on the length of the recorded audio

and the number of selected frequency bands. Therefore, signals with variable lengths change

the index ranges, making the values no longer comparable. Third, as these indices are mathe-

matically different, in practice they capture different characteristics of the acoustic signals.

Depending on the purpose of the monitoring program, these differences can become comple-

mentary or competing. The proposed EGCI is less affected by these issues, representing a clear

improvement in the subject of measuring ecoacoustic complexity. The benefits of EGCI are

explained in the Result section.

Methods

In this section we present the three fundamental concepts used to calculate the proposed

index: (a) the autocorrelation matrix, (b) the Von Neumann entropy, and (c) the Statistical

Complexity measure.
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Autocorrelation matrix

The Pearson’s correlation coefficient (rxy) is a measure of the intensity and direction of the lin-

ear relationship between two signals X and Y. The autocorrelation coefficient rxx has a similar

interpretation, but instead of using two different signals, it uses a version of the same signal

shifted by τ units. For instance, if τ = 1 then rxx quantifies the strength of the association

between xi and xi+1 [35].

Let X = {x1, x2, . . .xN} be the acoustic signal of length N at the sensor input; the unbiased

autocorrelation coefficient rxx is defined as:

rxxðtÞ ¼
1

ðN � tÞs2

XN� t

i¼1

ðxi � �xÞðxiþt � �xÞ; ð1Þ

where N, �x, and s are the length of x, the sample mean, and the sample standard deviation,

respectively. Here, the maximum value of τ must satisfy the condition tmax �
N
2
. This equation

may also be referred to as the Autocorrelation Function (ACF).

Given a maximum τmax value, the autocorrelation matrix Rxx can be formed as a Toeplitz

matrix, or diagonal-constant matrix, with shape [36]:

RxxðtÞ ¼

1 rxxð1Þ rxxð2Þ � � � rxxðtmaxÞ

rxxð1Þ 1 rxxð1Þ � � � rxxðtmax � 1Þ

rxxð2Þ rxxð1Þ 1 � � � ..
.

..

. ..
. ..

. . .
.

rxxð1Þ

rxxðtmaxÞ rxxðt � 1Þ rxxðt � 2Þ � � � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð2Þ

where rxx(0) = 1.

These autocorrelation coefficients are efficiently calculated by the Fast Fourier Transform

(FFT) algorithm. Regardless of how they are obtained, it is well known that these coefficients

carry information about the signal’s main frequencies. Therefore, we can consider them spec-

tral features that accurately describe ecoacoustic signals. For more details on this, please refer

to S2 Appendix in S1 File.

Entropy methodology

The Von Neumann entropy was defined by 1927 for quantum measurement processes [37]. It

has a fundamental role in studying correlated systems. This Information Theory quantifier is

defined as the normalized Shannon entropy (H) of the singular spectrum as:

H½P� ¼
� 1

log ðtmaxÞ

Xtmax

i¼1

liPtmax
i li

� �

log
liPtmax
i li

� �

; ð3Þ

where λi are the eigenvalues of a given Rxx matrix. It is worth mentioning that, the denomina-

tor term
Ptmax

i li normalizes the eigenvalues values between 0� λi� 1. Hence, the whole

term
liPtmax
i

li
can be interpreted as a histogram. Lastly, the term 1

log ðtmaxÞ
normalizes the

entropy within 0�H[P]�1.
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Generalized statistical complexity measure

The original proposal of López-Ruiz et al. [31] and the extended work of Rosso et al. [32]

define the Generalized Statistical Complexity Measure as the functional product:

C½P� ¼ Q½P; Pe�H½P� ð4Þ

where H[P] is the normalized entropy (Eq 3), P is a normalized histogram obtained from the

eigenvalues of Rxx, Pe is a reference histogram with uniform distribution, and the disequilib-

rium Q[P, Pe] is defined in terms of the Jensen-Shannon divergence J[P, Pe]. That is:

Q½P; Pe� ¼ Q0J½P; Pe� ð5Þ

with:

J½P; Pe� ¼ H
ðP þ PeÞ

2

� �

�
H½P�

2
�

H½Pe�

2
ð6Þ

where Q0 is a normalization constant used to maintain 0� Q� 1. For more details about Q0,

please refer to S3 Appendix in S1 File. Note that Q[P, Pe] depends on two different probability

distributions. The first one, P, is related to the signal under analysis, and the second, Pe, is a

uniform distribution, which represents a white noise signal. This reference histogram with

uniform distribution is considered the equilibrium point of any physical systems.

The proposed ecoacoustic global complexity index

Given the fundamental concepts in the previous section, we can now summarize the proposed

EGCI calculation. For any ecoacoustic signal obtained by a sensor node, these steps must be

followed:

1. from a signal X, apply the autocorrelation (Eq 1) choosing a maximum value of τmax to

obtain a Toeplitz matrix Rxx (Eq 2);

2. apply the Singular Value Decomposition (SVD) on Rxx to recover its singular spectrum

(i.e., the eigenvalues l1:tmax
of Rxx); then,

3. normalize each eigenvalue λi by the sum of all eigenvalues to get the histogram P and calcu-

late the normalized entropy H[P] according to the Eq 3;

4. compute the Jensen-Shannon divergence using the histogram P and a uniform histogram

Pe (Eqs 5 and 6); and finally,

5. apply Eq 4 to estimate the EGCI, the complexity index of the ecoacoustic signal.

This procedure maps each signal to a unique point, with H and C coordinates, in the

Entropy-Complexity (HxC) plane. Note that, Rxx is a full rank matrix, therefore all its eigenval-

ues, as well as their normalized values, are positive real numbers. This allows us to interpret

the singular spectrum as a Probability Mass Function (PMF) of a signal recorded by any acous-

tics sensor. Moreover, the only free parameter of our method is τmax.

In some specific situations, two or more different signals may have singular spectra with the

same entropy. For instance, consider the three points p1, p2, and p3 depicted in Fig 1b. In these

cases, divergence plays a key role in helping to separate their complexities. In other words,

divergence is useful to separate histograms with equal entropy, as in the Entropy-Complexity

plane depicted in Fig 1b. One may note that entropy weighted by the divergence causes a large

range of possible C values for each entropy value. Such values are contained between the upper

and lower limits, shown in the same figure by the black dashed lines. In this same figure, we
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illustrate the distribution of the audio samples from our dataset using color gradients to high-

light the effect caused by the Jensen-Shannon divergence term in Eq 4.

Lastly, the dashed blue line in Fig 1 represents the position of simulated color noise signals

by a function with Power Spectral Density (PSD) that obeys a power law of the form xðf Þ ¼ 1

jf ja

[28, 38], where f denotes frequency. Thus, we vary the alpha parameter between 0� α� 2 in

small increments generating several random time series, each of them with a sampling fre-

quency of fs = 44.1 kHz and a Signal-to-Noise Ratio of SNR = 0kHz. The position on the HxC-

plane of each one of these series draws the blue dashed reference line shown in Fig 1. For more

details about colored noises, please refer to S4 Appendix in S1 File.

Results

In this section, we will analyze the EGCI computed from our experiments in the field.

Characterization of reference samples

Sueur et al. [4] made publicly available seven signal records specifying the acoustic richness of

each one according to their index. We can use them as references and investigate the charac-

teristics of these signals by the EGCI. This allows us to validate and compare the proposed

index.

Fig 2a shows the complexity of these signals. According to Sueur et al., the recorded signals

s19 and s18 have an elevated biodiversity richness, for their higher entropy values. The EGCI

provided deeper information, as we realized that the increase in entropy may be a consequence

of both: the cricket’s chirping (or other insects) or an increase in environmental noises. Thus,

EGCI will not just label those samples with high biodiversity richness, but it is able to provide

more information about them. Take, for instance, the following examples.

Fig 2. The characterization of reference signal samples using τmax = 512. Every point in subfigure a) represents an ecoacoustic signal. Subfigure b) shows the

divergence matrix between signal pairs. We keep the original numbering of the signals to help the interpretation and comparison with Sueur et al. [4]. These records are

available online at https://doi.org/10.1371/journal.pone.0004065.

https://doi.org/10.1371/journal.pone.0229425.g002
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By employing the EGCI, we discover that signals s14, s15 and s17 carry a larger number of dif-

ferent deterministic patterns, increasing the complexity, as an indication of higher ecoacoustic

richness. The characterization of s13 shows that this sample has slightly more noise with few

additional vocalization patterns compared to s16, but keeping less diversity than, for instance,

s14. Lastly, s16 has the smallest diversity of acoustic patterns, and therefore the smallest com-

plexity and entropy. One has to understand the role of τ in the HxC plane, and the resulting

trade-off when tuning it. A small value of τ results in a low-discriminant plane, being difficult

to visualize the differences among signals. A high value of τ, on the other hand, will split the

main frequencies captured by the auto-correlation matrix into several groups.

One of the advantages of using Jensen-Shannon divergence is that we can quantify the dif-

ference between two arbitrary signals. Thus, we can make peer-to-peer comparisons between a

given signal and a reference signal from another soundscape or between signal variations of

the same soundscape at different times. The matrix of Fig 2b shows the divergence between all

pairs of reference signals. The colorbar indicates that the greater the divergence between the

signals, the stronger the blue color. It is worth noting that there is a correspondence between

the distance of the points in the complexity plane and their divergences. For instance, the

greatest divergence is obtained by comparing the singular spectra of s16 and s19, which are the

farthest points in the HxC-plane. A similar observation holds when comparing points s16 and

s18. Although the position of the points in this plane uses the uniform distribution as a refer-

ence, the dissimilarity between them has a correspondence with the divergences of the signals;

that is, the closer the points are in the HxC-plane, the greater is their ecoacoustic similarity.

For the sake of comparison, Fig 3 shows the values of Ha, ACI, EGCI and the Von Neu-

mann entropy H used in the proposed methodology. We can see that the Ha has values very

close to H. This shows that our methodology to compute entropy from eigenvalues captures

the same information contained in the signals without the need to calculate Ht. We found that

Ht values are very close to one in almost all samples in the data set; consequently, the product

Ha = Hf ×Ht is not changed and the final value is Hf. However, we cannot affirm that this is a

general rule. Therefore, as the H captures the same information as the Ha, we can say that the

EGCI presents complementary information, better weighting the content of the signal in the

analyzed samples.

In this figure, we can also notice that the ACI places greater emphasis on the s13 sample.

The spectral content of s13 indicates the presence of several species of animals with intermittent

calls in different frequency ranges. Therefore, the derivative of such frequencies with respect to

time is high, increasing the ACI. Comparatively, EGCI also assigns a high value to the same

sample, but without being the highest value among all. Despite these small discrepancies, the

ACI assigns low and almost uniform values to the remaining samples, being less informative

in such cases.

Fig 3. Values of the three indices, ACI, Ha, EGCI, and the entropy of the eigenvalues H, for the reference samples. These values were obtained using a time lag (τ)

and an FFT with 512 points.

https://doi.org/10.1371/journal.pone.0229425.g003
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Characterization of samples from in situ monitoring

Our second investigation used a dataset with signals recorded in the Mamirauá conservation

area, in the Brazilian Amazon rainforest. Our acoustic sensor captured approximately 40 Gb of

raw audio signals, during thirteen days of the monitoring program. The audios were stored in

22-second segments, with a sampling frequency of fs = 44.1 kHz, summing up 43348 audio

samples. The monitoring program, called Providence, was divided into two phases. The for-

mer, consisting of five consecutive days of recording in July 2016, and the latter, consisting

of eight consecutive days at the beginning of September on the same year. All collected data

compose a single data set. Authorization for the use of this sensitive biological data has been

released by The Biodiversity Authorization and Information System (SISBio) through number

72722. The raw signals cannot be made available due to legal restrictions. A copy of the origi-

nal data can be requested through the Providence website http://projectprovidence.org.

Fig 4 depicts the relationship between the main elements of our analysis. The key step

of our methodology is how to obtain the probability distributions to calculate entropy. As

previously pointed out, the histogram of Eq 3 comes from the normalized eigenvalues of the

autocorrelation matrix. Fig 4a shows the complexity plane for τmax = 512, where the 43348 seg-

ments were represented as EGCI points. According to our methodology, points with higher

complexity should exhibit a higher acoustic richness. Therefore, to illustrate the behavior of

the proposed index, three extreme points were arbitrarily chosen: s1, which has low entropy

and low complexity; s2, with medium entropy and high complexity; and s3, with high entropy

and complexity lower than s2 but higher than s1. For each of these points, we plot their singular

spectrum (Fig 4b), the ACF given by the Eq 1 (Fig 4c) and their PSD spectrograms (Fig 4d).

From top to bottom we have s1, s2, and s3, respectively.

We can verify in Fig 4b that ecoacoustic signals with few components and long-range corre-

lations, such as s1, tend to have a concentrated singular spectrum, decreasing H[P], while sig-

nals with uncorrelated noises (ie. tending to a white noise), such as s3, have a flat singular

spectrum, raising up H[P]. In the intermediate case, when the signals have different determin-

istic patterns, singular spectra similar to that of s2 are generated, causing an intermediate

entropy value. The ACF of sample s1 has long-range correlations (Fig 4c), implying an envi-

ronmental colored noise, and a spectrogram with energy accumulated mainly at low frequen-

cies (top spectrogram in Fig 4d). We verified that this recording corresponds to rain sound

without disturbance of animals. As we expected, s1 is very close to the curve of environmental

colored noises with α� 2. Additionally, the ACF of s1 produces the singular spectrum shown

in the upper plot of Fig 4b, which justifies its low entropy value.

One can make a similar analysis about s2 and s3. In the case of s2, the ACF plot shows short-

and medium-range correlations, with a spectrogram richer in different acoustic patterns (mid-

dle plot in Fig 4c). Such ACF produces the singular spectrum shown in the third plot of Fig 4b.

The distribution of the eigenvalues of this singular spectrum returns an average entropy value,

but its divergence tends to be maximum, thus justifying the high EGCI. From its spectrogram,

we also note that there is a low-energy ambient noise spread in a few frequency bands. We ver-

ified that this recording has high acoustic richness, containing calls of at least four different

bird species, two frog species, and some insects.

Finally, s3 shows high entropy and decreased complexity. Its ACF (Rxx(s3)) plot shows only

short-range correlations. This may be due to the lack of repeated deterministic patterns and

the presence of noises spreading out energy at low, medium, and high frequencies. In this case,

the ACF plot has values only for low τi indices, emphasizing the presence of approximately

uncorrelated noise, which helps break weak correlations of signal components. As we know,

uncorrelated noise signals tend to have an approximated flat singular spectra increasing their
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entropy value, a fact that can be seen in the lower plot of Fig 4b. In the bottom spectrogram of

Fig 4d, we observed scattered noises, produced by rain reaching different materials, contami-

nating most of the frequency bands and also a call of a single species of bird. The presence of

this quasi-deterministic pattern prevented the EGCI from achieving even higher entropy and

lower complexity.

So far we have discussed how the HxC plane characterization of ecoacoustic samples relates

to signal processing concepts, such as ACF and PSD. We also demonstrate, in a practical way,

how the proposed index relates to the acoustic richness of a signal segment. The influence of τ
on the distribution of samples in the HxC-plane can be seen in S1 Fig. In the following sec-

tions, we present a detailed data analysis on how the proposed index varies in relation to the

time of day and across the monitoring period, characterizing temporal soundscapes patterns.

Fig 4. EGCI characterization using τmax = 512 of samples recorded at Mamirauá protection area in the Amazon rainforest. Subfigure (a) depicts the HxC complexity

plane, where each point is a signal segment of 22 seconds. Subfigures (b-d) show the singular spectrum, the autocorrelation function (ACF) and the spectrograms,

respectively, of points s1, s2, and s3, from top to down.

https://doi.org/10.1371/journal.pone.0229425.g004
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Temporal characterization through EGCI

The proposed index allows us to characterize the monitored location considering temporal

variations of the acoustic richness. Fig 5a shows the complexity of each segment within three

half-hour periods in a plane with τmax = 512. We can verify that there was an entropy increase

in the period between 03:00 and 03:30 h (green dots). This may be related to an increase in

environmental noises, the intense acoustic activity of insect choral singing, and other environ-

mental factors, as well as a decrease of birds, amphibians, and other animal calls with daytime

habits, causing a lower acoustic diversity. The interval corresponding to 12:00 and 12:30 h

shows a concentration of blue dots with a slight increase in entropy compared to red dots,

mostly due to the combination of the acoustic activity of some animals with daytime habits

and insect chorus. The extreme blue dots with low entropy are probably due to the regular

rainfall at this time of day during the monitoring period, which decreases entropy. Lastly,

we have the interval between 07:00 and 07:30 h (red dots), which presents the highest EGCI

values and few dots shifted slightly to the left of the plane—this may be a consequence of

higher acoustic activity of birds at dawn.

The complete characterization of variations in acoustic richness at every hour of the day

can be better appreciated in Fig 5b. This figure shows the centroids and their respective scatter

bars for each sample group at each hour. As we expected, the horizontal bars are always larger

than the vertical bars due to the shape of the HxC-plane. Comparing the different groups, we

can see which periods of the day present the highest ecoacoustic dispersion (e.g. 12:00 h).

Interestingly, at sunset (e.g. 05:00 h) the highest EGCI values are achieved with a lower disper-

sion, which suggests that there is an intense acoustic activity with less perturbation of environ-

mental phenomena at this time. The second key time is dawn (e.g. 07:00 h) in which it is

known that there is a greater acoustic activity of morning birds. Points 21:00, 22:00 and 23:00

Fig 5. Temporal grouping of samples using τmax = 512 during the seven days of monitoring. Subfigure a) shows the spatial distribution of the samples at three half-

hour intervals. Subfigure b) shows the cluster centroids with complexity and entropy variance bars at one-hour intervals. The proximity between these centroids highlight

hours of the day with similar ecoacoustic richness.

https://doi.org/10.1371/journal.pone.0229425.g005
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h are relatively close, and as described in the previous sections, near points in the plane have

histograms with low divergence caused by similar acoustic patterns.

Looking at the spatial centroid’s distribution in Fig 5b, we also noticed that before dawn

(e.g. 03:00 h) the acoustic activity of the birds, anurans and other species is lower, giving rise to

greater insect activity such as cicadas, which increases entropy. Finally, we can see groups of

centroids with similar characterizations (near location and comparable dispersion), for exam-

ple, the sets {06:00 to 08:00 h, and 15:00 to 18:00 h} or {05:00, 09:00, 10:00 h, and 12:00 to 14:00

h}. Such centroid variations are better depicted in Fig 6b. This figure presents the EGCI varia-

tion with a half-hour resolution, where we can notice two peaks of maximum acoustic activity,

at 07:00 and 17:00 h, a fact that matches the knowledge of the experts about soundscapes of the

Mamirauá region.

Environmental phenomena may change over the days, however, we expect that this finger-

print of acoustic complexity must be repeated with some frequency, except when biodiversity

changes. To verify such consistency through time we included Fig 7. In other words, the daily

pattern shown in Fig 6 is almost regular across the six consecutive days of the monitoring pro-

gram, shown in Fig 7. We observed that the temporal variation of EGCI is little affected by the

τ parameter variation. This parameter increases the scale between the maximum and mini-

mum peaks of acoustic complexity but keeps the shape of the curve. During a few days of the

monitoring program, the sensor experienced technical difficulties that caused the loss of some

minutes of recording. However, the proposed index proved to be resilient to these issues. The

soundscape fingerprint of daily variation including the Entropy and Divergence quantifiers

are additional resources presented in S2 Fig.

Fig 6. Ecoacoustic entropy and complexity with its confidence interval at every half hour using τmax = 512. Average variation considering the seven days of

monitoring. This variation can be considered the soundscape fingerprint of the region within the sensor microphone range.

https://doi.org/10.1371/journal.pone.0229425.g006
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EGCI variability in Mamirauá floodplain during drought and flood seasons

The Mamirauá Sustainable Development Reserve is mostly floodplain, where the different

phases of the hydrological cycle influence the ecosystem [39, 40]. In Mamirauá, the seasons are

strongly marked by the water level. During the flood season the land is completely underwater,

while during the dry season, there is plenty of dry land available. These changes impose mobil-

ity restrictions for some species, which directly modifies the ecoacoustic landscape. As men-

tioned at the beginning, the monitoring period was divided into two months, approximately

one week in July and another week in September during flood and drought event peaks, as

shown in S3 Fig. These two months are characterized by the flood season and the dry season,

directly affecting the landscape. Stratifying our dataset by month and plotting the EGCI for

each week, we observed a shift over the spatial distribution of points in Fig 8). The effect

of this seasonal variation can best be observed by the centroid displacement of each month.

This comparison shows the usefulness of EGCI in capturing the variation of the ecoacoustic

soundscape due to the change of season.

Fig 7. EGCI regular patterns varying through six days. Behavior patterns of the EGCI index indicate greater activity during the day and lower activity at night. Daytime

variations are more irregular compared to nighttime variations.

https://doi.org/10.1371/journal.pone.0229425.g007

Fig 8. Seasonal characterization of the soundscape using tau = 512 τmax. This possibility of characterization can be extended to long term monitoring programs.

https://doi.org/10.1371/journal.pone.0229425.g008
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Rainfall sound characterization

Environmental phenomena are also captured by the sensor’s microphone. Consequently, envi-

ronmental sounds can also be characterized in the HxC-plane. We know that these phenom-

ena—for instance, the sound of the rain, have a frequency spectrum known as colored noises.

This is the main reason why we included the simulation of this type of noise, generating the

blue reference curve in Fig 9a.

This specific monitoring period was within the dry season [41]. However, on September 2,

2016, there was a slight amount of rainfall during the interval between 11:00 and 11:30 h. Only

the acoustic samples corresponding to this day are illustrated in the HxC plane of Fig 9a. Here,

the red dots correspond to a half-hour interval starting at 11:00 h. During this interval there

was rainfall, and the resulting approximation of the samples to the color noise curve. In this

same time interval, both entropy and complexity decreased abruptly, as can be seen in Fig 9b.

The left shift of the red dots in the HxC-plane causes a considerable increase in the variance of

the information quantifiers, as indicated by the confidence interval on the red bar. After the

rain stopped, the entropy quickly recovered to a high value, while the complexity still took

time to increase. For those with field experience, it can be seen that after a storm the forest is

silent for a few minutes, recovering acoustic activity first by insects, which increases entropy,

and then with birds and other animal species, ultimately increasing ecoacoustic complexity. In

order to verify this, the recorded audios were hand-inspected by a specialist, who heard and

confirmed rain sound at the mentioned time period.

These recordings were also analyzed using the ACI and Ha indices S4 Fig was added in sup-

plementary material for comparison purposes. The H highlighted the rain phenomenon better

than the Ha index, indicating that the methodology presented for calculating entropy is more

discriminatory (Fig 9b vs S4a Fig). Comparing the complexity obtained by the ACI with the

EGCI, we noticed that this last index better characterized the periods before and after the rain.

The ACI attributed a low value of complexity to rain, but comparable to other values, such as

in the periods from 3:00 to 04:00 h or 20:00 to 00:00 h, making it difficult to discriminate

against this environmental phenomenon (Fig 9c vs S4b Fig). However, discriminating against

environmental phenomena is a subjective task that requires supervised inspection; therefore,

additional experiments must be carried out to reach a more comprehensive conclusion.

Fig 9. Rainfall characterization using τmax. Subfigure a) shows the EGCI from September 2, 2016. The red dots correspond to a half hour interval when it rained.

Subfigure b) shows the average variation, along with their respective confidence intervals, of the quantifiers during that day every half hour.

https://doi.org/10.1371/journal.pone.0229425.g009
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Discussion

In previous sections, we presented the theoretical bases and empirical evidence that support

the composite index of ecoacoustic complexity. By nature, ecoacoustic signals are a mixture

of deterministic and stochastic components. Therefore, our main challenge was to make the

EGCI index sensitive to bioacoustic diversity while differentiating among environmental phe-

nomena. Thus, the physical interpretations of the HxC plane contribute to understanding of

the soundscape characterizing the monitored area.

The ability to represent different patterns using autocorrelation depends on the parameter

τ. Adjusting this parameter is a trade-off between separability and representation in our meth-

odology. Small values of τ limit the ability to discriminate all acoustic patterns possibly con-

tained in the signal, and very high values of τ cause the acoustic patterns to decompose into

smaller segments that must remain together, causing an artificial increase in entropy. On the

other hand, large τ values allow a more discriminating HxC plane, giving more space to the

spatial characterization of points, while small τ values generate a plane with closer upper and

lower limits, reducing the ability to discriminate between signals with different degrees of sto-

chasticity and determinism (S1 Fig).

Through the results presented in the previous sections, whether using reference or real

data, we show that the EGCI correlates well with the diversity in the recordings. In the HxC-

plane, vocalizations of species that have regular spectral-temporal patterns balance entropy,

whereas species with irregular calls—with a greater number of different patterns—tend to

increase entropy. We also observed that insect choral singing, which generally varies between

5 kHz and 8 kHz, like cicadas, increases entropy because they have a spectrogram similar to an

uncorrelated high-frequency noise. As the complexity is a concave function, the increase in

entropy caused by insects of the same species generally decreases the complexity indicating

less diversity, regardless of how many individuals the coral has. If they are alone and belong

to the same species, then the diversity is smaller and consequently, the complexity should

decrease (Fig 5a). In this sense, EGCI is able to adequately characterize the presence of insect

choruses in the HxC plane region of high entropy.

Short- and long-term environmental phenomena are also well characterized by EGCI.

Short-term sporadic phenomena, as verified by the example of the rain, can be recognized

with our approach. In this example, the low-frequency rain sound—characterized as colored

noises—decreases entropy and complexity, whenever not disturbed by other sounds, generat-

ing HxC points close to the colored noises reference curve (Fig 9). With regard to the long-

term environmental phenomena, such as the hydrological cycle, there is also a different char-

acterization of samples in the HxC plane for different seasons. Mamirauá is a floodplain area

with a season of the year completely flooded. This change in landscape alters the dynamics of

the species and hence, the soundscape, as was characterized in Fig 8.

Additionally, the EGCI was able to highlight temporal regularities consistent with

the observations made in the field, discriminating against any irregularities in the sounds-

cape that occurred during the monitored days (Fig 7). Besides, EGCI can naturally quantify

the dissimilarity between two recordings, as this index was defined in terms of the Jensen-

Shannon divergence (Fig 2b). Compared to other indices, we show that the EGCI character-

izes the Mamirauá region in a more appropriate way than the ACI. The methodology

presented to obtain entropy H captures similar dynamics of those captured by Ha more

directly, while adding information about the divergence. Therefore, the advantage of

EGCI is that it can be interpreted as a metric of general complexity and, additionally, each

of its terms can be used as indicators of the soundscape variation, since they have physical

interpretations.
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Regarding our analysis with Mamirauá records, the temporal analysis presented above

shows that there is a regularity of the soundscape between hours of the day and across moni-

tored days. As expected, from Figs 6 and 7 we noticed a higher daytime acoustic activity. Fig

6b highlights two high EGCI peaks at dawn and dusk, an indication of the hours of the day

with higher intensity and acoustic diversity, which is a typical behavior of birds and frogs in

the Amazon rainforest. As shown in Fig 7, this behavior is almost regular between consecutive

days. It was also possible to notice that there is a change in the characterization of the sounds-

cape correlated with flood and drought seasons (Fig 8), which indicates a change in the species

present during those seasons.

As pointed out by Fuller et. al. [25], not every index is adequate to represent all possible

landscape configurations through the analysis of soundscapes. This may be due to temporal

variations in the acoustic patterns of animal communities, which are strongly linked to the

local conditions of natural phenomena. From this perspective, in all of our temporal analyzes,

for example, comparing night vs day time or flood vs drought seasons, there are indications

that EGCI captures significant changes related to time and also to the patterns of environmen-

tal phenomena affecting the Mamirauá region. However, it is worth mentioning that the con-

clusions reached correspond to the soundscape of the region covered by the range of the

microphone used by the sensor node and that our recordings do not contain anthropogenic

noises, only geophonic noises.

Conclusion

Information Theory provides powerful and elegant methods for ecoacoustic signal analysis,

such as the Entropy-Complexity plane theory to map generalized statistical complexity from a

particular soundscape. Therefore, we are not referring only to the dynamics of a specific spe-

cies, but to the dynamics of the environment as a whole. To compose the EGCI, we combined

the Von Neumann entropy, calculated from the eigenvalues of the autocorrelation matrix, with

the Statistical Complexity. It is worth mentioning that this new index encapsulates the repre-

sentation of any ecoacoustic signal as a two-dimensional point in the Entropy-Complexity

(HxC) plane. In addition to its low-dimensional representation, each point on the HxC plane

has useful interpretations regarding the underlying physical system. Therefore, the EGCI char-

acterizes nontrivial sound correlations and can be applied to ecoacoustic signals with variable

temporal length, only requiring the adjustment of a single parameter (τ).

In addition to these contributions, we detailed the dynamics of the HxC plane, its upper

and lower bounds, the effect of divergence on the spatial characterization of the samples, the

effect of the τ autocorrelation parameter, and also add a curve simulating the colored noises

possibly found in nature. These features allow the differentiation of signals where natural pat-

terns, such as the singing of birds, amphibians, insects or other animals, and environmental

phenomena are combined. Moreover, the low computational complexity of the SVD algorithm

used to obtain the eigenvalues makes the method interesting for contexts with limited hard-

ware resources. Additionally, we provide the source code for experiment replication together

with the figures script at https://bit.ly/EGCI_index, facilitating the reproduction of results and

possible comparisons with other methods.

The usefulness of EGCI was assessed using a real data set from Mamirauá Reserve. In this

remote, hard-to-reach location, biodiversity remains virtually unchanged. Furthermore, the

region is under the influence of the flood cycle of the Amazon river, reaching its maximum

typically in June. The available records are from July (water level is high) and September

(water level is close to the minimum), representing the two characteristic seasons of this region
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well. These recordings allow us to obtain a baseline to compare with acoustic landscapes modi-

fied by human intervention in future studies.

A direct application of EGCI is the characterization of periodic seasons. As shown in the

Mamirauá Reserve case study, seasonal variations of the water level are the most important fac-

tor in determining the presence of different species communities present in flooded areas in

the Amazon. The proposed index proved sensitive enough to capture the soundscape varia-

tions due to the change from flood season to drought. In future investigations, we would like

to expand our data analysis to characterize the acoustic dynamics of other regions and also

perform a more in-depth comparison with all the indices mentioned in the literature review.
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S1 Fig. The relationship between the τ parameter and the HxC plane. The separation

between the upper and lower limits makes it possible to better discern the distribution of

points in the HxC plane. We notice, in S1. Fig, how the spatial distribution of points changes

in relation to τ. The higher the τ, the greater the distance between the lower and upper bound-

aries, allowing new grouping patterns to appear.
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S2 Fig. Radar chart plot of 24h. Radar chart plot using τmax = 512. From left to right the three

information quantifiers used in our methodology. Each chart in S2 Fig shows the quantifier’s

variation over the hours of the day. These charts can be adopted as the fingerprint of the moni-

tored soundscape.

(EPS)

S3 Fig. Hydrological cycle of Mamirauá floodplain. S3 Fig shows the water level phases

according to the months of the year 2016, measured in meters above sea level (MASL or

m.a.s.l.). This data is publicly accessible through the link https://www.mamiraua.org.br/

fluviometrico-na-reserva.

(EPS)

S4 Fig. Rainfall characterization using FFT = 512. Subfigure a) shows the Ha and subfigure

b) shows the ACI from September 2, 2016. The bars quantify the average variation together

with their respective confidence intervals.
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