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Abstract
We investigate oscillations in coupled systems. The methodology is based on the Hopf
bifurcation theorem and a condition extended from the Routh–Hurwitz criterion. Such
a condition leads to locating the bifurcation values of the parameters. With such an
approach, we analyze a single-cell system modeling the minimal genetic negative
feedback loop and the coupled-cell system composed by these single-cell systems.
We study the oscillatory properties for these systems and compare these properties
between the model with Hill-type repression and the one with protein-sequestration-
based repression. As the parameters move from the Hopf bifurcation value for single
cells to the one for coupled cells, we compute the eigenvalues of the linearized systems
to obtain the magnitude of the collective frequency when the periodic solution of the
coupled-cell system is generated. Extending from this information on the parameter
values, we further compute and compare the collective frequency for the coupled-
cell system and the average frequency of the decoupled individual cells. To compare
these scenarios with other biological oscillators, we perform parallel analysis and
computations on a segmentation clock model.

Keywords Biological rhythm · Oscillation · Collective period · Average period ·
Hopf bifurcation

1 Introduction

Biological rhythms play important roles in nature. They include a wide variety of
cyclical behaviors which are crucial in organisms, from development to homeostasis.
The corresponding periodicity ranges from microseconds for cellular oscillations to
seasons or years for recurring movements in ecological systems. Scientists have been
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continuously making concerted efforts to understand the mechanisms of synchrony,
robustness, and sustainability of these oscillations, via mathematical and computa-
tional modeling, and experiments (Fall et al. 2002; Forger and Peskin 2003; Gonze
2011; Winfree 1980).

Inmammals, a biological clock located in the suprachiasmatic nucleus (SCN) drives
remarkably precise circadian rhythm. This master circadian clock is composed of mul-
tiple oscillator neurons that are coordinated through molecular regulation (Antle and
Silver 2005; Bell-Pedersen et al. 2015). While individual cells oscillate with periods
ranging from 20 to 28 hours, the collective rhythm in circadian clock is synchronized
through intercellular coupling mediated by neurotransmitters. Experimental evidence
shows that intercellular signal vasoactive intestinal polypeptide (VIP) expressed by
some of the SCN neurons is such amajor neurotransmitter (Aton et al. 2005). A special
feature of the master circadian clock within the SCN is that the collective frequency
of the synchronized coupled cells is close to the mean of the intrinsic frequencies of
individual cells (Aton et al. 2005; Herzog et al. 2004; Honma et al. 2012; Liu et al.
1997; Taylor 2014).

The above-mentioned intricate biological mechanism involves some interesting
features and evokes two issues in modeling: When a population of oscillatory cells
is coupled, can a collective oscillation be produced? And will a collective oscillation
be generated only under sufficiently large coupling strength? Herein, we consider
that each individual cell oscillates at its own frequency when uncoupled. We call
it a collective oscillation for these cells under coupling if a common frequency of
oscillation is attained for all cells. Such common frequency was termed compromise
frequency in a pair of phase equations in Strogatz (1994). Therein, such a collective
oscillation is generated if the coupling strength is larger than half of the difference
between the two individual frequencies. Herein, for generality, we call such common
frequency of oscillation the collective frequency in the coupled-cell systems. The
second issue is about the closeness between the collective frequency and the mean of
the intrinsic frequencies of individual cells.

Denote byωi the individual frequency of the i th oscillator among the N oscillators,
when isolated. Let us call it the average frequency property if the collective frequency
of the coupled cells is equal to or close to the average frequency ωAve, where

ωAve := 1

N

N∑

i=1

ωi . (1)

We note that average frequency is disparate from average period TAve, and they were
sometimes mixed up in the literature. The average period TAve is given by

TAve := 1

N

N∑

i=1

Ti , (2)
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where Ti := 2π/ωi are the individual periods. For the average frequency ωAve in (1),
the corresponding period is

2π

ωAve
= N/

N∑

i=1

1

Ti

which is not equal to TAve in (2) in general. Certainly, if all ωi are close to each other,
say ωi ≈ ω for all i = 1, . . . , N , then the average frequency and the average period
are about the same thing, as

ωAve ≈ ω, TAve := 1

N

N∑

i=1

Ti ≈ 2π/ω ≈ 2π/ωAve.

A mathematical model which well depicts the average frequency property is the
coupled phase equations:

θ̇i = ωi +
N∑

j=1

K ji f (θ j − θi ), i = 1, 2, . . . , N , (3)

where θi is the oscillatory phase of cell i , ωi is the intrinsic frequency of the i th
cell, K ji ∈ R is the connection weight, f is an interaction function, and N is the
number of cells. System (3) is known as the Kuramoto model (Kuramoto 1984) and
has been studied extensively (Chiba 2015; Ha et al. 2016). As pointed out in Liu et al.
(1997), any phase-locked solution of (3) oscillates at the mean frequency

∑N
i=1 ωi/N ,

provided that f is an odd function and [K ji ] is a symmetric matrix. This can be seen
by adding up all components in (3). However, odd function and symmetric matrix are
quite special among all possible interaction functions and connection matrices.

Phase equations are considered from focusing on the collective behavior in terms
of the phase of oscillation in a collection of clock cells, instead of concentrating on
the internal machinery of cells. However, it is significantly interesting to understand
how oscillations are generated in cells. It has been identified that the intracellular
transcriptional/translational negative feedback loops between activators and repressors
are the key oscillatory mechanism in mammals and other organisms. Therefore, it is
appealing to see whether the kinetic models based on such negative feedback loops
accommodate the average frequency property.

Investigations on the average frequency property in some kinetic models have been
reported in Gonze et al. (2005), Kim (2016), Kim et al. (2014). Recently, in a minimal
genetic system constituted solely by a negative feedback loop, two types of gene
regulation were studied and compared (Kim 2016; Kim et al. 2014). Therein, a single
cell is modeled by

⎧
⎪⎨

⎪⎩

Ṁ = α1 f (R) − β1M

Ṗ = α2M − β2P

Ṙ = α3P − β3R,

(4)
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(a) (b)

Fig. 1 The transcription rate function a f = f1, theHill-function-type repressionwith n = 11, kH = 0.136,
and b f = f2, the protein-sequestration-based repression with A = 0.0659, kd = 0.00001

where M, P, R are interpreted as the concentrations of a clock gene mRNA, the
corresponding protein, and a transcriptional inhibitor, respectively, and the negative
feedback loop is realized by the repression function f . The repression considered
therein is either of Hill-function type or based on protein sequestration. System (4) is
known as the Goodwin model, when the nonlinearity f is a Hill function (Goodwin
1965; Griffith 1968), i.e., f = f1, where

f1(R) := 1

1 + (R/kH)n
, (5)

kH > 0 is the half-saturation constant, and positive integer n is the Hill coefficient.
A graph of f1 is depicted in Fig. 1a. The Goodwin model has been a prototypical
system for accounting the core molecular mechanism associated with generation of
self-sustained oscillations. It has been adopted to study circadian clocks (François
et al. 2012; Ruoff et al. 1999, 2001). Hill functions were largely employed to describe
cooperative binding of repressors to the gene promotor in transcription (Keller 1995) or
repression based on multisite phosphorylation mechanism (Gonze and Abou-Jaoudé
2013). Hill-function-type repression has been widely adopted in various models for
biological rhythms (Invernizzi and Treu 1991; Kim and Forger 2012; Kim 2016;
Kurosawa et al. 2002; Kurosawa and Iwasa 2002, 2005).

Recently, another mechanism of transcriptional repression based on protein seques-
tration has been proposed and adopted into the negative feedback modeling. In such
reaction, repressor protein R binds free activator A into inactive complex. The fraction
of activators that are not sequestered is expressed by

f2(R) := A − R − kd + √
(A − R − kd)2 + 4Akd
2A

, (6)

where kd > 0 is the dissociation constant between the activator and repressor (Buchler
and Louis 2008; Buchler and Cross 2009; Kim 2016; Kim et al. 2014). A graph of f2
is depicted in Fig. 1b. As transcription is in a ratio to this fraction, f2(R) was taken
as f (R) in system (4) to depict the negative feedback loop. It was reported in Kim
and Forger (2012) that tight binding between activators and repressors and balanced
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stoichiometry are the key for sustained rhythms in a detailed mathematical model on
the mammalian circadian clock, and such property is also reflected in the simplified
model, system (4) with f = f2.

Goodwin’s model (system (4) with f = f1) was proposed in Goodwin (1965). It
was proved in Griffith (1968) that the equilibrium is stable for n ≤ 8, by the Routh–
Hurwitz criterion.When n > 8, it was shown that some parameter values can be found
at which the equilibrium is unstable. In Kurosawa et al. Kurosawa et al. 2002, for a
system similar to system (4), with f = f1, it was shown that the equilibrium is stable
for n ≤ 8, by the Routh–Hurwitz criterion, and for n > 8, the equilibrium can be
unstable for some specially chosen parameter values. In Fall et al. (2002), under the
assumption of equal degradation rates, it was justified that the equilibrium is unstable
if n ≥ 8, if the degradation rates are small.We note that the steady state depends on the
parameters, and so at the bifurcation value, the existence of equilibrium needs to be
assured to confirm the occurrence of Hopf bifurcation. This was not addressed in those
works. In Woller et al. (2014), under the assumption of equal degradation rates, the
steady state at which the linearized system has a pair of purely imaginary eigenvalues
was found, where the condition n > 8 is explicitly revealed, yet, the crossing condition
was not mentioned. In fact, n > 8 is both a sufficient and necessary condition for
the simple Hopf bifurcation. Our formulation considers general repression functions
which accommodate both f1 and f2.

Via numerical computations on the coupled-cell system and analyzing the phase
response curve, it was asserted in Kim (2016), Kim et al. (2014) that the average fre-
quency property holds at reasonable parameter values for the system with repression
based on protein sequestration, whereas the collective frequency is far from the mean
if modeled with Hill-type regulation. The mathematical models adopted therein are
coupled-cell system comprising subsystems of the form (4) with f = f1, f2, respec-
tively. It was also reported in Kim (2016), Kim and Forger (2012) that the properties of
such coupled-cell system with protein-sequestration-based repression are consistent
with data from Drosophila and mammals, whereas the properties of such coupled-
cell system with Hill-type repression match well with the experimental data from
Neurospora. It is therefore interesting to perform a further mathematical study to see
and compare the oscillatory properties between the coupled-cell systemmodeled with
f = f1 and the one modeled with f = f2.
Connection between the kinetic models and the phase models has been built in the

so-called weakly coupled oscillators theory, cf. (Ermentrout and Kopell 1984, 1991;
Schwemmer and Lewis 2012). However, such connection requires certain assumptions
and a transparent correspondence between the dynamics of the kinetic models and
its phase equation counterpart remains to be further explored. While weak coupling
is a prerequisite in the theory, sufficiently large coupling strength is needed for the
existence of phase-locked solution in some phase models. Thus, how weak is weak
so that these connection and correspondence are valid appears to be a complicated
issue. Recently, it has been reported that phase-amplitude reduction and higher-order
reduction, instead of merely phase reduction and linear approximation, are necessary
to capture the dynamics in some oscillatory systems, as reviewed in Ermentrout et al.
(2019), Kuramoto and Nakao (2019).
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The goal of our study is to explore the oscillatory properties of coupled-cell sys-
tems modeling biological rhythms. We shall consider the coupled-cell systems which
are composed by the single-cell subsystem (4) with f = f1, f2, respectively. On the
one hand, system (4) models the minimal genetic negative feedback loop in single
cells, and it is essential to investigate oscillations in the coupled-cell system which
comprises subsystems (4). On the other hand, the above-mentioned two issues about
the properties of coupled oscillators and circadian clocks deserve a close analysis. The
other important concern is about the comparison between the dynamics in the model
using Hill-function repression and the one in the model based on protein sequestra-
tion repression. Although the mathematics in the kinetic models is in general rather
involved, as commented in Baker and Schnell (2009), we take on the challenge to
develop efficacious mathematical approaches to analyze the coupled-cell systems to
see the dynamical details. In addition, the comparison between indication from the
kinetic models and the one from the phase models can be made only after the kinetic
models are sufficiently understood.

The first task is to confirm the existence of periodic solutions in the single-cell sys-
tems and the coupled-cell systems. Our methodology is based on the Hopf bifurcation
theory (Hassard et al. 1981) and a sufficient-and-necessary condition for the simple
Hopf bifurcation derived in Liu (1994), which was an extension of the Routh–Hurwitz
criterion. As the parameter values vary, we seek for the situation that the determinant
Dm−1 of the second-to-last Hurwitz matrix Hm−1 decreases from positive to zero, for
a polynomial of degree m. A pair of complex-conjugate eigenvalues then cross the
imaginary axis of the complex plane. This tracing allows to locate the Hopf bifurcation
(HB) values.

The criterion in Liu (1994) for detecting Hopf bifurcation has been applied in sev-
eral works on mathematical biology. For instance, for models on immune responses
to persistent viruses, some ODE systems up to five dimension were considered in Liu
(1997). In Domijan and Kirkilionis (2009), bistability and oscillations in chemical
reaction networks were reported and the criterion was applied to a four-dimensional
system of ODEs. In a study on extracellular signal-regulated kinase (Obatake et al.
2019), a polynomial of degree seven was tested to meet the criterion. In those appli-
cations, a common predicament is that the linearized system depends on the values of
steady states and parameters. Therefore, the basic task is to seek for suitable parameter
values, and hence, the steady-state value so that the associated characteristic polyno-
mial meets the criterion. To this end, Newton polytope and symbolic computation
using MAPLE programming were employed for such verification in Obatake et al.
(2019) and Liu (1994), respectively. On the other hand, numerical bifurcation soft-
ware, such as AUTO, is also able to locate the HB values and draw the HB curves in
the parameter space.

Even with the approach by numerical computation, the condition Dm−1 = 0 is also
helpful for detecting and confirming the HB values. In this work, we will see from
this condition that the Hopf bifurcation does not occur at those parameter values and
steady states where f ′(x̄) is too small (x̄ is one of the component of the steady state).
In addition, the HB value for the single-cell system is larger than the HB value for
the coupled-cell system, in the identical-cell case. More information about the Hopf

123



Collective Oscillations in Coupled-Cell Systems Page 7 of 60 62

bifurcation and the frequency of bifurcating periodic solution can also be observed
from this condition.

While most of the literature about the application of Hopf bifurcation, including
the above-mentioned ones, is only concerned with existence of periodic solutions, the
Hopf bifurcation theory actually implicates more. It provides a foundation for our
concern about the properties for the frequencies of oscillations. At the HB value, the
magnitude of the purely imaginary eigenvalue gives the frequency of the emergent
periodic solution. As this purely imaginary eigenvalue is a root of the characteristic
polynomial, for the identical-cell case, we can link the frequency of oscillation to the
parameters and steady states, at the HB values. It is interesting to observe that for
the single-cell systems, the repression function f does not play a role in the size of
frequency at the HB value. In contrast, γ := − f ′(x̄) is a factor to the frequency at the
HB value in the coupled-cell systems, and thus, the modeling with f = f1 or f = f2
is distinguishable in this respect.

The paper is organized as follows. In Sect. 2, we introduce the Hopf bifurcation
theory and the degenerate Routh–Hurwitz criterion to study the existence and stability
of periodic solutions.We apply these theories to obtain periodic solutions in the single-
cell system (4) with f = f1 and f2, respectively, in Sect. 3. In Sect. 4, we discuss the
collective frequency of periodic solutions for the coupled-cell system and compare it
with the average of individual frequencies. In addition, wemake a comparison between
the system with Hill-function repression and the one with protein-sequestration-based
repression. To compare with other biological oscillators, in Sect. 5, we conduct similar
analysis on a segmentation clockmodel andmake a comparisonbetween these different
types of biological oscillators. Some justifications and computations are arranged in
Appendices and Supplementary Materials.

2 Hopf Bifurcation and Degenerate Routh–Hurwitz Criterion

In this section, we review the Hopf bifurcation theory and an extension of the Routh–
Hurwitz criterion, which are to be applied to investigate the stable periodic solutions
and their periods for the single-cell systems and the coupled-cell systems. Hopf bifur-
cation theory not only confirms the existence of periodic solution, but also indicates
that at the Hopf bifurcation value, the purely imaginary eigenvalue of the linearized
systemprovides the frequencyof the bifurcating periodic solution. TheRouth–Hurwitz
criterion characterizes a polynomial whose roots all have negative real parts. We shall
apply a degeneracy of this criterion, established in Liu (1994), that provides a condition
for the Hopf bifurcation.

Let us consider an autonomous system of ODEs

ẋ = F(x;p), (7)

where x = (x1, . . . , xm) ∈ R
m , F = (F1, . . . , Fm), and p ∈ R

k are parameters. Let x̄
be an equilibrium of system (7) with a fixed p. Denote the Jacobian matrix associated

with the linearization of system (7) at x̄ by J (x̄) :=
(

∂Fi
∂x j

(x̄,p)
)

m×m
. Its characteristic
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polynomial is

Δ(λ) := det(λI − J (x̄))

= λm + b1λ
m−1 + b2λ

m−2 + · · · + bm−2λ
2 + bm−1λ + bm . (8)

The Hurwitz matrices associated with polynomial Δ(λ) are defined as

H1 = [b1] , H2 =
[
b1 b3
1 b2

]
, H3 =

⎡

⎣
b1 b3 b5
1 b2 b4
0 b1 b3

⎤

⎦ , · · · ,

Hm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b3 b5 · · · · · · b2m−3 b2m−1

1 b2 b4
...

...

0 b1 b3
...

...

0 1 b2
. . .

...
...

...
...

...
. . .

...
...

...
...

... bm−1 0
0 0 0 · · · · · · bm−2 bm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

The Routh–Hurwitz criterion indicates that all roots of (8) have negative real parts
if and only if Di := det(Hi ) > 0, i = 1, 2, . . . ,m, cf. (Gantmacher 1959; Hurwitz
1895; Kemperman 1982). Note that Dm = bm · Dm−1, and so the Routh–Hurwitz
criterion can also be expressed by Di > 0, i = 1, 2, . . . ,m − 1, with bm > 0.

The following lemma completely characterizes a polynomial which has a pair of
purely imaginary roots and negative real parts for all the remaining roots. It can be
regarded as a degeneracy of the Routh–Hurwitz criterion.

Lemma 1 Δ(λ) has a pair of purely imaginary roots, and all other roots have negative
real parts if and only if

bm > 0, Di > 0, i = 1, 2, . . . ,m − 2, and Dm−1 = 0.

We note that the Routh–Hurwitz criterion has also been formulated as positive
determinants of a sequence of matrices different from (9), see (Uspensky 1948). With
Di defined as the determinants of such sequence of matrices, this lemma was proved
in Liu (1994). By similar arguments, it can be justified that Lemma 1 holds true if we
adopt Di , the determinant of Hurwitz matrices Hi defined in (9).

To apply the Hopf bifurcation theorem, one first needs to find the parameter values
at which a complex-conjugate pair of eigenvalues of J (x̄) cross the imaginary axis
of the complex plane transversally and the real parts of the other eigenvalues remain
negative. In a system modeling a biological process, there are usually a number of
parameters. We choose one of the parameters as the bifurcation parameter, denoted by
α in the following discussions, and fix the other parameters at suitable values. By doing
so, we regard the equilibrium x̄ as a function of α, i.e., x̄ = x̄(α). The Jacobian matrix
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associated with the linearization of (7) at x̄(α) then depends on α, i.e., J (x̄(α);α)

and is abbreviated as J (x̄;α). The following Hopf bifurcation theorem was stated in
Liu (1994), where instead of computing the eigenvalues of J (x̄;α), one only needs to
compute the determinants of the Hurwitz matrices.

Theorem 1 Consider system (7) whose equilibrium x̄ = x̄(α) is a function of α for
α near certain α∗, when the other parameters are fixed. Assume that at α = α∗, the
following conditions hold

bm(α∗) > 0, Di (α
∗) > 0, i = 1, 2, . . . ,m − 2, Dm−1(α

∗) = 0,
d

dα
[Dm−1(α)]|α=α∗ �= 0.

Then, the system undergoes a Hopf bifurcation at x = x̄(α∗), and a small-amplitude
periodic solution surrounding x̄ emerges as α < α∗ or α > α∗ and α is close to α∗.

The scenario in Theorem 1 was called simple Hopf bifurcation in Liu (1994), as
there are more complicated Hopf bifurcations, see (Golubitsky and Schaeffer 1985).
The value α∗ in Theorem 1 is called Hopf bifurcation (HB) value. The advantage of
Theorem 1 is that its conditions are transparent and computable, and the existence of
periodic solutions is guaranteed. When m = 3, 4, the conditions of the theorem can
be clearly expressed by

m = 3 : b1(α
∗) > 0, b3(α

∗) > 0, b1(α
∗)b2(α∗) − b3(α

∗) = 0, (10)
d

dα
[b1(α)b2(α) − b3(α)]|α=α∗ �= 0, (11)

m = 4 : b1(α
∗) > 0, b3(α

∗) > 0, b4(α
∗) > 0,

b1(α
∗)b2(α∗)b3(α∗) − b23(α

∗) − b21(α
∗)b4(α∗) = 0, (12)

d

dα
[b1(α)b2(α)b3(α) − b23(α) − b21(α)b4(α)]|α=α∗ �= 0. (13)

To apply the Hopf bifurcation theory to the ODE systems, we look for values of α∗
and values of the other parameters, which satisfy the conditions of Theorem 1. This
process relies on some mathematical formulations and numerical computations.

Hopf bifurcation theory actually provides more information, including the stability
and period of the bifurcating periodic solution. The period (frequency) is especially
the focus of the present investigation. Stability of the bifurcating periodic solutions is
determined by some higher-order terms of the system. One first transforms the system
into normal form and then applies the center manifold theorem to obtain these terms.
While this formulation is standard, its computation is cumbersome for large m. We
summarize this process in Supplementary Material I, where the terms g20, g11, g02,
and g21, and hence C1(α

∗), p2, ζ2, and T2 are introduced. Let λ(α) be the branch of
eigenvalue crossing the imaginary axis at α = α∗, and λ(α∗) = iω∗, with ω∗ > 0.
The following Hopf bifurcation theorem can be found in Hassard et al. (1981).
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Theorem 2 Under the conditions of Theorem 1, the periods of the bifurcating periodic
solutions of system (7) are

T = 2π

ω∗ (1 + T2ε
2 + O(ε4)),

where

ε2 = α − α∗

p2
+ O((α − α∗)2).

Furthermore,

(i) the Hopf bifurcation is supercritical (resp., subcritical) and the periodic solution
exists for α > α∗ (resp., α < α∗) with α near α∗, provided p2 > 0 (resp., p2 < 0);

(ii) the periodic solution is stable (resp., unstable), provided ζ2 < 0 (resp., ζ2 > 0);
(iii) the period T increases (resp., decreases) as α increases, provided T2 > 0 (resp.,

T2 < 0) and p2 > 0, and decreases (resp., increases) as α decreases, provided
T2 < 0 (resp., T2 > 0) and p2 < 0.

We note that numerical bifurcation software such as AUTO can also detect the Hopf
bifurcation and draw the HB curve which comprises the HB values in the parameter
space. However, the condition in Theorem 1 allows us to analyze howHopf bifurcation
occurs and locate and confirm the HB values via numerical computations. In addition,
from Theorem 2, the frequency of the bifurcating periodic solution is given by the
magnitude of the purely imaginary eigenvalue which is the root of the characteristic
polynomial. One can thus link the frequency to the parameters and the HB values.

3 Single-Cell HTModel and PSModel

In this section, we consider system (4), abbreviated as HT model for f = f1, the
Hill-type repression, and as PS model for f = f2, the protein-sequestration-based
repression. We shall apply Theorem 1 in Sect. 2 to locate the parameter values at
which the Hopf bifurcation takes place in system (4). Near these bifurcation values,
Theorem 2 provides the approximate periods for the bifurcating stable periodic solu-
tions.

By assuming that the degradation rates are equal

β := β1 = β2 = β3, (14)

and scaling the variables and time

y1 := βM/α1, y2 := β2P/(α1α2), y3 := β3R/(α1α2α3), τ = βt,
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Equation (4) can be transformed into a non-dimensional system:

⎧
⎪⎨

⎪⎩

ẏ1 = f (y3) − y1
ẏ2 = y1 − y2
ẏ3 = y2 − y3,

(15)

where ẏ1, ẏ2, ẏ3 are derivatives with respect to τ , and

f (y3) = f1(y3) = 1

1 + (y3/k̃H )n
,

or f (y3) = f2(y3) = Ã − y3 − k̃d +
√

( Ã − y3 − k̃d)2 + 4 Ãk̃d

2 Ã
,

k̃d := β3

α1α2α3
kd , Ã := β3

α1α2α3
A, k̃H := β3

α1α2α3
kH.

Herein, we retain the same notations f1, f2, since they have the same forms as (5)
and (6). System of equations in form (15) has been studied in Kim (2016), Kim et al.
(2014) through numerical simulations.

To analyze oscillatory properties for these models via Hopf bifurcation, herein, we
consider another change of variables. Under the same assumption (14), we set

x1 = (α2α3/β
2)M, x2 = (α3/β)P, x3 = R, τ = βt .

Then, system (4) can be transformed into

⎧
⎪⎨

⎪⎩

ẋ1 = α f (x3) − x1
ẋ2 = x1 − x2
ẋ3 = x2 − x3,

(16)

where α := α1α2α3/β
3 is to serve as the bifurcation parameter.

We call system (16) with f = f1 the single-cell HT model. In this system, the ratio
of ratesα, theHill coefficient n, and dissociation constant kH between the repressor and
gene promoter determine the dynamics. We call system (16) with f = f2 the single-
cell PS model, where the rate ratio α, activator concentration A, and dissociation
constant kd between the activator and repressor, determine the dynamics. On the one
hand, system (16) with α = 1 reduces to system (15). On the other hand, dynamical
properties of system (16) certainly correspond to the kinetics in system (4). System in
the form (16) with f = f1 has also been studied in Woller et al. (2014). We now take
α as the bifurcation parameter and apply Theorems 1 and 2 to investigate the periodic
solutions of system (16).

Note that x̄ = (x̄1, x̄2, x̄3) is a positive equilibrium of system (16) if and only if
x̄1 = x̄2 = x̄3 = x̄ > 0, and

α f (x̄) = x̄ . (17)
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Such x̄ uniquely exists for f = f1 or f = f2:

Proposition 1 There exists a unique positive equilibrium x̄ = (x̄, x̄, x̄) for system (16)
with f = f1, for any n ≥ 1, kH, α > 0, and for system (16) with f = f2, for any A,
kd , α > 0, where x̄ is the unique positive solution to α f1(x̄) = x̄ , and α f2(x̄) = x̄ ,
respectively. Moreover, for any fixed n ≥ 1, kH > 0, or fixed A, kd > 0, x̄ is an
increasing function of α.

Proof It is obvious that (x̄1, x̄2, x̄3) is an equilibrium for system (16) if and only if
x̄1 = x̄2 = x̄3 = x̄ and x̄ satisfies α f (x̄) = x̄ . For f = f1, this reads as

α

1 + (x̄/kH)n
= x̄, (18)

i.e., x̄ satisfies q(ξ) = αknH, where q(ξ) := ξn+1 + knHξ . For any n ≥ 1, kH, α > 0,
there exists exactly one positive solution to this equation, due to that q is strictly
increasing on [0,∞), q(ξ) → ∞ as ξ → ∞, and q(0) = 0 < αknH. We also see that
x̄ is a function of α, as q is strictly increasing.

For f = f2,we see that f2(ξ) > 0 for all ξ ≥ 0, f2(0) > 0, limξ→∞ f2(ξ) = 0, and
f ′
2(ξ) < 0 for all ξ > 0. Thus, there exists exactly one positive solution toα f2(x̄) = x̄ .

As ξ/ f2(ξ) is strictly increasing and has an inverse, x̄ is thus an increasing function
of α. ��

Denote x̄ = x̄(α) to indicate the dependence on α. We note that from (17), α can
be expressed as a function of x̄ , i.e., α = x̄/ f (x̄). This is the inverse expression of
x̄(α). We shall analyze the periodic solutions bifurcating from x̄. The Jacobian matrix
associated with the linearization of system (16) at x̄ is

J (x̄;α) =
⎡

⎣
− 1 0 −αγ

1 −1 0
0 1 −1

⎤

⎦ ,

where γ := − f ′(x̄). The characteristic polynomial Δ(λ) := det(λI − J (x̄;α)) is

Δ(λ) = λ3 + 3λ2 + 3λ + (αγ + 1). (19)

One can factorize this cubic polynomial and find all its roots. Certainly, we can also
apply Theorem 1. From (10), we see that Δ(λ) has a pair of purely imaginary roots
and a negative root if and only if

α = α0 := 8/γ. (20)

Notice that γ depends on x̄ which is a function of α. Hence, whether the Hopf bifur-
cation takes place is determined by the existence of solution x̄ to

α = − 8

f ′(x̄)
= x̄

f (x̄)
. (21)
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If such x̄ exists, then the Hopf bifurcation occurs at equilibrium (x̄, x̄, x̄) and α =
α0 = −8/ f ′(x̄). Let us elaborate to confirm such existence for f = f1 and f = f2,
respectively. Since γ will play an important role in the analysis, we denote γ1 :=
− f ′

1(x̄) and γ2 := − f ′
2(x̄).

For f = f1,

γ1 = − f ′
1(x̄) = knHnx̄

n−1

(knH + x̄n)2
. (22)

At α = α0 = 8/γ1, solving (21) with f = f1, we obtain

x̄ = kH

(
8

n − 8

) 1
n

, n > 8. (23)

That is, for given kH > 0, n > 8, we set x̄ as (23). Then, with α = α0 = 8/γ1 and γ1
computed from (22), equality (18) holds, and hence x̄ = (x̄, x̄, x̄) is an equilibrium
of system (16) with f = f1.

For f = f2,

γ2 = − f ′
2(x̄) = A − x̄ − kd + √

(A − x̄ − kd)2 + 4Akd

2A
√

(A − x̄ − kd)2 + 4Akd
. (24)

At α = α0 = 8/γ2, we solve (21) with f = f2, and obtain

x̄ = 64

63
(A − kd) ± 8

63

√
(A − kd)2 − 252Akd ,

where the square root is nonnegative provided

A ≥ (127 + 48
√
7)kd or A ≤ (127 − 48

√
7)kd .

Herein, we consider

A > (127 + 48
√
7)kd (25)

and choose

x̄ = 64

63
(A − kd) − 8

63

√
(A − kd)2 − 252Akd (26)

so that x̄ is positive and the corresponding α0 = 8/γ2 = −8/ f ′
2(x̄) is not large.

Denote γ (α) = γ (x̄(α)). For crossing condition (11), we have
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d

dα
[b1(α)b2(α) − b3(α)]|α=α0 = d

dα
[8 − αγ ]|α=α0

=
[
−γ − α · dγ

dα

]
|α=α0 , (27)

where γ = γ1 if f = f1, and γ = γ2 if f = f2. Note that γ = − f ′(x̄) is always
positive for any smooth and strictly decreasing function f , including f1 and f2. We
confirm γ1+α ·dγ1/dα �= 0 provided n > 8, and γ2+α ·dγ2/dα �= 0 for all A �= A∗,
under condition (25), at α = α0, in Appendix A, where A∗ is defined. That is, n > 8 is
both a sufficient and a necessary condition for the simple Hopf bifurcation of system
(16) with f = f1.

According to Theorem 1, system (16) undergoes a Hopf bifurcation at x = x̄(α0)

and α = α0, and a small-amplitude periodic solution near x̄ emerges as α < α0 or
α > α0 and α is close to α0. Notice that at α = α0 = 8/γ ,

J (x̄;α0) =
⎡

⎣
− 1 0 −8
1 −1 0
0 1 −1

⎤

⎦ , (28)

a constant matrix. The eigenvalues of this matrix are λ1,2 = ±√
3i, λ3 = −3. There-

fore, the bifurcating periodic solution has frequency near ω0 = √
3, for α close to

α0, for either f = f1 or f = f2, by Theorem 2. We emphasize that for any repres-
sion function f in system (16), when the simple Hopf bifurcation takes place, the
bifurcating periodic solution always has frequency about

√
3. Let us summarize:

Theorem 3 Assume that n > 8 if f = f1, and (25) holds and A �= A∗ if f = f2.
System (16) undergoes a Hopf bifurcation at α = α0 = 8/γ , where γ = − f ′(x̄), and
a small-amplitude periodic solution near x̄ = x̄(α0) emerges as α < α0 or α > α0
and α is close to α0, with frequency about ω0 = √

3.

Remark 1 (i) If we multiply each component in system (16) by a factor σ , or change
the time from t to t/σ , then the eigenvalues of the linearized system at x̄ become
λ1,2 = ±i

√
3σ, λ3 = −3σ . The system still undergoes a Hopf bifurcation at

α = α0 and x = x̄, and the frequency of the bifurcating periodic solution is near
σ
√
3. This property will be used in Sect. 4.2 for a cell-to-cell system which has

two different individual frequencies.
(ii) For the general situation of degradation rates, i.e., when assumption (14) does

not hold, assertions similar to the ones in Theorem 3 still hold. In particular, the
frequency ω0 at the HB value is a combination of the degradation rates (no longer√
3), but still does not depend on γ , and hence does not differentiate the form of

repression function f . In addition, for f = f1, n will be required to be much
larger than 8, if the difference among β1, β2, β3 is large. This was mentioned in
(Fall et al. 2002) and is shown precisely in Shih and Yang (2021).

The following examples illustrate Theorems 2 and 3. The parameter values consid-
ered here are mostly taken from Kim et al. (2014).
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Example 3.1 Consider system (16) with f = f1 and parameter values n = 11 and
kH = 0.136. The graph of f1 is depicted in Fig. 1a. According to Theorem 3, as n > 8,
the Hopf bifurcation occurs at x̄ = (x̄, x̄, x̄), where x̄ ≈ 0.148684, computed from
(23). Next, we compute to find γ1 ≈ 14.674227 from (22). Accordingly, a small-
amplitude periodic solution emerges as the value of α increases through α0 = 8/γ1 ≈
0.545174, with frequency about

√
3 ≈ 1.732051. Furthermore, we compute to find

that p2 > 0, ζ2 < 0, T2 > 0. The numerics are shown in Supplementary Material I.
According to Theorem 2, system (16) with f = f1 undergoes a supercritical Hopf
bifurcation at α = α0 and x̄ = (x̄, x̄, x̄). The bifurcating periodic solution is stable and
the period increases as α increases.We numerically solve system (16) and compute the
frequencies and amplitudes of the periodic solutions corresponding to various values
of μ := α − α0, plotted in Fig. 2. It can be seen that as μ increases from 0, the
frequency decreases from about

√
3 (i.e., the period is increasing), which is consistent

with the assertion of Theorem 2.

Next, we adopt the parameter values in Kim et al. (2014) and illustrate that the
numerically computed oscillations therein appear to be a continuation of the periodic
solutions generated by the Hopf bifurcation.

Example 3.2 Consider system (16) with f = f2, with parameter values A = 0.0659
and kd = 0.00001. The graph of f2 is depicted in Fig. 1b. As condition (25) in
Theorem 3 is met, the Hopf bifurcation occurs at x̄ = (x̄, x̄, x̄), with x̄ ≈ 0.058730
computed from (26). We compute to find γ1 ≈ 14.986634 from (24), and thus α0 =
8/γ1 ≈ 0.533809. Therefore, a small-amplitude periodic solution emerges, as the
value of α passes through α0, with frequency about

√
3. Furthermore, we compute

to find that p2 > 0, ζ2 < 0, T2 > 0. The numerics are revealed in Supplementary
Material I.According toTheorem2, system (16)with f = f2 undergoes a supercritical
Hopf bifurcation at α = α0 and x̄ = (x̄, x̄, x̄). The bifurcating periodic solution
is stable and the period increases as α increases. The frequencies and amplitudes
corresponding to various values of μ := α − α0 are plotted in Fig. 3. When α = 1
(μ = 0.466191), system (16) becomes (15), and the parameter values herein are
exactly the ones adopted in Kim et al. (2014). The system with such parameter values
generates an oscillation with frequency about 1.664346.

A comparison and summary Let us summarize the above discussions, and make
a comparison between the single-cell HT model and PS model. For either f = f1 or
f = f2, system (16) has a unique equilibrium x̄ = (x̄, x̄, x̄). For each set of parameters
with n > 8 for the case f = f1, or satisfying (25) for the case f = f2, the Hopf
bifurcation occurs at (α0, x̄). The Jacobian matrix associated with the linearization of
system (16) at x̄ with α = α0 is a constant matrix. Restated, it is always this matrix
whenever the Hopf bifurcation takes place in system (16), with f = f1 or f2, or other
smooth decreasing functions. Subsequently, the frequency of the bifurcating periodic
solution near the bifurcation point is about

√
3.Asα increases, the frequency decreases

and the amplitude increases in bothmodels, but the slopes are slightly different between
these two models. The frequency drops faster in the single-cell PS model, whereas the
amplitude increases faster in the single-cell HT model, see Figs. 2 and 3.

The parameters in Hill-function repression are different from the ones in protein-
sequestration-based repression. So how would one choose parameter values in each
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(a) (b)

Fig. 2 a Frequencies and b amplitudes of oscillations corresponding to various values of μ, where μ :=
α − α0, α0 ≈ 0.545174, for the single-cell HT model in Example 3.1

(a) (b)

Fig. 3 a Frequencies and b amplitudes of oscillations corresponding to various values of μ, where μ :=
α − α0, α0 ≈ 0.533809, for the single-cell PS model in Example 3.2

of these two models to make comparison? In Examples 3.1, 3.2, we have chosen the
parameter values n = 11, kH = 0.136 in the single-cell HT model and A = 0.0659,
kd = 0.00001 in the single-cell PS model. At α = 0.60139, the oscillatory wave form
in system (16) with f = f1 is pretty close to the one with f = f2, as demonstrated
in Fig. 4. This is a consequence of Theorem 3.

Remark 2 Recall that system (15) is identical to system (16) with α = 1. In Kim
et al. (2014), system (15) was considered with n = 11, kH = 0.04 in the HT model
and A = 0.0659, kd = 0.00001 in the PS model. While the amplitudes in the two
models with these parameter values are close to each other, our computation shows
that the period for the single-cell HT model is 3.9302912, whereas the period for the
single-cell PS model is 3.7751695. Therefore, we take kH = 0.136 in the HT model
in Example 3.1, and we can tune α so that the oscillatory wave forms in these two
models are similar at α = 0.60139.

123



Collective Oscillations in Coupled-Cell Systems Page 17 of 60 62

Fig. 4 Components x1, x2, and x3 of the solutions of system (16) with f1 in Example 3.1 (red), evolved
from (0.1, 0.1, 0.1), and f2 in Examples 3.2 (blue), evolved from (0.295, 0.295, 0.295), with α = 0.60139.
The periods are 3.6367989020 and 3.6367987711 for the HT model and the PS model, respectively (Color
figure online)

4 Coupled-Cell HTModel and PSModel

The synchronous or coherent rhythmicity for a collection of clock neurons is mediated
by the neurotransmitters. It has been identified that vasoactive intestinal polypeptide
(VIP) is the key synchronizing agent in several experiments (Aton et al. 2005; To
et al. 2007). The collective period of oscillation is generated through intercellular
coupling which is determined by the concentrations of neurotransmitters in extra-
cellular medium. Modeling with such intercellular signaling via VIP, the following
coupled-cell system has been considered in Kim et al. (2014) to investigate the average
frequency property:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṁi = f (Ri ) − Mi + c

N

N∑

j=1

Vj

Ṗi = Mi − Pi

Ṙi = Pi − Ri

V̇i = s[ f (Ri ) − Vi ],

(29)

where i = 1, 2, . . . , N , and parameters c and s are the coupling strength and the
timescale of intercellular coupling, respectively. In this model, each cell releases VIP
into the extracellular space at a rate proportional to the activity of the promoter f (R).
The fourth component of the system indicates the release of V (VIP) by each cell into
the extracellular space at a rate proportional to f (R) which describes the activity of
the promoter. Note that the experimental data indicate that the intercellular coupling
strength occurs much faster, compared to the intracellular feedback loop (An et al.
2011). This model is also based on the fact that the release of VIP is fast with respect
to the 24 hours timescale, and thus themean field expression (

∑N
j=1 Vj )/N is adopted.

When c = 0, the cells are decoupled, andwe consider the parameter values at which
each cell oscillates at the same frequency, as these N subsystems are identical. As c
increases from 0, the cells become coupled. However, whether a collective periodic
solution of the coupled system is then generated requires a justification.
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In this section, we consider the coupled-cell HT model ( f = f1) and the coupled-
cell PS model ( f = f2). We apply Theorem 1 to confirm the existence of periodic
solution for these coupled-cell systems. We shall investigate how coupling strength
affects the collective oscillations, and whether and how average frequency property
holds in these two coupled systems. Referring to the frequency of periodic solution
indicated in Theorem 2, we trace the eigenvalues of the linearized systems from the
HB value for the single-cell subsystems (c = 0) to the HB value for the coupled-cell
system, and see which eigenvalue branch reaches the imaginary axis of the complex
plane. Also, we compare the variations of collective frequency in these two models
as the coupling strength c increases. In Sect. 4.1, we discuss the coupled system
comprising two identical cells. This analysis is also valid for the coupled system
comprising N identical cells, i.e., system (29). The coupled system comprising two
nonidentical cells will be addressed in Sect. 4.2.

We note that synchronization in amore complicatedmodelwithMichaelian kinetics
for the degradations and coupling through the mean field, has been reported in Gonze
et al. (2005).

4.1 Identical Cells

In this section, we consider coupled system (29) which consists of two identical cells,
expressed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = α f (x3) − x1 + c

2
[x4 + y4]

ẋ2 = x1 − x2
ẋ3 = x2 − x3
ẋ4 = s[ f (x3) − x4]
ẏ1 = α f (y3) − y1 + c

2
[y4 + x4]

ẏ2 = y1 − y2
ẏ3 = y2 − y3
ẏ4 = s[ f (y3) − y4],

(30)

where parameter c > 0 represents the coupling strength and s > 0 is the timescale
of intercellular coupling. The discussion herein is also valid for system (29) which
comprises N identical cells, as remarked below. Denote x = (x1, x2, x3, x4), y =
(y1, y2, y3, y4), and X = (x, y). The following proposition about the equilibrium is
straightforward.

Proposition 2 For each set of parameter values, system (30) has a unique equilibrium
X which is homogeneous, i.e., X = (x̄, x̄), x̄ = (x̄1, x̄2, x̄3, x̄4). For f = f1,

x̄1 = x̄2 = x̄3 = x̄, x̄4 = 1/

[
1 +

(
x̄

kH

)n]
,
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and x̄ is the unique positive solution to (α + c) f1(x̄) = x̄ ; for f = f2,

x̄1 = x̄2 = x̄3 = x̄, x̄4 = [A − x̄ − kd +
√

(A − x̄ − kd)2 + 4Akd ]/2A,

and x̄ is the unique positive solution to (α + c) f2(x̄) = x̄ . Moreover, for any fixed
n ≥ 1, kH > 0, or fixed A, kd > 0, and c > 0, x̄ is a function of α.

We show that system (30) has only homogeneous equilibrium X = (x̄, x̄) in
Appendix B(I). Now we take α as the bifurcation parameter, while holding all other
parameters fixed at suitable values, and apply Theorem 1 to confirm the existence of
periodic solution bifurcating from X. The Jacobian matrix associated with the lin-
earization of system (30) at X is

J (X;α) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 0 −αγ
c

2
0 0 0

c

2
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 −sγ −s 0 0 0 0

0 0 0
c

2
−1 0 −αγ

c

2
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 −sγ −s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where γ := − f ′(x̄) > 0. The characteristic polynomial Δ(λ) := det(λI − J (X;α))

can be factored as

Δ(λ) = Δ+(λ) · Δ−(λ), (31)

where

Δ±(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ + b±
4

b1 := s + 3, b2 := 3(s + 1), b3 := αγ + 3s + 1

b−
4 := s(αγ + 1), b+

4 := b−
4 + csγ.

This factorization can be made since system (30) consists of two identical subsystems
and the synchronous set {x1 = y1, x2 = y2, x3 = y3, x4 = y4} is invariant, see
Remark 5. Note that b1 > 0, b3 > 0, and b+

4 > b−
4 > 0. Considering (12) for Δ+(λ)

and Δ−(λ), respectively, we see that D+
3 (α) < D−

3 (α), where

D±
3 (α) := b1(α)b2(α)b3(α) − b23(α) − b21(α)b±

4 (α).

That is, if D−
3 (α∗) = 0 for some α∗ > 0, then D+

3 (α∗) < 0, and thus the simple Hopf
bifurcation does not occur from D−

3 (α∗) = 0. Accordingly, Δ(λ) has a pair of purely
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imaginary roots and six roots with negative real parts if and only if D+
3 (α∗) = 0, by

Lemma 1. From this equality, we find

α∗ = 1

2γ

[
−(s − 1)(s2 + 4s + 7) ± (s + 3)

√
(s2 + 3)2 − 4scγ

]
, (32)

where the square root is positive if and only if

γ <
(s2 + 3)2

4sc
. (33)

Herein, we only consider the case s > 1, and hence only the “+” one in (32). Then,
α∗ > 0 provided

γ <
8(s + 1)3

cs(s + 3)2
. (34)

Note that s > 1 implies

(s2 + 3)2

4sc
>

8(s + 1)3

cs(s + 3)2
.

Thus, (34) implies (33), provided s > 1. The case 0 < s ≤ 1 can also be discussed.
For crossing condition in (13), we consider

d

dα
[b1(α)b2(α)b3(α) − b23(α) − b21(α)b+

4 (α)] (35)

= −[αγ ′(α) + γ (α)][(s − 1)(s2 + 4s + 7) + 2αγ (α)] − csγ ′(α)(s + 3)2

at α = α∗. When c = 0, (35) becomes

− (s + 3)(s2 + 3)[8γ ′(α0) + γ 2(α0)]
γ (α0)

,

where α0 = 8/γ (α0), which is (s + 3)(s2 + 3) multiplied to the term for determining
the crossing condition in the decoupled single-cell case (27), discussed in Sect. 3,
see Appendix A. Hence, by continuity, (35) is nonzero for small coupling strength c,
under the condition in Theorem 3.

We confirm the existence of homogeneous equilibriumX = (x̄, x̄) at the bifurcation
value α = α∗ for system (30) with sufficiently small coupling strength c in Appendix
B(II). By substituting α∗ in (32) into the fourth-degree polynomial Δ+(λ), we can
actually find its purely imaginary roots ±iω∗

c .

Theorem 4 Consider s > 1 and assume that the equilibrium X = (x̄, x̄) exists at
α = α∗ defined in (32), and that (34) and the crossing condition hold. System (30)
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undergoes a Hopf bifurcation at α∗ and a small-amplitude periodic solution near X
emerges as α < α∗ or α > α∗ and α is close to α∗, with frequency ωc about

ω∗
c :=

√
1

2

[√
(s2 + 3)2 − 4scγ − (s2 − 3)

]
,

where γ = γ1 := − f ′
1(x̄) if f = f1, and γ = γ2 := − f ′

2(x̄) if f = f2.

Notably, it can be shown that α∗ > 0 if and only if ω∗
c > 0. Certainly, the collective

period of the bifurcating periodic solution is near T ∗
c = 2π/ω∗

c . We will provide
further observation from the assertion of this theorem below.

Implementation and Computation First, we fix the parameter values of n and
kH in the HT model, and A and kd in the PS model. For fixed values of c and s, we
substitute γ = − f ′(x̄) into (32), and express α∗ in terms of x̄ . Then we substitute
α = α∗ into (α + c) f (x̄) = x̄ to solve for x̄ , and then obtain the equilibrium, as
indicated in Proposition 2. Next, we substitute x̄ into γ , and then compute α∗ in (32)
to confirm that it is positive or check condition (34). Note that for the PS model, there
are two values of x̄ and we choose the smaller one to have smaller value of α∗. By
examining the crossing condition, we confirm that the assertion of Theorem 4 holds.
We denote such c by c∗ and still call (c∗, α∗) a HB value. These HB values (c∗, α∗)
form the Hopf bifurcation curve in the (c, α)-plane.

According to Theorem 4, a small-amplitude periodic solution emerges, at α > α∗
or α < α∗ and α close to α∗, with frequency ωc about ω∗

c . We are interested in seeing
how the collective frequency ωc of oscillation varies with the coupling strength c
and parameter α in system (30). Let us pick one of the HB values and denote it by
P1 = P1(c∗, α∗). Recall that the Hopf bifurcation occurs at α = α0 in the single-cell
systems.

Variations of eigenvalues At (c, α) = P0(0, α0), there are two pairs of purely
imaginary eigenvalues for the linearized system at X(α0). For the identical-cell case,
system (30), these two pairs coincide. It is interesting to see how the two complex-
conjugate branches emanating from these two pairs move in complex plane C, and
which of them reaches the imaginary axis again at P1(c∗, α∗). As the magnitudes
of the purely imaginary eigenvalues correspond to the frequencies of the individual
cells at P0 and coupled-cell at P1, we can observe the transition of frequency from
the variation of eigenvalues from P0 to P1. More precisely, it is interesting to see, as
c increases from 0 so that the coupling becomes effective and a collective periodic
solution is formed, the relative positions of the eigenvalues at P1 with respect to the
eigenvalues at P0. This reflects a transition from single-cell oscillation to coupled-cell
oscillation. Moreover, we can also see how the local dynamics around X is changing
from the variations of eigenvalues. Certainly, there are infinitely many paths from P0
to P1 in (c, α)-plane. For simplicity and illustration, we take the line segment from
P0 to P1 to trace the variations of eigenvalues.

To confirm that the Hopf bifurcation is supercritical so that the emergent periodic
solution is stable and see whether it occurs for α > α∗ or α < α∗, we take another
line segment in (c, α)-plane by fixing c = c∗, and allowing α to increase from below
α∗ to above α∗. We call such segment HB course. We can compute the eigenvalues
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of J (X;α) to see if there is a stability switch for equilibrium X when α crosses α∗,
along such HB courses.

Let us illustrate the implementation of these ideas by the following examples.
We take the same parameter values of n and kH in Example 3.1, and A and kd in
Example 3.2. Recall that the frequency for the isolated (c = 0) individual cell is
approximately ω0 = √

3, when α is close to α0. In the following example, we fix
s = 20. These numerical results are carried out by MATLAB programming and are
consistent with the computations by software AUTO.

Example 4.1.1 (i) Consider coupled-cell HTmodel (30)with parameter values n = 11,
kH = 0.136, and s = 20.With such parameter values, the single-cell systemundergoes
a Hopf bifurcation at α0 ≈ 0.54174, as shown in Example 3.1. Through computation,
the HB curve is drawn in Fig. 6. For illustration, we take P1(c∗ = 0.05, α∗ = 0.4742)
on the curve. At this HB value, we compute to find γ1 ≈ 15.05911, and thus confirm
that condition (34) in Theorem 4 holds. Note that the line segment P0P1 lies above
the HB curve, as shown in Fig. 6. We demonstrate the synchronous periodic solution
at parameter values near P1 in Fig. 5.

Variation of eigenvalues in C along the segment P0P1 is plotted by the curve in
Fig. 7a, c. There are two branches of complex-conjugate eigenvalues λ1, λ1 and λ2, λ2,
and four negative real eigenvalues. We denote by λ1(P) and λ2(P) the eigenvalues
λ1 and λ2 at point P . When c = 0, λ1(P0) and λ2(P0) are purely imaginary, with
λ1(P0) = λ2(P0) = √

3 i . As the parameters c and α vary along P0P1, the λ1-branch
moves to the right complex plane and makes a turn downward to reach the imaginary
axis at parameter value at P1. Notice that λ1(P1) = iω∗

c lies below λ1(P0), i.e., the
collective frequency at (c, α) = (c∗, α∗) is smaller than the individual frequency at
(c, α) = (0, α0). At the meantime, λ2-branch moves to the left complex plane. To
summarize, at P1, there are a pair of purely imaginary eigenvalues λ1(P1), λ1(P1)
and six eigenvalues with negative real parts, including λ2(P1), λ2(P1) . They are
±1.721229i , −0.037179 ± 1.667655i , −2.925642, −3.002199, −19.997801, and
−20.

Variation of eigenvalues in C along the HB course in Fig. 6 is plotted by the curve
in Fig. 7b, c. We thus confirm that a periodic solution emerges as α passes slightly
over α∗, with frequency ωc close to ω∗

c ≈ 1.721229, by Theorem 4. Our numerical
simulation shows that forα slightly aboveα∗, the collective frequency isωc ≈ 1.71999
for (c, α) = (0.05, 0.475).

(ii) Consider coupled-cell PS model (30) with parameter values A = 0.0659, kd =
0.00001, and s = 20. With such parameter values, the single-cell system undergoes a
Hopf bifurcation at α0 ≈ 0.533809, as shown in Example 3.2. We compute and draw
the HB curve in Fig. 8. For illustration, we take P1(c∗ = 0.05, α∗ = 0.4766) in the
curve. We compute to find γ2 ≈ 14.99108, and then confirm the condition (34) in
Theorem 4. Note that this line segment P0P1 lies below the HB curve, as shown in
Fig. 8. Variations of eigenvalues along P0P1 are depicted by the curves in Fig. 9a, c.
When c = 0, λ1(P0) and λ2(P0) are purely imaginary, with λ1(P0) = λ2(P0) = √

3 i .
As the parameters c andα vary along P0P1, λ1-branchmoves to the left complex plane,
and makes a turn downward to reach the imaginary axis at parameter value P1. As
λ1(P1) = iω∗

c lies below λ1(P0), we see that the collective frequency at (c, α) =
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Fig. 5 Synchronous periodic solution in Example 4.1.1(i)

Fig. 6 For Example 4.1.1(i): a HB curve comprising HB values plotted by green curve on (c, α)-plane; P0
is a HB value for the single-cell system, P1 is a HB value for the coupled-cell system. b Line segment P0P1
in red line, the HB course through P1 in blue line, from solid square to hollow square (Color figure online)

Fig. 7 Variations of two complex eigenvalues as (c, α)moves along segment P0P1 (red) and the HB course
(blue) in Fig. 6: a λ1-branch along P0P1 reaches the imaginary axis at P1, where (c, α) = (c∗, α∗) =
(0.05, 0.4742). b λ1-branch along the course, from solid square to hollow square, crosses the imaginary
axis at parameter value P1. c λ2-branches fall on the left complex plane along both P0P1 and the course.
A supercritical Hopf bifurcation occurs at α∗ ≈ 0.4742 (Color figure online)
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(c∗, α∗) is smaller than the individual frequency at (c, α) = (0, α0). Meanwhile,
λ2-branch moves to the left complex plane. At P1, the eigenvalues are computed as
±1.721278i , −0.037004 ± 1.667957i , −2.925991, −3.002189, −19.997811, and
−20.

Variations of eigenvalues along the HB course are shown by the curves in Fig. 9b,
c. According to Theorem 4, a periodic solution emerges for α > α∗ and close to
α∗, with frequency ωc close to ω∗

c ≈ 1.721278. Our numerical simulation reveals
that for α slightly above α∗ = 0.4766, the collective frequency is ωc ≈ 1.72115 at
(c, α) = (0.05, 0.498).

We carry out similar computation for the system at the other HB values in Figs. 6
and 8. The scenarios, the variations of eigenvalues along line segments from P0,
resemble the ones for P0P1 in Figs. 7a, c and 9a, c. The variation of eigenvalues along
each associated HB course is also similar to the one for P1 in Figs. 7b, c and 9b, c.

Let us make a comparison about variations of eigenvalues along the line segments
between the coupled-cell HTmodel and PSmodel. In the HTmodel, λ1-branch moves
to the right half plane of C and then makes a turn downward to reach the imaginary
axis at P1, whereas λ2-branch remains on the left complex plane. In the PSmodel, both
λ1-branch and λ2-branch move into the left complex plane. Then, λ1-branch makes a
turn downward and reaches the imaginary axis at P1, and λ2-branch continues to stay
in the left complex plane. The basic reason for the different movement of λ1-branch is
that line segment P0P1 is above the HB curve for the HT model, whereas it lies below
the HB curve in the PS model, as indicated in Figs. 6 and 8, respectively. Accordingly,
there is a difference on the transition of the local dynamics around equilibrium X

between these two models. For the HT model, the dimension of the unstable manifold
ofX increases from zero to two (the dimension of the stable manifold from four to six)
when (c, α)moves from P0 along P0P1, before reaching P1. On the other hand, for the
PSmodel, the dimension of the stable manifold ofX increases from four to eight when
(c, α) moves from P0, before reaching P1. Other than that distinction, both models
undergo a supercritical Hopf bifurcation at α = α∗. As the stable periodic solutions
of the coupled-cell systems emerge, the collective frequency at each (c, α) = (c∗, α∗)
is smaller than the individual frequencies at (c, α) = (0, α0) in both models. Indeed,
the purely imaginary eigenvalues λ1(P1) lie below the purely imaginary eigenvalues
λ1(P0) in both models.

Remark 3 The intercellular coupling is relatively fast, and we took s = 20 in the above
examples. We observe from system (30) that x4 and y4 may be regarded as being in
quasi-steady state, i.e., x4(t) ≈ f (x3(t)), y4(t) ≈ f (y3(t)), and thus the first equation
is approximately

ẋ1 = (α + c) f (x3) − x1.

Recalling theHopf bifurcation in the single-cell system (16),we see that the occurrence
of the Hopf bifurcation in the coupled system (30) is approximately along the curve
α + c = α0 where α0 ∼= 0.545174 in Example 4.1.1(i), and α0 ∼= 0.533809 in
Example 4.1.1(ii). This explains why the HB curves in Figs. 6 and 8 are almost straight
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Fig. 8 For Example 4.1.1(ii): a HB curve comprising HB values plotted by green curve on (c, α)-plane;
P0 is a HB value for the single-cell system, P1 is a HB value for the coupled-cell system. b Line segment
P0P1 in red line; the HB course through P1 in blue line, from solid square to hollow square (Color figure
online)

Fig. 9 Variations of two complex eigenvalues as (c, α) moves along segment P0P1 (red) and the course
(blue) in Fig. 8: a λ1-branch along P0P1 reaches the imaginary axis at parameter value P1(0.05, 0.4766).
b λ1-branch along the course, from solid square to hollow square, crosses the imaginary axis at P1. c λ2-
branches fall on the left complex plane along both P0P1 and the course. A supercritical Hopf bifurcation
occurs at α∗ ≈ 0.4766 (Color figure online)

lines and that the frequency decreases with increasing coupling strength is linked to
the frequency decrease with increasing α in the single-cell system.

Remark 4 (i) It is seen from (32) that the HB value α∗ for the coupled-cell system
is smaller than the HB value α0 for the single-cell system (when c = 0). Based
on the Hopf bifurcation theorem, this order provides a potential parameter regime
where oscillations exist in both single-cell and coupled-cell systems, as well as a
potential regime where oscillations exist in the coupled-cell system, but not in the
single-cell system.
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(ii) We observe from (32) that α∗ → ∞ as γ → 0. That is, the Hopf bifurcation does
not occur at the flat parts of the repression functions f1 and f2 (small values of γ1
and γ2), see Fig. 10. On the other hand, the Hopf bifurcation occurs when γ , the
magnitude of f ′(x̄), is lower than the bound in (34). This condition was actually
derived to guarantee that α∗ is positive. This bound is large when c is small. In
our Example 4.1.1, the bound is above the maximal values of γ1 and γ2, and thus,
condition (34) is automatically met.

(iii) From Theorem 4, we see that frequency ω∗
c decreases as γ increases. That is, in

contrast to the single-cell case, the frequency of the periodic solution near the HB
value distinguishes between γ = γ1 and γ = γ2, and hence the repression function
f1 from f2. From the graphs of γ1 and γ2 in Fig. 10, we see that while γ1 has larger
maximum value, γ2 has wider range of large values. Figure 10 is depicted with
the data in Example 4.1.1. It is indirect to track the value of γ , as it depends on x̄
which is determined by the parameter values. For the HT model, we may compare
the point xM where γ1 attains its maximum value with the component x̄ of the
equilibrium at c = 0, that is,

xM := kH

(
n − 1

n + 1

) 1
n

, x̄ = kH

(
8

n − 8

) 1
n

. (36)

Their distance can be measured from

x̄n − xnM = − knHn(n − 17)

(n − 8)(n + 1)
. (37)

When the coupling strength c is small, x̄ in the coupled system is close to x̄ in
(36), and the quantity in (37) estimates how far the point x̄ that γ1 takes on is away
from xM, where the maximum value of γ1 is attained. Note that for n < 17, x̄ lies
on the right hand side of xM, whereas it is reverse for n > 17. In addition, we see
that the gap between xM and x̄ can be enlarged, by choosing larger kH and n. The
corresponding frequencies ω∗

c will then further distinguish the repression function
f1 from f2. The analysis for the graphs of γ1 and γ2 is arranged in Appendix C.
From the expression for frequency ω∗

c , we also see that large coupling strength
c enhances the effect from γ , whereas large intercellular coupling time scale s
suppresses the factor from γ . In Appendix D, we provide more numerics for the
values of x̄ , γ1, γ2, and the corresponding frequencies ω∗

c , along the HB curves
for the cases with s = 10, and n = 18.

What are discussed in Remark 4 are about the scenario at the HB points and HB
values. To extend the understanding of the frequency, we perform further numerical
simulations and follow the continuation from the HB values. We are interested in
comparing the collective frequencyωc and the average frequencyωAve of the individual
cells. For system (30) comprising identical cells, the average frequency coincides with
the individual frequency. To this end, we need to choose parameter values at which
the periodic solutions exist for both of the single-cell and coupled-cell systems. In
addition, to make comparison, we consider the same values of α in both single-cell
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Fig. 10 The graphs of γ1 and γ2, for the parameter values in Example 4.1.1, with n = 11, kH = 0.136,
A = 0.0659, kd = 0.00001. The green diamond represents xM ≈ 0.133764, the magenta diamond
represents x̄ ≈ 0.148684 when c = 0 in the HT model, and the magenta circle represents x̄ ≈ 0.058730
when c = 0 in the PS model (Color figure online)

and coupled-cell systems.Asmentioned inRemark 4(i), theHBvalueα0 for the single-
cell system is larger than the HB value α∗ for the coupled-cell system. This can also
be seen in Figs. 6 and 8. For α slightly larger than α0 (resp., α∗), the stable periodic
solutions emerge in the single-cell systems (resp., coupled-cell systems), so that we
can compute the average frequency (resp., collective frequency). For those values of α
which deviate farther from α0 (resp., α∗), the stable periodic solutions for the single-
cell system (resp., coupled-cell systems) may persist, following the continuation of
bifurcating periodic solutions from the Hopf bifurcation.

The following example illustrates a comparison between the average frequencies
and the collective frequencies.

Example 4.1.2 For increasing values of α > α0, we compute the average fre-
quency from the frequencies of individual cells in Examples 3.1, 3.2. For each of
c∗ = 0.01, 0.05, 0.1 and its corresponding α∗, with increasing values of α > α∗, by
solving the ODE system numerically, we observe the periodic solutions of coupled-
cell system (30) at these parameter values, and identify the frequency for each of these
periodic solutions. The computed collective frequencies of these periodic solutions
are plotted in Fig. 11. It can be seen that, in both HT and PS models, the frequency
decreases as α increases, and it drops faster in the PS model. Notably, the leftmost
points of the plots in Fig. 11 correspond to the average frequency about

√
3 at α near

α0, and the collective frequencies at α near each α∗, respectively. Moreover, for each
fixed α, the collective frequency decreases as the coupling strength increases. These
computations all show that the collective frequency is smaller than the average of
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(a) (b)

Fig. 11 Collective frequencies ωc of the periodic solutions for the coupled-cell systems and average fre-
quencies ωAve for the periodic solutions of the single-cell systems, corresponding to increasing value of α,
at c = 0.01, 0.05, 0.1, in a the HT model, b the PS model, with the values of the other parameters given in
Examples 4.1.1 and 4.1.2, respectively

individual frequencies (when c = 0), and are close to the average frequency when c
is small.

Remark 5 In system (29), the synchronous set S := {Mi = Mj , Pi = Pj , Ri =
R j , Vi = Vj : 1 ≤ i, j ≤ N } is invariant. Indeed, Mi (t) = M(t), Pi (t) =
P(t), Ri (t) = R(t), Vi (t) = V (t), i = 1, . . . , N , will constitute a solution of (29) if
(M(t), P(t), R(t), V (t)) is a solution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṁ = f (R) − M + cV

Ṗ = M − P

Ṙ = P − R

V̇ = s[ f (R) − V ].

(38)

Accordingly, we can study the dynamics of system (29) restricted to the synchronous
set S. That is, we can consider the N -cell analog of system (30) on its synchronous set,
which is a four-dimensional system like (38). The characteristic polynomial for the
linearization of the restricted system at x̄ is exactly Δ+(λ). Recall that the bifurcation
analysis in this section unfolds from the roots ofΔ+(λ) = 0. Thus, Theorem 4 and the
analysis herein remains valid for the restricted system. And the bifurcating periodic
solution (x1(t), x2(t), x3(t), x4(t)) for the restricted system extends, with its copies
(x1(t), x2(t), x3(t), x4(t))N , to a synchronous periodic solution for the N -cell system.

4.2 Two Nonidentical Cells

In this section, we consider the coupled-cell system consisting of two nonidentical
cells, by adding a scaling factor σ into the second cell:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = α f (x3) − x1 + c

2
(x4 + y4)

ẋ2 = x1 − x2
ẋ3 = x2 − x3
ẋ4 = s[ f (x3) − x4]
ẏ1 = σ(α f (y3) − y1) + c

2
(y4 + x4)

ẏ2 = σ(y1 − y2)

ẏ3 = σ(y2 − y3)

ẏ4 = s[ f (y3) − y4].

(39)

When c = 0, two cells are decoupled. We consider the parameter values at which
each cell oscillates at its own frequency. As c increases from 0, the cells become
coupled, yet it is not assured whether a collective periodic solution is then generated.
The periodic solution, if exists, is no longer synchronous, and becomes phase-locked.
Indeed, as system (39) comprises nonidentical subsystems, the synchronous set is no
longer invariant and the solutions are asynchronous in general. Therefore, for different
components of solutions to attain (or compromise to reach) the same period, it is quite
natural that there exists a phase difference between the corresponding components of
a collective periodic solution.

We again choose α as the bifurcation parameter and employ Theorem 1 to analyze
the existence of periodic solution for system (39). Note that when c = 0, system (39)
reduces to two decoupled subsystems

⎧
⎪⎨

⎪⎩

ẋ1 = α f (x3) − x1
ẋ2 = x1 − x2
ẋ3 = x2 − x3,

(40)

and

⎧
⎪⎨

⎪⎩

ẏ1 = σ(α f (y3) − y1)

ẏ2 = σ(y1 − y2)

ẏ3 = σ(y2 − y3).

(41)

Components x4(t), y4(t) can be obtained by integrating the fourth and eighth com-
ponents of system (39) once x3(t), y3(t) are solved. According to the discussions in
Sect. 3, both of systems (40) and (41) undergo a Hopf bifurcation at α = α0, with
respective frequency

ω∗
1 = √

3, ω∗
2 = σ

√
3.
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The positive equilibrium X = (x̄, ȳ) = (x̄1, x̄2, x̄3, x̄4, ȳ1, ȳ2, ȳ3, ȳ4) of system
(39) satisfies x̄1 = x̄2 = x̄3, f (x̄3) = x̄4, and ȳ1 = ȳ2 = ȳ3, f (ȳ3) = ȳ4, and

⎧
⎪⎨

⎪⎩

α f (x̄3) − x̄3 + c

2
[ f (x̄3) + f (ȳ3)] = 0

σ [α f (ȳ3) − ȳ3] + c

2
[ f (x̄3) + f (ȳ3)] = 0.

(42)

The existence of such heterogenous equilibrium is shown inAppendix E. The Jacobian
matrix associated with the linearization of system (39) at X is

J (X;α) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 0 −αγ
c

2
0 0 0

c

2
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 −sγ −s 0 0 0 0

0 0 0
c

2
−σ 0 −σαγ̃

c

2
0 0 0 0 σ −σ 0 0
0 0 0 0 0 σ −σ 0
0 0 0 0 0 0 −sγ̃ −s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where γ := − f ′(x̄3), and γ̃ := − f ′(ȳ3). We denote the characteristic polynomial
Δ(λ) := det(λI − J (X;α)) by

λ8 + b1λ
7 + b2λ

6 + b3λ
5 + b4λ

4 + b5λ
3 + b6λ

2 + b7λ + b8, (43)

where the coefficients bi depend on s, σ, c, and γ, γ̃ , which in turn depend on x̄3 and
ȳ3. In contrast to the discussion on systems comprising two identical cells, herein, we
could not factorize this polynomial Δ(λ). To apply the Hopf bifurcation theory, we
look for the values of α∗ and the values for the other parameters, which satisfy the
conditions of Theorem 1 with m = 8. We can also observe that α∗ → ∞ as γ → 0,
for almost all parameter values. That is, the Hopf bifurcation does not occur at the
flat parts of f1 and f2. This is due to that α always appears together with γ or γ̃ in
J (X;α).

The following example is parallel to the discussions in Example 4.1.1. The compu-
tation process is similar, but slightly different, as we do not have an explicit expression
of α∗ like (32) for the identical-cell case, nor a concrete formula like the one in Theo-
rem 4 to resort to.We solve numerically forα∗ and x̄3 and ȳ3 which satisfy D7(α

∗) = 0
and (42). Then, we confirm that the other conditions of Theorem 1 are met. Again,
for parameters of the individual cells, we take the same values as in Examples 3.1 and
3.2. For the scaling factor in the second cell, we take σ = 1.05.

Example 4.2 (i) Consider the coupled-cell HT model (39) with parameter values
n = 11, kH = 0.136, s = 20, and σ = 1.05. The HB curve is plotted in Fig. 12. For
illustration, we take one of the HB values P1(c∗ = 0.05, α∗ = 0.5165). We demon-
strate the periodic solution at parameter values near P1 in Fig. 13, which appears to
be phase-locked (asynchronous). Variations of the eigenvalues along the line segment
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Fig. 12 For Example 4.2.1(i): The HB curve plotted in green curve on (c, α)-plane; P0 is a HB value for
the single-cell system. P1 is a HB value for the coupled-cell system; line segment P0P1 in red line, the HB
course in blue line (Color figure online)

Fig. 13 Phase-locked periodic solution, with phase difference approximately 0.310757 (the difference of t
between the peaks of x j and y j ), in Example 4.2(i)

P0P1 are shown by the curves in Fig. 14a, c. There are two branches of complex-
conjugate eigenvalues λM, λM and λm, λm, and four negative real eigenvalues. We
denote by λM(P) and λm(P) the eigenvalues of λM and λm at point P . When c = 0,
λM(P0) and λm(P0) are purely imaginary, with λm(P0) = √

3 i , λM(P0) = 1.05
√
3 i .

As c andα vary along P0P1, theλM-branchmoves to the left complex plane, andmakes
a turn downward to reach the imaginary axis at P1. Observe that λM(P1) = iω∗

c
lies below λM(P0), i.e., the magnitude of λM(P1) is smaller than that of λM(P0).
On the other hand, along P0P1, λm-branch moves to and stays in the left complex
plane. That is, at P1, there are a pair of purely imaginary eigenvalues λM(P1), λM(P1)
and six eigenvalues with negative real parts, including λm(P1), namely ±1.801918i ,
−0.018114 ± 1.706965, −2.974896, −3.141083, −19.997793, −20.

Variations of the eigenvalues along the HB course are shown by the curves in
Fig. 14b, c. As α increases from below α∗ to above α∗, the stable equilibrium X

becomes unstable and a stable periodic solution emerges, with frequency ωc close to
ω∗
c ≈ 1.801918.
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(a) (c)

(b)

Fig. 14 Variations of two complex eigenvalues as (c, α) moves along segment P0P1 (red) and the HB
course (blue) in Fig. 12: a Along P0P1, λM-branch reaches the imaginary axis again at P1(0.05, 0.5165). b
Along the course, from solid square to hollow square, λM-branch crosses the imaginary axis at P1. (c) λm-
branches fall on the left complex plane along both of P0P1 and the course. A supercritical Hopf bifurcation
occurs when α∗ ≈ 0.5165. λAve(P0) := [λM(P0) + λm(P0)]/2 (Color figure online)

(ii) Consider the coupled-cell PS model (39) with parameter values A = 0.0659,
kd = 0.00001, s = 20, and σ = 1.05. We compute and draw the HB curve in Fig. 15.
We take the HB value P1(c∗ = 0.038, α∗ = 0.5043). Variations of eigenvalues along
the segment P0P1 are shown by the curves in Fig. 16a, c. The scenario is similar to
the one in Fig. 14a, c.

Variations of eigenvalues along the HB courses are shown in Fig. 16b, c. As α

increases from below α∗ to above α∗, the stable equilibrium X becomes unstable and
a stable periodic solution emerges, with frequency ωc about ω∗

c ≈ 1.806613.
The scenarios at the other Hopf bifurcation values (c∗, α∗) in Fig. 12 (resp. Fig. 15)

are qualitatively similar to the ones in Fig. 14 (resp. Fig. 16). For each of c∗ =
0.05, 0.075, 0.1 in the HT model and c∗ = 0.04, 0.05, 0.1 in the PS model, there
corresponds an α∗. We further trace the frequency of oscillation as α increases over
each α∗ by solving system (39) numerically. The results are plotted in Fig. 18, where
the average frequency is ωAve = (ω1 + ω2)/2, with ω1, ω2 the frequencies of the
first cell and second cell, respectively, when isolated. The leftmost points of the plots
indicate the values α0 for c = 0, and α∗ for each c∗, which are different.

Remark 6 (i) We note that the HB curve is not connected to point P0 in Figs. 12 and
15, since it is not known if the Hopf bifurcation can occur at arbitrarily small
coupling strength c.

(ii) We observe from Figs. 12 and 15 that the HB values α∗ for the HTmodel are larger
than the ones for the PS model, at the same coupling strength c. This difference is
also shown in Fig. 18, at the leftmost endpoints of these plots at coupling strength
c = 0.05 and c = 0.1. Thus, for an α larger than α∗ for the HT model, it is even
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Fig. 15 For Example 4.2(ii): The HB curve plotted by green curve on (c, α)-plane; P0 is a HB value for the
single-cell system, P1 is a HB value for the coupled-cell system; P0P1 in red line, the HB course in blue
line (Color figure online)

(a) (c)

(b)

Fig. 16 Variations of two complex eigenvalues as (c, α) moves along segment P0P1 (red) and the HB
course (blue) in Fig. 15: a λM-branch along P0P1 reaches the imaginary axis again at P1(0.038, 0.5043).
b λM-branch along the course, from solid square to hollow square, crosses the imaginary axis at P1. c The
branches of λm fall on the left complex plane along both of P0P1 and the course. A supercritical Hopf
bifurcation occurs when α∗ ≈ 0.5043. λAve(P0) := [λM(P0) + λm(P0)]/2 (Color figure online)

larger than α∗ for the PS model. This could be a factor that the frequency for the
PS model drops faster than the HT model as α increases over α∗.

4.3 Collective Frequency Versus Average Frequency

With the discussions in Sects. 4.1 and 4.2, we like to observe further how the collective
frequency of coupled-cell systems is compared to the average frequency of individual
cells when isolated.
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(a) (c)

(b)

Fig. 17 Variations of complex eigenvalue a λM along P0P3. b λM along the associated HB course. c λm
along P0P1 (dotted curve) and the course (solid curve) in Fig. 15, where P3 is at (c, α) = (c∗, α∗) =
(0.1, 0.4325); λM(P3) = 1.774746i , λAve(P0) = 1.775352i

(a) (b)

Fig. 18 Average frequency ωAve = (ω1 + ω2)/2 with respect to α at c = 0, and collective frequency
with respect to α at fixed c in a the HT model with c = 0.05, 0.075, 0.1, and b the PS model with
c = 0.04, 0.05, 0.1, where ω1 and ω2 are the frequencies for the two single cells corresponding to the value
of α

For coupled-cell system (30) comprising two identical cells, the average frequency
is the individual frequency. We have seen in Example 4.1.2 and Fig. 11 that the col-
lective frequencies are lower than the average frequencies for both HT model and
PS model. In addition, the collective frequencies are close to the average frequencies
when the coupling strength c is small. This result also holds for coupled-cell system
(29) with N identical cells, as mentioned in Remark 5.

For coupled system (39) consisting of two nonidentical cells with individual fre-
quencies ω1 and ω2 when isolated, the average frequency is ωAve := (ω1 + ω2)/2.
To indicate dependence on α, we denote ω1 = ω1(α), ω2 = ω2(α), and ω∗

1 :=
ω∗
1(α0), ω

∗
2 := ω2(α0), where α0 is the bifurcation value for the single cell. Note that

ω∗
2 = σω∗

1. In Examples 4.2(i) (HT model) and 4.2(ii) (PS model), we have seen that
both λM(P1) lie below λM(P0), with σ = 1.05, λM(P0) = iω∗

2 and λm(P0) = iω∗
1,

λM(P1) = iω∗
c . That is, when the collective periodic solution is formed at a HB value
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(c∗, α∗), the collective frequency ω∗
c drops below the larger individual frequency ω∗

2
at c = 0 (decoupled) and α near α0. However, on the one hand, the average frequency
at c = 0 and α near α0 is about ω∗

Ave := (ω∗
1 + ω∗

2)/2. On the other hand, the com-
parison of the collective frequency ωc = ωc(α) (at c > 0) and the average frequency
ωAve = ωAve(α) (at c = 0) should be made at the same parameter values, including
α. Notably, our notation means ω∗

c = ωc(α
∗), ω∗

Ave = ωAve(α0).
Our strategy of comparison starts with comparing λM(Pj ), λm(Pj ), j ∈ N, with

λM(P0),λm(P0), andλAve(P0) := [λM(P0)+λm(P0)]/2,where Pj is aHBvalue. That
is, we compare the eigenvalues at (c, α) = (c∗, α∗) with the ones at (c, α) = (0, α0).
For example, for the case α∗ < α0, if λM(Pj ) lies below λAve(P0) on the imaginary
axis of C, i.e., ω∗

c < ω∗
Ave, and if ωc = ωc(α) decreases as α increases (with fixed

c = c∗), then we are sure that ωc < ω∗
c < ωAve at α slightly larger than α0 (with

fixed c = c∗), should the periodic solution exist up to such α. An example for such a
scenario is the HB value P3(c∗ = 0.1, α∗ = 0.4325) in Example 4.2(ii) (not shown in
Fig. 15); the movement of λM(P3) is shown in Fig. 17. If λM(Pj ) lies above λAve(P0),
i.e., ω∗

c > ω∗
Ave, we can still compute ωc numerically for increasing values of α,

starting from α∗, and compare it with ωAve as α passes over α0.
With parameter values in Example 4.2 and three different coupling strengths c, it is

indicated in Fig. 18 that at larger coupling strength c = 0.1, the collective frequency
ωc is always smaller than the average frequency ωAve, for α in a range where periodic
solutions exist for both single-cell and coupled-cell HT model and PS model. In
addition, the coupling strength c is smaller in the PS model than in the HT model, at
which the collective frequency stays close to the average frequency in a range of α.

In the following examples, we fix α and allow coupling strength c to increase. If
it happens that ωc is close to ωAve, we are interested to see whether it holds only for
certain parameter values and the coupling strength. If it holds only for one of the HT
model and PS model, we like to see the scenario for the other model.

Example 4.3.1 For parameters of the individual cells, we take n = 11, kH = 0.136
as in Examples 3.1, 4.1.1(i), 4.2(i) (HT model), and A = 0.0659, kd = 0.00001
as in Examples 3.2, 4.1.1(ii), 4.2(ii) (PS model). In addition, we take the same time
scaling factor s = 20 and σ = 1.05 as in the above examples. Recall that Hopf
bifurcation occurs at α = α0 ≈ 0.545174 in Example 3.1 (single-cell HT model), and
at α = α0 ≈ 0.533809 in Example 3.2 (single-cell PS model). We fix α = 0.60139 so
that the single-cell HT model and the single-cell PS model have analogous oscillatory
wave forms, as in Fig. 4.

Via solving the ODE system (39) numerically, we find the phase-locked periodic
solutions for c starting from c = 0.035 in the coupled-cell HT model and from
c = 0.037 in the coupled-cell PS model. Then, we observe the relation between the
collective frequencies and the average of the individual frequencies. The results are
shown in Fig. 19a. At the coupling strength c ≈ 0.037, the collective frequency ωc

is less than and close to the average frequency ωAve in the coupled-cell PS model,
whereas the difference between ωc and ωAve is substantial in the coupled-cell HT
model. If we further increase the coupling strength c in the coupled-cell HT model,
the collective frequency tends to the average frequency when c ≈ 0.075.
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(a) (b)

Fig. 19 Relation between the collective frequency and the average of individual frequencies for a range of
coupling strength c, when a α = 0.60139, the average frequency is 1.77086089 for f = f1, and 1.77086095
for f = f2, b α = 0.56, the average frequency is 1.774609880 for f = f1, and 1.774625695 for f = f2

In Example 4.3.1, α = 0.60139 may be too far from the values of α∗ in Exam-
ples 4.2.1, 4.2.2. Let us consider the value of α which is closer to α∗.

Example 4.3.2 Consider the same parameter values in Example 4.3.1, except that here
we choose α = 0.56 in both models (larger than α0 and all α∗ in Example 4.2) and
vary the coupling strength c. We compute numerically and observe the phase-locked
periodic solutions starting from c = 0.035 in both models. The results are shown in
Fig. 19b. At c = 0.035, the collective frequency is greater than the average frequency
in both models. For the coupled-cell PS model, the collective frequency matches the
average frequency at coupling strength c ≈ 0.04. At this value of c, for the coupled-
cell HT model, the collective frequency is above the average frequency. If we still
increase the coupling strength in the coupled-cell HT model, the collective frequency
matches the average frequency when c ≈ 0.0776.

The above examples indicate that starting with similar oscillatory wave forms for
individual cells in the HT model and in the PS model, the collective frequency of
the coupled-cell system decreases as the coupling strength increases in both models.
Moreover, the collective frequency drops faster in the PS model than in the HTmodel,
as the coupling strength increases. In bothmodels, there exist coupling strengths c such
that the collective frequency equals the average frequency of individual cells. For the
HTmodel, such strength c is larger. Our result in this regard is basically consistent with
the one reported in Kim et al. (2014). It was reported in Kim et al. (2014) that protein-
sequestration-based repression is more suitable for modeling circadian rhythms of
mammals. One of the reasons is that the average frequency property holds for the PS
model at suitable coupling strength, whereas this property holds for the HT model
at coupling strength unreasonably large. Herein, we have proposed a methodology to
examine closely the parameter values at which the average frequency property holds.
Regarding which repression mechanism is more suitable for the modeling, among
other concerns such as robustness, pertinence of parameter values in the models is
certainly crucial.
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5 Segmentation ClockModel

It is interesting to see the scenario of collective frequencies for other biological oscil-
lators and compare it with the ones in Sect. 4. In this section, we perform parallel
analysis and computation to a mathematical model on segmentation clock genes in
zebrafish (Chen et al. 2018; Herrgen et al. 2012; Uriu et al. 2010). There are delay
models and ODE models depicting the somitogenesis of zebrafish. We consider the
following ODE system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = kn1
kn1 + xn3

(ν1 + νc y4) − ν2x1
k2 + x1

ẋ2 = ν3x1 − ν4x2
k4 + x2

− ν5x2

ẋ3 = ν5x2 − ν6x3
k6 + x3

ẋ4 = ν7kh7
kh7 + xh3

− ν8x4
k8 + x4

ẏ1 = σ

[
kn1

kn1 + yn3

(
ν1 + νc

σ
x4

)
− ν2y1

k2 + y1

]

ẏ2 = σ

[
ν3y1 − ν4y2

k4 + y2
− ν5y2

]

ẏ3 = σ

[
ν5y2 − ν6y3

k6 + y3

]

ẏ4 = σ

[
ν7kh7

kh7 + yh3
− ν8y4

k8 + y4

]
.

(44)

System (44) depicts the interaction of two nonidentical cells ifσ �= 1, and two identical
cells if σ = 1. Synchronous oscillations and traveling waves for the N -cell system,
expanded from system (44) with σ = 1, were studied in Chen et al. (2018), Liao and
Shih (2012), Liao et al. (2012), Uriu et al. (2009, 2010). All parameters are positive,
and their meanings can be found in those papers. In particular, Hill coefficients n and
h are positive integers. When the coupling strength νc = 0, system (44) reduces to two
decoupled subsystems, each of four dimension. We arrange the discussion of periodic
solutions of single-cell systems in Supplementary Materials II.

The Hopf bifurcation theory has been applied to investigate synchronous oscilla-
tions in system (44) with σ = 1, and in delay models in Chen et al. (2018), Liao
and Shih (2012). It was shown that the collective frequency decreases as the coupling
strength νc increases. Herein, we investigate the periodic solution of system (44)which
comprises two nonidentical subsystems, i.e., when σ �= 1.

The existence of positive equilibrium X = (x̄, ȳ) = (x̄1, x̄2, x̄3, x̄4, ȳ1, ȳ2, ȳ3, ȳ4)
for system (44) can be argued by the implicit function theorem, and is similar to the
one in Appendix E. The Jacobian matrix associated with the linearization of system
(44) at X can be computed, as shown in Supplementary Materials II.
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The characteristic polynomial Δ(λ) := det(λI − J (X; ν1)) is

λ8 + b1λ
7 + b2λ

6 + b3λ
5 + b4λ

4 + b5λ
3 + b6λ

2 + b7λ + b8, (45)

where the coefficients bi can be computed. To apply the Hopf bifurcation theorem to
system (44), we look for the value of ν1 = ν∗

1 and the values for the other parameters,
which satisfy the conditions of Theorem 1 with m = 8. We follow the computation
steps in Sect. 4.2.

We are interested in seeing how the collective frequency ωc of oscillation in system
(44) varies with the coupling strength νc and parameter ν1. We adopt the parameter
values in Example S for single cell (in Supplementary Material II), where ν�

1 denotes
the HB value, and the frequency for the isolated (νc = 0) individual cell is approxi-
mately ω0 in Theorem 5 (in Supplementary Material II). The HB values are denoted
by (ν∗

c , ν
∗
1 ).

Example 5.1 Consider coupled system (44) with parameter values in Example S and
σ = 1.05. When νc = 0, the system is decoupled, and each of the two subsys-
tems has a periodic solution with respective frequency about ω∗

1 = 0.305785 and
ω∗
2 = 1.05 ·ω∗

1. The HB curve consisting of the HB values (ν∗
c , ν

∗
1 ) is drawn in Fig. 20.

For illustration, we take the line segment P0P1, with P0(νc, ν�
1 ), P1(ν∗

c , ν
∗
1 ), where

(νc, ν
�
1 ) = (0, 0.074725) and (ν∗

c , ν
∗
1 ) = (0.006, 0.06507). The variation of eigenval-

ues along P0P1 is depicted in Fig. 21a, c. There are two branches of complex-conjugate
eigenvalues λM, λM and λm, λm, and four negative real eigenvalues. We denote by
λM(P) and λm(P) the eigenvalues of λM and λm at point P . When νc = 0, λM(P0)
andλm(P0) are purely imaginary,withλM(P0) = iω∗

2 = 1.05·λm(P0) = 1.05·iω∗
1.As

the parameters νc and ν1 vary along P0P1, λM-branchmoves to the left complex plane,
and makes a turn upward to reach the imaginary axis at P1. That is, λM(P1) lies above
λM(P0). On the other hand, along the route, λm-branch moves to and stays in the left
complex plane. To summarize, at P1, there is a pair of purely imaginary eigenvalues
λM(P1), λM(P1) and the remaining eigenvalues have negative real parts, including
λm(P1). These eigenvalues are ±0.322124i , −0.001056 ± 0.307488i , −0.338223,
−0.362978, −0.712781, and −0.749678.

Variation of eigenvalues along the HB course is depicted in Fig. 21a, b. We observe
from numerical computations that periodic solutions emerge at ν1 > ν∗

1 for each ν∗
1 ,

and ν1 close to ν∗
1 , with frequency about ω

∗
c ≈ 0.322124. The scenarios at other Hopf

bifurcation points (ν∗
c , ν

∗
1 ) in Fig. 20 are similar to the ones for P1 in Fig. 21.

For νc = 0.006, 0.008, 0.01, respectively, we increase ν1 further over ν∗
1 , while

holding νc fixed at each ν∗
c , and perform numerical computation on system (44)

to observe the periodic solutions and see how their frequencies vary with ν1. The
result is shown in Fig. 22. The leftmost points of the plots represent the collec-
tive frequencies which are approximately ω∗

c , corresponding to ν1 slightly larger
than ν∗

1 , respectively, and the average frequency about ω∗
Ave = (ω∗

1 + ω∗
2)/2 ≈

(0.305785 + 1.05 · 0.305785)/2 corresponding to ν1 slightly larger than ν�
1 . It can

be seen that, in each case, both the collective frequency and the average frequency
decrease as ν1 increases.
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Fig. 20 For Example 5.1: The HB curve plotted by green curve on (νc, ν1)-plane; P0 is a HB value for
the single-cell system, P1 is a HB value for the coupled-cell system, the segment P0P1 in red line, the HB
course in blue line (Color figure online)

(a) (b)

Fig. 21 Variations of two complex eigenvalues as (νc, ν1) moves along segment P0P1 (red), and the HB
course (blue) in Fig. 20: a λM-branch reaches the imaginary axis at P1(0.006, 0.06507); λM-branch along
the course, from solid square to hollow square, crosses the imaginary axis at parameter value P1. b λm-
branches enter into and stay in the left complex plane along P0P1 and the course. A supercritical Hopf
bifurcation occurs at ν∗

1 ≈ 0.06507. λAve(P0) := [λm(P0) + λM(P0)]/2 (Color figure online)

Next, let us see how coupling strength νc affects the collective frequency and com-
pare it with the average of the individual frequencies.

Example 5.2 With parameter values in Example S, single-cell systems (54) and (55)
undergo aHopf bifurcation at ν1 = ν�

1 ≈ 0.074725, and coupled-cell system (44) with
νc = 0.006 undergoes a Hopf bifurcation at ν1 = ν∗

1 ≈ 0.06507. We take ν1 = 0.076
so that the stable periodic solutions exist in both coupled-cell system (44) and single-
cell systems (54), (55). Next, we increase the coupling strength from νc = 0.006
and observe the relation between the collective frequency and the average frequency.
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Fig. 22 Average frequency ωAve = (ω1 + ω2)/2 with respect to ν1 for ν1 > ν�
1 , at νc = 0, and collective

frequency ωc with respect to ν1 for ν1 > ν∗
1 , at νc = 0.006, 0.008, 0.01, respectively

Fig. 23 Collective frequency versus the average of individual frequencies, for increasing values of νc , with
ν1 = 0.076

The relations are depicted in Fig. 23. When νc = 0.1, the collective frequency ωc ≈
0.209346, i.e., the collective period Tc ≈ 30.013387, falls within the range [25,35]
minutes of biological interest. We observe that as the coupling strength increases,
the collective frequency decreases and deviate farther from the average frequency of
individual cells. This can also be seen in Fig. 22. The scenario is different from the
one in coupled-cell HT and PS models, discussed in Sect. 4.

We remark that for some other parameter values, the periodic solutionsmay not per-
sist for ν1 extending well over ν∗

1 in system (44). From the theory, the Hopf bifurcation
occurs, and hence, the stable periodic solutions are confirmed to exist, at ν1 slightly
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over ν∗
1 in coupled-cell system (44), and ν1 slightly over ν�

1 in single-cell systems (54)
and (55). In our computations, the values of ν∗

1 are all smaller than those of ν�
1 . If

the periodic solution of system (44) does not exist for ν1 at least larger than ν�
1 , then

we will not be able to compare the collective frequency and the average frequency at
the same parameter values. Nevertheless, the present approach still leads us to locate
the parameter values at which the existence of periodic solutions for the single-cell
systems and the ones for the coupled-cell systems is assured.

6 Discussions and Conclusions

We have investigated the stable periodic solutions and their properties in some
single-cell systems and coupled-cell systems. The methodology is based on the Hopf
bifurcation theory and numerical simulations on the considered systems at parameter
values unfolding fromwhere the bifurcations occur. In addition, vanishing determinant
for one of the Hurwitz matrices in the Routh–Hurwitz criterion leads to a condition
which determines the parameter values where the Hopf bifurcation takes place. The
condition not only detects and confirms the occurrence of Hopf bifurcation, but also
allows us to analyze the bifurcation. With this approach, we further explored how the
frequency of oscillation in the coupled-cell systems varies with respect to a system
parameter and the coupling strength.

We applied this approach to investigate oscillations, represented by stable peri-
odic solutions, and their frequencies, in a system modeling minimal genetic negative
feedback loop. We analyzed the oscillatory properties and compared these properties
between Hill-type repression and protein-sequestration-based repression. Taking α

as the bifurcation parameter, we computed the bifurcation value α0 for the single-
cell systems. Then, we located the parameter values at which the oscillatory wave
forms for the two systems, each with one of these two repressions, resemble each
other. Then, for the coupled system comprising such single cells, we investigated how
(at what parameter values) the collective periodic solutions emerge. We computed
the eigenvalues of the linearized system along parameters (c, α) on the line segment
from (0, α0) to (c∗, α∗), where α∗ is a HB value of the coupled-cell system at cou-
pling strength c = c∗. The purely imaginary eigenvalues provide the magnitudes of
the collective frequencies at α = α∗. This exhibits the relative magnitude between
the average frequency of individual cells at α near α0 and the collective frequency
of coupled-cell system at α near α∗. Unfolding from such information, we further
computed to observe how the collective frequency of oscillation varies with the cou-
pling strength and α. Moreover, we extended the computation to compare the average
frequency with the collective frequency at the same value of α, and discussed the
average frequency property. The collective behaviors for the coupled systems with
two types of repression were compared. We observed that the collective frequency in
the coupled-cell system with protein-sequestration-based repression approaches the
average frequency at smaller coupling strength than the one with Hill-type repression.

For the system comprising two identical cells, wewere able to express explicitly the
HB values in terms of the component of the equilibrium, and the collective frequency
at the HB values. This expression reveals the role played by the repression function
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on the frequency property. The influence from the Hill-type repression or from the
protein-sequestration-based repression is indicated in the expression by the slope of
the repression function. It can also be seen that the effect in the collective frequency at
the HB values from this slope is enhanced by large coupling strength and suppressed
by large timescale of the intercellular coupling. For further oscillatory properties at
parameter values beyond the HB values, we resorted to numerical computations on the
ODE systems. For the system comprising two nonidentical cells, an eight-dimensional
ODE system,we still used the criterion in Liu (1994) to detect theHopf bifurcation, but
this process was carried out through numerical computations, as described in Sect. 4.2.

To compare with other biological oscillators, we performed a similar analysis and
computation to a segmentation clockmodel.We observed different variations of eigen-
values along the parameter values connecting the HB value of the single-cell system
and the HB value of the coupled-cell system. It appears in all our computations that the
collective frequency of such coupled-cell system does notmatch the average frequency
of individual cells.

Another significant issue is that our results enable a comparison between the oscilla-
tory properties indicated in the kineticmodelswhich take into account gene regulations
and the ones obtained from the phase equations. As mentioned in Introduction, the
average frequency property in the coupled phase Eq. (3) holds under the assumption of
odd interaction function and symmetric connection. In our discussions in Sects. 4 and
5, the average frequency property only holds for specific parameter values or does not
hold, even for small coupling strengths, see Figs. 18 and 22. Therefore, whether and
under what assumption can the coupled phase equations accommodate the oscillatory
properties of the coupled-cell systems remains an issue to be further examined.

In a sense of coordinating two individual oscillators with different frequencies, it
was conceived that the coupling strength c has to attain a threshold (coupling strength
is strong enough) to generate a collective periodic solution and the cells oscillate
at a compromise frequency. The notion of compromise frequency was discussed in
a coupled phase equation in Strogatz (1994). It was shown therein that the phase-
locked solution exists only if the total coupling strength is larger than the difference
of the individual frequencies, in a two-component phase equation. On the contrary, in
Sect. 4.2, we saw that the HB curves in Figs. 12 and 15 can extend to small values of
coupling strength c (as small as 10−8 in AUTO computation). Our numerical compu-
tation shows that a supercritical Hopf bifurcation still occurs for c = 10−4, but the
bifurcating periodic solution has very small amplitude. The difference of individual
frequencies for these two decoupled cells is about 0.05 ·√3 which is much larger than
the coupling strength.

It has been our goal to develop an efficacious mathematical and computational
approach to tackle the problems about how the oscillations of the individual cells with
different intrinsic frequencies compromise to generate a collective periodic solution
through intercellular coupling, and how the collective frequency of oscillation changes
with the coupling strength and other parameters. The Hopf bifurcation theory provides
a theoretical basis for confirming the existence of stable periodic solutions so that the
findings on oscillations, their frequencies, and relevant dynamics are not merely based
on numerical simulations. Combining effective numerical computation with the Hopf
bifurcation theory, as demonstrated in this paper, one expands the capacity to observe
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the correspondence between oscillations and parameter values. Some of the examples
in this work are based on the HB theory, whereas the other examples are extended from
the HB theory via numerical simulations. Although the later are phenomenological
findings, the present approach provides a way to explore the nature of single-cell
systems and coupled-cell systems andmake a close observation and comparison on the
kinetics induced by Hill-type repression and the ones by protein-sequestration-based
repression. The kinetics in terms of the properties imbedded in these mathematical
models on biological processes can then be understood more thoroughly.We hope that
the present approach has also contributed toward the selection or tuning of parameter
values in the modeling.
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Appendices

A. Crossing condition for single-cell system: We consider

d

dα
[b1(α)b2(α) − b3(α)]|α=α0 = −8γ ′(α0)

γ (α0)
− γ (α0)

= − 1

γ (α0)
[8γ ′(α0) + γ 2(α0)], (46)

where

γ (α) := − f ′(x̄(α)), γ ′(α) = − f ′′(x̄(α))x̄ ′(α) = − f ′′(x̄(α)) f 2(x̄(α))

f (x̄(α)) + x̄(α)γ (α)
,

with

x̄ ′(α) = 1

α′(x̄)
=

[
d

dx̄

(
x̄

f (x̄)

)]−1

= f 2(x̄)

f (x̄) − x̄ f ′(x̄)
.
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For f = f1, γ = γ1, and at α = α0 = 8/γ1, we compute from α f1(x̄) = x̄ to find
x̄ = kH(8/(n − 8))1/n, n > 8. Thus,

γ1(α0) = − f ′
1(x̄(α0)) = knHnx̄

n−1(α0)

[knH + x̄n(α0)]2 = 8
n−1
n (n − 8)

n+1
n

nkH
,

and

γ ′
1(α0) = − f ′′

1 (x̄(α0)) · dx̄
dα

|α=α0 = 8
n−2
n (n − 8)

2n+2
n (n2 − 17n)

9n3k2H
,

with

− f ′′
1 (x̄(α0)) = 8

n−2
n (n − 8)

n+2
n (n2 − 17n)

n2k2H
,

and

dx̄

dα
|α=α0 = n − 8

9n
.

Therefore, (46) becomes

− 1

γ1(α0)
[8γ ′

1(α0) + γ 2
1 (α0)] = −8

n−1
n (n − 8)

2n+1
n

9nkH
,

which is nonzero for n > 8.
For f = f2, γ = γ2, and at α = α0 = 8/γ2, we compute from α f2(x̄) = x̄ to find

x̄ = 64

63
(A − kd) ± 8

63

√
(A − kd)2 − 252Akd .

We assume (25) and take x̄ in (26). Thus, at α0 = 8/γ2 = −8/ f ′
2(x̄), γ2(α0) =

−N0/D0, where

N0 := A − kd − 8
√

(A − kd)2 − 252Akd

−
[
65(A − kd)

2 − 252Akd − 16(A − kd)
√

(A − kd)2 − 252Akd
] 1
2

D0 := 2A
[
65(A − kd)

2 − 252Akd − 16(A − kd)
√

(A − kd)2 − 252Akd
] 1
2

and γ ′
2(α0) = N1/D1, where

N1 := 3969kd
[
A − kd − 8

√
(A − kd)2 − 252Akd

−[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12

]
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and

D1 := A[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ]

×
[
64(A − kd) − 8

√
(A − kd)2 − 252Akd

+[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12

]
.

Then, (46) becomes

− 1

γ2(α0)
[8γ ′

2(α0) + γ 2
2 (α0)] = N

D
,

where

N = 63
[
A2 + 1762Akd + k2d − 8(A − kd)

√
(A − kd)2 − 252Akd

−(A − kd)[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12

]
,

and

D = 2A
[
65(A − kd)

2 − 252Akd − 16(A − kd)
√

(A − kd)2 − 252Akd
] 1
2

×
[
64(A − kd) − 8

√
(A − kd)2 − 252Akd

+[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12

]
.

Let us analyze the numerator N : Under A > (127 + 48
√
7)kd , we have

(A − kd)
2 − 252Akd > 0

65(A − kd)
2 − 252Akd > 0, 16(A − kd)

√
(A − kd)2 − 252Akd > 0.

Note that

[65(A − kd )
2 − 252Akd ]2 − [16(A − kd )

√
(A − kd )2 − 252Akd ]2 = 3969(A − kd )

4 > 0.

With A2 + 1762Akd + k2d > 0, 8(A − kd)
√

(A − kd)2 − 252Akd > 0, and (A −
kd)[65(A − kd)2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12 > 0, we have

(A2 + 1762Akd + k2d)
2 − [8(A − kd)

√
(A − kd)2 − 252Akd ]2

− [(A − kd)[65(A − kd)
2 − 252Akd − 16(A − kd)

√
(A − kd)2 − 252Akd ] 12 ]2

= 4
√

(A − kd)2 − 252Akd [4(A − kd)
3

− (32A2 + 3023Akd + 32k2d)
√

(A − kd)2 − 252Akd ].
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There is only one intersection point A = A∗ for the graphs of functions 4(A − kd)3

and (32A2 + 3023Akd + 32k2d)
√

(A − kd)2 − 252Akd . Thus, N �= 0 if A > (127 +
48

√
7)kd and A �= A∗.

B. Equilibrium of system (30) with identical cells:
(I) Homogeneous equilibrium: A point (x1, x2, x3, x4, y1, y2, y3, y4) is an equilib-

rium of system (30) if and only if

x1 = x2 = x3, f (x3) = x4, α f (x3) − x1 + c

2
[x4 + y4] = 0,

y1 = y2 = y3, f (y3) = y4, α f (y3) − y1 + c

2
[y4 + x4] = 0.

Suppose there exists an equilibrium. Combining these equalities yields

α[ f (x1) − f (y1)] = x1 − y1.

As α > 0, we have x1 = y1 provided f ′ < 0, by the mean value theorem. Subse-
quently, xi = yi , for i = 2, 3, 4. That is, an equilibrium of system (30) has to be of
the form

(ξ, ξ, ξ, f (ξ), ξ, ξ, ξ, f (ξ)), (47)

where ξ satisfies (α + c) f (ξ) = ξ . With given α, c > 0, such ξ > 0 always
exists uniquely for f = f1, f2, as they are strictly decreasing, and fi (0) >

0, limξ→∞ fi (ξ) = 0, i = 1, 2. Therefore, for any given parameters (with posi-
tive values), there always exists an unique positive equilibrium for system (30), and it
has to be homogeneous (i.e., in the form (47)).

(II) Equilibrium of system (30) at the HB value: With α = α∗ in (32), we solve
(α + c) f (x̄) = x̄ to find positive x̄ . That is, we look for x̄ which satisfies

γ x̄

f (x̄)
= 1

2
[−(s − 1)(s2 + 4s + 7) + (s + 3)

√
(s2 + 3)2 − 4scγ ] + cγ, (48)

where γ = − f ′(x̄). For f = f1, γ = γ1 = (knHnx̄
n−1)/(knH + x̄n)2. For convenience,

we drop the bar on x . We analyze the intersection of the graphs of p1(x) and q1(x),
where

p1(x) := nxn

knH + xn

q1(x) := 1

2
[−(s − 1)(s2 + 4s + 7) + (s + 3)

√
(s2 + 3)2 − 4scγ1] + cγ1.

We compute to find

p′
1(x) = knHn

2xn−1

(knH + xn)2
, and p′′

1(x) = knHn
2xn−2[knH(n − 1) − xn(n + 1)]

(knH + xn)3
.
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Thus, p1(x) is increasing for x > 0, concave upward for 0 < x < xM and concave
downward for x > xM, where xM := kH[(n − 1)/(n + 1)]1/n . In addition, p1(0) = 0
and limx→∞ p1(x) = n. On the other hand, q1(0) = 8, limx→∞ q1(x) = 8, and
q ′
1(x) = g1(x)/h1(x), where

g1(x) := cknHnx
n−2[knH(n − 1) − xn(n + 1)]

{
−s(s + 3)

+
[
(s2 + 3)2 − 4scknHnx

n−1

(knH + xn)2

]1/2
⎫
⎬

⎭

h1(x) := (knH + xn)3
[
(s2 + 3)2 − 4scknHnx

n−1

(knH + xn)2

]1/2

.

It can be seen that there is only one critical point xM for q1(x), when c is small. The
existence of equilibrium at α = α∗ thus follows. We draw the graphs of p1(x) and
q1(x) for the parameter values in Example 4.1.1(i) in Fig. 24.

For f = f2,

γ = γ2 = A − x̄ − kd + √
(A − x̄ − kd)2 + 4Akd

2A
√

(A − x̄ − kd)2 + 4Akd
.

For convenience, we drop the bar on x . We look for the intersection of the graphs of
p2(x) and q2(x), where

p2(x) := x√
(A − x − kd)2 + 4Akd

q2(x) := 1

2
[−(s − 1)(s2 + 4s + 7) + (s + 3)

√
(s2 + 3)2 − 4scγ2] + cγ2.

Note that p2(0) = 0, and limx→∞ p2(x) = 1. We compute to find

p′
2(x) = (A + kd)2 − x(A − kd)

[(A − x − kd)2 + 4Akd ] 32
and

p′′
2(x) = (A − kd)(A + kd)2 − x[2(A2 + Akd + k2d) − x(A − kd)]

[(A − x − kd)2 + 4Akd ] 52
.

There is a critical point of p2(x) at x = (A+kd )2

A−kd
and

p′′
2

(
(A + kd)2

A − kd

)
= − (A − kd)4

8(A + kd)3(Akd)
3
2

< 0.
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Fig. 24 The intersection for the graphs of p1(x) and q1(x), with parameter values in Example 4.1.1(i):
n = 11, kH = 0.136, s = 20, and c = 0.01. The right figure zooms in the left one

Fig. 25 The intersection for the graphs of p2(x) and q2(x), with parameter values in Example 4.1.1(ii):
A = 0.0659, kd = 0.00001, s = 20, and c = 0.01. The right figure zooms in the left one

Thus, p2(x) attains a local maximum at this critical point, by the second derivative
test. On the other hand, limx→∞ q2(x) = 8, and

q2(0) = 1

2

[
−(s − 1)(s2 + 4s + 7) + (s + 3)

[
(s2 + 3)2 − 4sc

A + kd

]1/2]
+ c

A + kd
.

We compute to find q ′
2(x) = g2(x)/h2(x), where

g2(x) = 2ckd

⎡

⎣s(s + 3) −
[
(s2 + 3)2 − 4sc

A − x − kd + √
(A − x − kd )2 + 4Akd

2A
√

(A − x − kd )2 + 4Akd

]1/2
⎤

⎦ ,

h2(x) = [(A − x − kd )
2 + 4Akd ] 3

2

[
(s2 + 3)2 − 4sc

A − x − kd + √
(A − x − kd )2 + 4Akd

2A
√

(A − x − kd )2 + 4Akd

]1/2

.

At c = 0, we have q2(0) = 8, g2(x) > 0 for s > 1, and h2(x) > 0. Thus, we conclude
that q2(x) is an increasing function with q2(0) ≈ 8, when c is small. Thus, there exist
two equilibria at α = α∗ when c is small. We draw the graphs of p2(x) and q2(x) for
the parameter values in Example 4.1.1(ii) in Fig. 25.

123



Collective Oscillations in Coupled-Cell Systems Page 49 of 60 62

C. The graphs of γ1 and γ2:

We compute to find γ1 = γ1(x̄) = knHnx̄
n−1

(knH+x̄n)2
. We drop the bar on x and regard γ1 as

a function of x . Then,

γ ′
1(x) = knHnx

n−2[knH(n − 1) − xn(n + 1)]
(knH + xn)3

.

There is a critical point xM := kH
(
n−1
n+1

) 1
n
, where γ1 attains a local maximum, by the

first derivative test. In addition, γ1(0) = 0, and lim
x→∞ γ1(x) = 0.

We compute to find γ2 = γ2(x̄) = A−x̄−kd+
√

(A−x̄−kd )2+4Akd

2A
√

(A−x̄−kd )2+4Akd
. Dropping the bar

on x , then

γ ′
2(x) = −2kd

[(A − x − kd)2 + 4Akd ] 32
and γ ′′

2 (x) = −6kd(A − x − kd)

[(A − x − kd)2 + 4Akd ] 52
.

Thus, γ2 is decreasing for x > 0, concave downward for 0 < x < A−kd and concave
upward for x > A − kd . In addition, γ2(0) = 1/(A + kd) and limx→∞ γ2(x) = 0.
The graphs of γ1 and γ2 for the data in Example 4.1.1 are drawn in Fig. 10.
D. Numerics of x̄ , γ1, γ2, and ω∗

c , along the HB curves:
(i) We take the parameter values in Example 4.1.1: n = 11, kH = 0.136, A =

0.0659, and kd = 0.00001. We compute to find xM = kH( n−1
n+1 )

1/n ≈ 0.133764, and

x̄ = kH( 8
n−8 )

1/n ≈ 0.148684, where x̄ is the component of the equilibrium for the
single-cell HT model. Thus, x̄ − xM ≈ 0.014919. On the other hand, x̄ ≈ 0.058730
in the single-cell PS model. The component x̄ of the equilibrium of coupled system
(30) at c = 0.1 is x̄ ≈ 0.147363 in the HT model, and x̄ ≈ 0.058549 in the PS model.
The component x̄ of the equilibrium of coupled system (30), the values of γ1, γ2, and
the frequency ω∗

c at the HB values along the HB curve are plotted in Fig. 26.
(ii)Holding theparameter values inExample 4.1.1 and taking s = 10 insteadof s = 20,
we compute to find xM = kH( n−1

n+1 )
1/n ≈ 0.133764, and x̄ = kH( 8

n−8 )
1/n ≈ 0.148684,

where x̄ is the component of the equilibrium for the HT single-cell model. Thus,
x̄−xM ≈ 0.014919.On the other hand, x̄ ≈ 0.059994 in the single-cell PSmodel. The
component x̄ of the equilibrium of coupled system (30) at c = 0.1 is x̄ ≈ 0.146170 in
theHTmodel, and x̄ ≈ 0.058385 in the PSmodel. The component x̄ of the equilibrium
of coupled system (30), the values of γ1, γ2, and the frequency ω∗

c at the HB values
along the HB curve are plotted in Fig. 27. The difference between the model with f1
and the model with f2 is more obvious.
(iii) Taking n = 18, and parameter values kH = 0.136, A = 0.029375, kd =
0.00001, and s = 10, we compute to find xM = kH( n−1

n+1 )
1/n ≈ 0.135162, and

x̄ = kH( 8
n−8 )

1/n ≈ 0.134324, where x̄ is the component of the equilibrium for the
single-cell HT model. Thus, x̄ − xM ≈ −0.000838. On the other hand, x̄ ≈ 0.026266
in the PS model. For the component x̄ of the equilibrium of coupled system (30), at
c = 0.1, x̄ ≈ 0.132864 in the HT model, and x̄ ≈ 0.025891 in the PS model. The
component x̄ of the equilibrium of coupled system (30), the values of γ1, γ2, and the
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Fig. 26 The values for the component x̄ of the equilibrium, γ and ω∗
c at the HB values (c∗, α∗) along the

HB curve. Here, n = 11, kH = 0.136, A = 0.0659, kd = 0.00001, and s = 20

Fig. 27 The values for the component x̄ of the equilibrium, γ and ω∗
c at the HB values (c∗, α∗) along the

HB curve. Here, n = 11, kH = 0.136, A = 0.0659, kd = 0.00001, and s = 10

frequency ω∗
c at the HB values along the HB curve are plotted in Fig. 28. The graphs

of γ1 and γ2 are drawn in Fig. 29. Note that x̄ now lies on the left hand side of xM .

E. Existence of equilibrium for system (39) with nonidentical cells:

A point (x1, x2, x3, x4, y1, y2, y3, y4) is an equilibrium of system (39) if and only
if

x1 = x2 = x3, f (x3) = x4, α f (x3) − x1 + c

2
[x4 + y4] = 0,

y1 = y2 = y3, f (y3) = y4, σ [α f (y3) − y1] + c

2
[y4 + x4] = 0.
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Fig. 28 The values for the component x̄ of the equilibrium, γ and ω∗
c at the HB values (c∗, α∗) along the

HB curve. Here, n = 18, kH = 0.136, A = 0.029375, kd = 0.00001, and s = 10

Fig. 29 The graphs of γ1(x) and γ2(x), with n = 18, kH = 0.136, A = 0.029375, kd = 0.00001. The
green diamond represents xM ≈ 0.135162, the magenta diamond represents x̄ ≈ 0.134324 when c = 0
in the HT model, and the magenta circle represents x̄ ≈ 0.025891 when c = 0 in the PS model. The right
figure zooms in the left one (Color figure online)

That is, an equilibrium of system (39) is in the form

(ξ, ξ, ξ, f (ξ), η, η, η, f (η)),

where ξ, η satisfy H1(ξ, η, σ ) = 0, H2(ξ, η, σ ) = 0, with

H1(ξ, η, σ ) := α f (ξ) − ξ + c

2
[ f (ξ) + f (η)],

H2(ξ, η, σ ) := σ [α f (η) − η] + c

2
[ f (η) + f (ξ)],
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regarding that all parameters other thanσ are fixed. Suppose ξ0 satisfies (α+c) f (ξ0) =
ξ0. Then, H1(ξ0, ξ0, 1) = 0, H2(ξ0, ξ0, 1) = 0. We compute to have

det
∂(H1, H2)

∂(ξ, η)
= [α f ′(ξ0) − 1][(α + c) f ′(ξ0) − 1] > 0

at (ξ, η, σ ) = (ξ0, ξ0, 1), due toα, c > 0, f ′ < 0. Thus, there exists a unique branch of
solutions (ξ(σ ), η(σ )) so that H1(ξ(σ ), η(σ ), σ ) = 0, H2(ξ(σ ), η(σ ), σ ) = 0, with
(ξ(1), η(1)) = (ξ0, ξ0), for σ close to 1, according to the implicit function theorem.
The existence of equilibrium of system (39) with σ close to 1 is thus confirmed.

Supplementary Materials
I.The terms determining the properties of Hopf bifurcation in Theorem 2: Letα denote
one of the parameters in system (7).While holding the other parameters at fixed values,
we write the system as dx/dt = f(x;α). After translation to the equilibrium x̄, we put
it into the form:

ẋ = J (x̄;α)x + f̃(x;α),

where x = (x1, x2, . . . , xm), J (x̄;α)x is the linear term, and f̃ = ( f1, f2, . . . , fm) is
the nonlinear term. At α = α∗, J (x̄;α∗) has a pair of purely imaginary eigenvalues
λ(α∗) = ±iω∗. Let us make a transformation so that the linear part is in normal form.
We consider the change of variables x = Pz, where

P = [
Im(u) Re(u) v3 · · · vm

]
m×m ,

and u ∈ R
m is the eigenvector of J (x̄;α∗) corresponding to the eigenvalue iω∗ and

v3, . . . , vm are the real or imaginary parts of the generalized eigenvectors for the
remaining eigenvalues. Thus,

P−1 J (x̄;α∗)P =

⎡

⎢⎢⎣
0 −ω∗ ...

ω∗ 0
...

· · · · · · D

⎤

⎥⎥⎦ , (49)

where D is an (m − 2) × (m − 2) matrix. Then, the transformed system becomes

ż = P−1 J (x̄;α)Pz + F(z;α),

where z = (z1, . . . , zm) and F(z;α) = P−1 f̃(Pz;α) with F = (F1, . . . , Fm). At
α = α∗, z = 0, we define

g11 := 1

4

[(
∂2F1
∂z21

+ ∂2F1
∂z22

)
+ i

(
∂2F2
∂z21

+ ∂2F2
∂z22

)]
,

g02 := 1

4

[(
∂2F1
∂z21

− ∂2F1
∂z22

− 2
∂2F2

∂z1∂z2

)
+ i

(
∂2F2
∂z21

− ∂2F2
∂z22

+ 2
∂2F1

∂z1∂z2

)]
,
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g20 := 1

4

[(
∂2F1
∂z21

− ∂2F1
∂z22

+ 2
∂2F2

∂z1∂z2

)
+ i

(
∂2F2
∂z21

− ∂2F2
∂z22

− 2
∂2F1

∂z1∂z2

)]
,

G21 := 1

8

[(
∂3F1
∂z31

+ ∂3F1
∂z1∂z22

+ ∂3F2
∂z21∂z2

+ ∂3F2
∂z32

)

+i

(
∂3F2
∂z31

+ ∂3F2
∂z1∂z22

− ∂3F1
∂z21∂z2

− ∂3F1
∂z32

)]
.

Next, for k = 3, . . . ,m, we set

h(k−2)
11 := 1

4

(
∂2Fk
∂z21

+ ∂2Fk
∂z22

)
,

h(k−2)
20 := 1

4

[(
∂2Fk
∂z21

− ∂2Fk
∂z22

)
− 2i

(
∂2Fk

∂z1∂z2

)]
,

evaluated at α = α∗, z = 0. Let w(k−2)
11 , w(k−2)

20 ∈ C
m−2 be the solutions of

Dw
(k−2)
11 = −h(k−2)

11 , (D − 2iω∗
c I )w

(k−2)
20 = −h(k−2)

20 ,

where D is defined in (49). For k = 3, . . . ,m, let

G(k−2)
110 := 1

2

[(
∂2F1

∂z1∂zk
+ ∂2F2

∂z2∂zk

)
+ i

(
∂2F2

∂z1∂zk
− ∂2F1

∂z2∂zk

)]
,

G(k−2)
101 := 1

2

[(
∂2F1

∂z1∂zk
− ∂2F2

∂z2∂zk

)
+ i

(
∂2F2

∂z1∂zk
+ ∂2F1

∂z2∂zk

)]
,

evaluated at α = α∗, z = 0. Then we define

g21 := G21 +
m−2∑

k=1

(2G(k)
110w

(k)
11 + G(k)

101w
(k)
20 ).

The following quantities can then be defined:

C1(α
∗) := i

2ω∗ (g20g11 − 2|g11|2 − 1

3
|g02|2) + g21

2
, (50)

p2 := −Re(C1(α
∗))

Re(λ′(α∗))
, (51)

ζ2 := 2Re(C1(α
∗)), (52)

T2 := −1

ω∗ [Im(C1(α
∗)) + p2Im(λ′(α∗))], (53)
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where λ(α) is the branch of eigenvalue crossing the imaginary axis at α = α∗, and
λ(α∗) = iω∗, with ω∗ > 0. The details can be found in Hassard et al. (1981).

The computed values of C1(α0), p2, ζ2, and T2 in Example 3.1 are

C1(α0) = −6.630408 − 13.971477i and λ′(α0) = 0.611426 + 1.059021i,

p2 = −Re(C1(α0))

Re(λ′(α0))
= 10.844170 > 0,

ζ2 = 2Re(C1(α0)) = −13.260817 < 0,

T2 = − 1√
3
[Im(C1(α0)) + p2Im(λ′(α0))] = 1.436028 > 0.

The computed values of C1(α0), p2, ζ2, and T2 in Example 3.2 are

C1(α0) = −3.541903 − 6.152133i and λ′(α0) = 0.624443 + 1.081567i,

p2 = −Re(C1(α0))

Re(λ′(α0))
= 5.672099 > 0,

ζ2 = 2Re(C1(α0)) = −7.083806 < 0,

T2 = − 1√
3
[Im(C1(α0)) + p2Im(λ′(α0))] = 0.010032 > 0.

II. Single-cell system for clock gene model
When c = 0, system (44) is decoupled into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ν1kn1
kn1 + xn3

− ν2x1
k2 + x1

ẋ2 = ν3x1 − ν4x2
k4 + x2

− ν5x2

ẋ3 = ν5x2 − ν6x3
k6 + x3

ẋ4 = ν7kh7
kh7 + xh3

− ν8x4
k8 + x4

,

(54)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = σ

(
ν1kn1

kn1 + yn3
− ν2y1

k2 + y1

)

ẏ2 = σ

(
ν3y1 − ν4y2

k4 + y2
− ν5y2

)

ẏ3 = σ

(
ν5y2 − ν6y3

k6 + y3

)

ẏ4 = σ

(
ν7kh7

kh7 + yh3
− ν8y4

k8 + y4

)
.

(55)

First, we discuss the existence of positive equilibrium.
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Proposition 3 Assume ν8 > ν7. For any fixed integers n ≥ 1 and h ≥ 1, there exists
a unique positive equilibrium x̄ = (x̄1, x̄2, x̄3, x̄4) for system (54), where

x̄1 = ν6 x̄3[k6(ν4 + k4ν5) + (ν4 + k4ν5 + ν6)x̄3]
ν3(k6 + x̄3)[ν6 x̄3 + k4ν5(k6 + x̄3)] ,

x̄2 = ν6 x̄3
ν5(k6 + x̄3)

,

x̄4 = kh7k8ν7

kh7 (ν8 − ν7) + ν8 x̄ h3
,

and x̄3 is the unique solution to the equation PL(ξ) = PR(ξ), with

PL(ξ) := ν1kn1
kn1 + ξn

,

PR(ξ) := {[ν2ν6(ν4 + k4ν5 + ν6)]ξ2 + k6ν2ν6(ν4 + k4ν5)ξ}
· {[k2ν3(k4ν5 + ν6) + ν6(ν4 + k4ν5 + ν6)]ξ2
+ [k6(ν6(ν4 + k4ν5) + k2ν3(2k4ν5 + ν6))]ξ + k2k4k

2
6ν3ν5}−1.

Proof (x̄1, x̄2, x̄3, x̄4) is an equilibrium of (54) if and only if (x1, x2, x3, x4) =
(x̄1, x̄2, x̄3, x̄4) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1kn1
kn1 + xn3

− ν2x1
k2 + x1

= 0

ν3x1 − ν4x2
k4 + x2

− ν5x2 = 0

ν5x2 − ν6x3
k6 + x3

= 0

ν7kh7
kh7 + xh3

− ν8x4
k8 + x4

= 0.

Accordingly,

x̄1 = ν6 x̄3[k6(ν4 + k4ν5) + (ν4 + k4ν5 + ν6)x̄3]
ν3(k6 + x̄3)[ν6 x̄3 + k4ν5(k6 + x̄3)] ,

x̄2 = ν6 x̄3
ν5(k6 + x̄3)

,

x̄4 = kh7k8ν7

kh7 (ν8 − ν7) + ν8 x̄ h3
,

and x̄3 satisfies PL(ξ) = PR(ξ). Observe that there exists exactly one positive solution
to PL(ξ) = PR(ξ), due to ν8 > ν7, and

PR(0) = 0, P ′
R(ξ) > 0, for all ξ > 0,

PL(0) > 0, P ′
L(ξ) < 0, for all ξ > 0,
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and

lim
ξ→∞ PR(ξ) = ν2ν6(ν4 + k4ν5 + ν6)

k2ν3(k4ν5 + ν6) + ν6(ν4 + k4ν5 + ν6)
> 0, lim

ξ→∞ PL(ξ) = 0.

��
We now take ν1 as the bifurcation parameter and employ Theorem 1 to locate the

bifurcation values and confirm the existence of periodic solutions bifurcating from x̄.
The Jacobian matrix associated with the linearization of system (55) at x̄ is

J (x̄; ν1) =

⎡

⎢⎢⎣

− d1 0 −ν1γ1 0
ν3 −d2 0 0
0 ν5 −d3 0
0 0 −γ3 −d4

⎤

⎥⎥⎦ ,

where

d1 := ν2k2
(k2 + x̄1)2

, d2 := ν4k4
(k4 + x̄2)2

+ ν5, d3 := ν6k6
(k6 + x̄3)2

, d4 := ν8k8
(k8 + x̄4)4

,

γ1 := kn1nx̄
n−1
3

(kn1 + x̄n3 )2
, γ3 := ν7kh7hx̄

h−1
3

(kh7 + x̄ h3 )2
.

The characteristic polynomial Δ(λ) := det(λI − J (x̄; ν1)) can be factored as

Δ(λ) = Δ1(λ) · Δ2(λ), (56)

where

Δ1(λ) := λ + d4,

Δ2(λ) := λ3 + b1λ
2 + b2λ + b3,

b1 := d1 + d2 + d3, b2 := d1d2 + d1d3 + d2d3, b3 := d1d2d3 + ν1ν3ν5γ1.

Note that b1 > 0 and b3 > 0. Thus, applying (10) toΔ2(λ) = 0,we conclude thatΔ(λ)

has a pair of purely imaginary roots and two negative roots if and only if b1b2−b3 = 0.
Our approach is to take ν1 as the bifurcation parameter and allow it to vary, while fix
the other parameters at suitable values. From the equation b1(ν�

1 )b2(ν�
1 )−b3(ν�

1 ) = 0,
we find

ν�
1 = (d1 + d2)(d1 + d3)(d2 + d3)

ν3ν5γ1
> 0. (57)

From (57), we see that ν�
1 can be expressed by x̄1, x̄2, x̄3, and hence by x̄3 and the other

parameters. We substitute ν1 = ν�
1 by this expression into the stationary equations to

solve for x̄3 numerically. If such solution x̄3 > 0 exists, then we can find x̄1, x̄2, x̄4
from (3). The crossing condition can also be examined numerically. By substituting

123



Collective Oscillations in Coupled-Cell Systems Page 57 of 60 62

Fig. 30 The solution (x1(t), x2(t), x3(t), x4(t)) of system (54) with ν1 = 0.076, evolved from
(0.02653, 0.5969, 0.4705, 1.3115), approaches a periodic solution with period about 20.591043

ν1 = ν�
1 in (57) into Δ2(λ), we can also compute its purely imaginary roots ±iω0.

From Theorem 1, let us summarize:

Theorem 5 Assume that the equilibrium of system (54) exists at the Hopf bifurcation
value ν1 = ν�

1 , and the crossing condition holds. Then, the system undergoes a Hopf
bifurcation at x = x̄ and ν1 = ν�

1 , and a small-amplitude periodic solution near x̄
emerges as ν1 < ν�

1 or ν1 > ν�
1 and ν1 is close to ν�

1 , with frequency approximately

ω0 = √
d1d2 + d1d3 + d2d3 > 0.

Note that system (55) undergoes a Hopf bifurcation at the same x = x̄ and ν1 = ν�
1 ,

with frequency about σω0 for the emergent periodic solution.
Example S. Consider system (54) with the following parameter values

k1 = 0.103, k2 = 9.916, k4 = 0.182, k6 = 0.302, k7 = 1.87, k8 = 0.377,

ν2 = 0.963, ν3 = 45.172, ν4 = 1.447, ν5 = 0.15, ν6 = 0.147, ν7 = 1.912

ν8 = 2.315, n = h = 2.

These values either coincide with the ones in the example in Uriu et al. (2010) or fall
within the designated ranges therein. We look for a value ν�

1 which satisfies (57). First,
we express ν�

1 in (57) in terms of γ1 which in turn is a function of x̄3. We substitute
ν1 = ν�

1 into system (54) to find the equilibrium. After computation, the equilibrium
is x̄ = (x̄1, x̄2, x̄3, x̄4), with x̄1 ≈ 0.026935, x̄2 ≈ 0.629151, x̄3 ≈ 0.541554, x̄4 ≈
1.207095.With this x̄, we then compute to obtain the bifurcation value ν�

1 ≈ 0.074726.
Therefore, with further computation, we can confirm that a periodic solution emerges
at ν1 > ν�

1 and ν1 close to ν�
1 , with frequency approximately ω0 = 0.305785. We

illustrate such result by computing numerically system (54) with ν1 = 0.076 and the
other parameter values as above. We observe the periodic solution with frequency
0.305142, shown in Fig. 30.
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The Jacobian matrix associated with the linearization of system (44) at X is

J (X; ν1) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− d1 0 −(ν1 + νc ȳ4)γ1 0 0 0 0 γ2
ν3 −d2 0 0 0 0 0 0
0 ν5 −d3 0 0 0 0 0
0 0 −γ3 −d4 0 0 0 0

0 0 0 γ5 −σd5 0 −σ
(
ν1 + νc

σ
x̄4

)
γ4 0

0 0 0 0 σν3 −σd6 0 0
0 0 0 0 0 σν5 −σd7 0
0 0 0 0 0 0 −σγ6 −σd8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

d1 := ν2k2
(k2 + x̄1)2

, d2 := ν4k4
(k4 + x̄2)2

+ ν5, d3 := ν6k6
(k6 + x̄3)2

, d4 := ν8k8
(k8 + x̄4)2

,

d5 := ν2k2
(k2 + ȳ1)2

, d6 := ν4k4
(k4 + ȳ2)2

+ ν5, d7 := ν6k6
(k6 + ȳ3)2

, d8 := ν8k8
(k8 + ȳ4)2

,

γ1 := kn1nx̄
n−1
3

(kn1 + x̄n3 )2
, γ2 := νckn1

kn1 + x̄n3
, γ3 := ν7kh7hx̄

h−1
3

(kh7 + x̄ h3 )2
,

γ4 := kn1n ȳ
n−1
3

(kn1 + ȳn3 )2
, γ5 := νckn1

kn1 + ȳn3
, γ6 := ν7kh7h ȳ

h−1
3

(kh7 + ȳh3 )2
.
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