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A B S T R A C T

We introduce a Bayesian optimization method for estimating the maximum tolerated dose in this article. A
number of parametric model-based methods have been proposed to estimate the maximum tolerated dose;
however, parametric model-based methods need an assumption that dose–toxicity relationships follow specific
theoretical models. This assumption potentially leads to suboptimal dose selections if the dose–toxicity curve
is misspecified. Our proposed method is based on a Bayesian optimization framework for finding a global
optimizer of unknown functions that are expensive to evaluate while using very few function evaluations.
It models dose–toxicity relationships with a nonparametric model; therefore, a more flexible estimation can
be realized compared with existing parametric model-based methods. Also, most existing methods rely on
point estimates of dose–toxicity curves in their dose selections. In contrast, our proposed method exploits
a probabilistic model for an unknown function to determine the next dose candidate without ignoring
the uncertainty of posterior while imposing some dose-escalation limitations. We investigate the operating
characteristics of our proposed method by comparing them with those of the Bayesian-based continual
reassessment method and two different nonparametric methods. Simulation results suggest that our proposed
method works successfully in terms of selections of the maximum tolerated dose correctly and safe dose
allocations.
1. Introduction

The primary goal of oncology Phase I clinical trials is to identify
the maximum tolerated dose (MTD) defined as the highest dose that
does not cause an unacceptable level of dose-limiting toxicity (DLT). A
number of statistical methods have been proposed for identifying the
MTD. The earliest rule-based method is the 3+3 method [1] and is still
employed by researchers mainly because of its simplicity [2]; however,
it is well-known that the 3+3 method has substantial limitations [3–
6]. In addition, many authors have demonstrated that the continual
reassessment method (CRM) [7] and its variations [8–11] provide
superior performance to the 3+3 method in terms of accuracy of
estimation, proper dose allocation, and flexibility [12–19]. Therefore,
leading pharmaceutical companies have commonly applied variations
of the CRM in oncology Phase I clinical trials [20].

The CRM needs to specify a theoretical model describing a dose–
toxicity relationship before the beginning of a trial. It has been demon-
strated that the CRM can achieve the primary goal with regards to the
selection of the MTD even if the model is misspecified [21]; however,

∗ Correspondence to: 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

sufficient conditions to converge to the true MTD established by the
previous study [21] might be too restrictive [22]. It means that there
are possible scenarios where the CRM cannot guarantee convergence.
In addition, the choice of theoretical models in the CRM would affect
the operating characteristics if sample sizes are small (e.g., 10 to 50
patients) [23].

As different approaches from parametric model-based methods,
nonparametric Bayesian methods have been introduced to relax the
effect of model selections. Toxicity probability interval methods might
be major approaches of nonparametric Bayesian methods. The modified
toxicity probability interval (mTPI) [24] is one of the most popular tox-
icity probability interval methods. The mTPI is designed to implement
as simply as the 3+3 methods without any logistic burden, although it is
a Bayesian adaptive design assisted by a beta-binomial model. Because
of its simplicity and much better performance than the 3+3 method, the
popularity of the mTPI has been growing in both research and industry
entities during the relatively short period since it was proposed [25].
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The Bayesian optimal interval (BOIN) [26] uses the same type of
decision rules as the mTPI except for escalation and de-escalation
boundaries. An extended version of the mTPI named mTPI-2 [27] has
been proposed to solve an undesirable issue, which may happen under
specific situations, about dose-escalation and de-escalation rule based
on the mTPI.

An existing study that compared parametric model-based methods
(CRM, dose-escalation with overdose control and Bayesian logistic re-
gression model) and toxicity probability interval methods (mTPI, BOIN,
and keyboard design which operates in the same way as the mTPI-2)
reported that the CRM outperformed the other parametric model-based
methods in terms of accuracy of identifying the MTD, and the BOIN
outperformed the mTPI and provided comparable performance with the
CRM [28]. Similarly, another study that compared the operating char-
acteristics of the 3+3 method, the CRM, the BOIN, and the keyboard
design [29] suggested that both the BOIN and the keyboard design
provided comparable performance with the CRM. It was also reported
that the CRM tended to outperform the BOIN and mTPI as the number
of dose levels increases [30]. There are other studies that compared per-
formance between the CRM and toxicity probability interval methods.
Conclusions differ slightly among studies; however, the common point
is that the CRM would consistently perform well in various scenarios
and toxicity probability interval methods are attractive in their ease of
use.

Other than toxicity probability interval methods, a nonparametric
Bayesian method based on a product-of-beta-prior (PBP) [31,32] has
been cited as a curve-free method in many articles. It models a toxicity
probability at each dose level directly without assuming a specific dose–
toxicity curve. It assumes a prior distribution of a toxicity probability
as a product-of-beta prior owing to the reparametrization of a toxicity
probability at each dose level by another parameter with a beta-prior
distribution. Although the PBP might cause rigidity in situations where
a low toxicity rate is targeted due to its vague priors, the solutions have
been discussed and given by the existing study [33]. Also, the PBP has
sometimes been pointed for its numerical problem on exact posterior
toxicity distributions, while this is avoidable if Markov chain Monte
Carlo (MCMC) is used instead of the exact computation. A different type
of Bayesian curve-free methods [34] has been introduced to consider
probabilities falling into pre-specified toxicity risk categories on each
dose level (hereafter, we abbreviate this method WTW based on the
initial of the authors). There is also a curve-free method based on
Dirichlet process prior [35]. An existing study indicated that curve-
free methods would prefer to the CRM if there is little evidence of
high enough quality about dose–toxicity relationships [18]. There are
already several curve-free methods. Nevertheless, it would have been
yet a great challenge to develop a sophisticated curve-free method
because little is known about dose–toxicity relationships in general.

The purpose of this article is to introduce a Bayesian nonpara-
metric approach named Bayesian optimization method that provides
a different approach from existing curve-free methods and realizes
sophisticated dose selection procedures by utilizing a Bayesian opti-
mization framework. The Bayesian optimization [36,37] has emerged
as an efficient optimization strategy of unknown functions that are
expensive to evaluate and has recently impacted a wide range of areas
such as machine learning, sensor networks, environmental monitor-
ing [38]. Our proposed method nonparametrically models dose–toxicity
relationships; therefore, it realizes flexible modeling. Also, it allows
identifying the MTD in relatively few evaluations while utilizing all
available information that includes uncertainties of estimates from ob-
servations without simply relying on local optimal points in accordance
with a Bayesian optimization framework. To the best of our knowledge,
no literature exists on investigating a Bayesian optimization approach
for estimating the MTD in Phase I clinical trials.

Once patient outcomes are observed, our proposed method updates
a distribution over an unknown dose–toxicity function via Bayes’ rule.
2

The next dose is then guided by an acquisition function derived from a
the updated distribution. Similar to other dose-finding methods, we re-
peat the steps of observing patient outcomes, updating the distribution,
and selecting the next dose until either pre-specified stopping criteria
is met. As for safety monitoring during a trial, our proposed method
imposes some dose-escalation restrictions through an admissible dose
set defined to ensure patient safety. Based on the final distribution for
the dose–toxicity relationship at the end of a trial, the MTD is selected
from the final MTD candidate set defined from the view of safety
perspective which aims to reduce overdose determination. Our simula-
tion study suggests that our proposed method provides comparable or
better performance on the MTD estimation and safer dose allocations
compared with the Bayesian-based CRM and also provides more stable
results than the PBP and the WTW.

We organize this article as follows: In Section 2, we describe statisti-
cal modelings and dose-finding strategies of our proposed method. We
also introduce a brief example with some illustrations when our pro-
posed method applies. In Section 3, we describe simulation frameworks
to compare our proposed method, the CRM, the PBP, and the WTW.
We briefly explain each competitor as well. The simulation results are
shown after the explanations of the simulation framework. The last
section presents our conclusion as well as some discussions for our
future works.

2. A Bayesian optimization design

Sections 2.1 and 2.2 describe how our proposed method models
dose–toxicity relationships and selects the MTD candidate. Section 2.3
mentions overdose control imposed in our proposed method to ensure
patient safety. Section 2.4 describes the implementation steps of our
proposed method. Section 2.5 illustrates a brief example with some
drawings that we can obtain in our proposed method.

2.1. Dose–toxicity relationship

In a Bayesian optimization method, dose–toxicity relationships are
modeled through a nonparametric approach. Let us define dose–toxicity
relationships as follows:

𝑓 (𝑥𝑗 ) = logit(𝜋𝑗 ) = log
( 𝜋𝑗
1 − 𝜋𝑗

)

, (1)

where 𝜋𝑗 denotes a toxicity probability at a conceptual dose 𝑥𝑗 cor-
esponding to a dose level 𝑗 ∈ {1,… , 𝐽}. The logit transformation
or 𝜋𝑗 plays a role to guarantee that 𝜋𝑗 bounds within the range 0

to 1 on a finite dose range. We note that a conceptual dose 𝑥𝑗 is not
necessary to be an actual dose because dose–toxicity relationships in
the estimation process only rely on distances between conceptual doses
but not actual doses; however, conceptual doses should be as equally
spaced with regards to toxicity probabilities as possible so that we could
avoid skewed estimation of toxicity.

Based on typical Bayesian optimization frameworks, a Gaussian
process prior is put over the unknown function 𝑓 to estimate it in the
Bayesian manner:

𝑓 ∼ GP(𝑚, 𝑘). (2)

The Gaussian process prior is specified by a mean function 𝑚(𝑥) and a
ovariance function 𝑘(𝑥, 𝑥′), where 𝑥 ∈ {𝑥1,… , 𝑥𝐽 }. A Gaussian process
akes a model easy to treat because it leaves setting a prior distribution

o designing a kernel function [39]. (As a side note, there is a method
hat utilizes a Gaussian process for dose-finding studies, although its
ain purpose is modeling population pharmacokinetics based on data

bserved in dose-finding studies [40].)
The prior mean function for 𝑚(𝑥) derives from pre-specified initial

uesses for toxicity probabilities. Because little is known about dose–
oxicity relationships in general, one option for setting initial guesses
ight be utilizing an indifference interval determined by a systematic
pproach proposed for the CRM [41]. The indifference interval for a
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given dose level is defined as an interval of toxicity rates associated
with the neighboring doses, such that these neighboring doses may be
selected instead of the true MTD. The systematic approach provides
an indifference interval to maximize the average percentage of correct
selection in the selected model of the CRM across a set of scenarios of
true toxicity probabilities. We will describe detailed steps about how to
set initial guesses based on the indifference interval approach at Step 1
for the model phase in Section 2.4. The covariance function 𝑘(𝑥, 𝑥′),
which is a kernel function, determines the smoothness properties of
samples drawn from it. We apply the squared exponential kernel given
by

𝑘(𝑥, 𝑥′) = 𝜎2𝑓 exp
(

− 1
2𝜌2

∣ 𝑥 − 𝑥′ ∣2
)

, (3)

where 𝜎𝑓 is called a signal variance and 𝜌 is a scale parameter. A signal
variance 𝜎𝑓 determines the variation of function values from their
mean, and a scale parameter 𝜌 controls the width of the kernel. The
squared exponential kernel is a very popular choice for the Bayesian
optimization and gives a suitable solution for problems with a smooth
unknown function. Dose–toxicity curves are sufficiently smooth func-
tions in general; therefore, we adopt the squared exponential kernel.
In addition, a small value of 𝜉, which is similar to noise in a regression
model, is added on the diagonal elements of the covariance function
in order to provide computational stability [42]. Each element in the
covariance matrix 𝐾 for an arbitrary conceptual dose 𝑥 and 𝑥′ is
expressed as 𝐾𝑥,𝑥′ = 𝑘(𝑥, 𝑥′) + 𝜉1[𝑥 = 𝑥′].

The number of patients experienced DLT follows a binomial distri-
bution; therefore, the likelihood function of the observed values up to
the 𝑡th cohort is given by

𝐿(𝐷1∶𝑡 ∣ 𝑓 ) =
𝑡

∏

𝑖=1
𝜋
𝑦(𝑖)
(𝑖) (1 − 𝜋(𝑖))

𝑛(𝑖)−𝑦(𝑖) , (4)

where 𝐷1∶𝑡 = {(𝑛(1), 𝑥(1), 𝑦(1)),… , (𝑛(𝑡), 𝑥(𝑡), 𝑦(𝑡))}; 𝑦(𝑖) denotes the number
of patients experienced DLT out of 𝑛(𝑖) patients treated with 𝑥(𝑖) cor-
responding to the dose level (𝑖) at the 𝑖th test; 𝜋(𝑖) denotes a toxicity
probability corresponding to the dose level (𝑖).

Once patient outcomes at the 𝑡th test are observed, a posterior
distribution for 𝑓 is updated based on the Bayes’ rule. In practice, we
obtain posterior samples of 𝑓 generated by MCMC.

2.2. Dose selection strategy

Suppose that we are interested in finding a dose that produces
the closest toxicity to a target toxicity rate 𝜃. Because the Bayesian
optimization needs to define an objective function to be minimized (or
maximized) for its optimization, we set an objective function as follows:

𝑔(𝑥𝑗 ) =∣ 𝜋𝑗 − 𝜃 ∣, (5)

where 𝜋𝑗 derives from 𝑓 (𝑥𝑗 ). Soon after posterior samples for 𝑓 are
obtained based on Section 2.1, posterior samples for 𝑔 are calculated.
The exact form of 𝑔 is still unavailable; however, we can leverage those
probabilistic beliefs in order to reach 𝑥(𝑡+1) through designing an acqui-
sition function �̂� that is an alternative of the true objective function 𝑔. In
this article, we utilize the expected improvement (EI) [37] as �̂�, which
is one of the most popular strategies in the Bayesian optimization and
has been shown to be efficient in the number of function evaluations
required to find the global optimum [43].

In the EI algorithm, what we calculate is how much a value of the
objective function 𝑔 can be expected to improve over our current best
point while taking the uncertainty derived from the posterior distri-
bution of the objective function 𝑔 into account. A prior distribution
we set gradually shrinks to the true values as the data is obtained;
however, there is a large width of uncertainties when the distribution
has not been sufficiently converged. Because the EI algorithm considers
3

the width of uncertainties, a dose with a large variance is not selected
even if it is an optimum in the sense of average. The following are the
specifics for the EI algorithm. Firstly, an improvement function is given
by

𝐼(𝑥) = max{0, 𝑔+ − 𝑔(𝑥)}, (6)

where 𝑔+ = min𝑥[E𝑔{𝑔(𝑥)} ∣ 𝐷1∶𝑡] that means the current best point
providing the minimum value on 𝑔(𝑥) among all available doses [44].
Accordingly, 𝐼(𝑥) provides a positive value if 𝑔(𝑥) turns out to be less
than 𝑔+. Otherwise, 𝐼(𝑥) is set to be zero. Secondly, EI(𝑥) is calculated
as the expectation of 𝐼(𝑥) as follows:

EI(𝑥) = E{𝐼(𝑥) ∣ 𝐷1∶𝑡} = ∫

1

0
𝐼(𝑥)𝑝{𝑔(𝑥) ∣ 𝐷1∶𝑡}𝑑𝑔, (7)

here 𝑝{𝑔(𝑥) ∣ 𝐷1∶𝑡} is a probability density function for 𝑔 on an
rbitrary dose 𝑥 after 𝐷1∶𝑡 is obtained. Finally, the next dose is found
y maximizing the expected improvement function:

(𝑡+1) = arg max
𝑥∈𝑡

{EI(𝑥)}, (8)

here 𝑡 is an admissible dose set defined at Section 2.3. It imposes
ome dose-escalation restrictions for overdose control to ensure patient
afety.

.3. Overdose control for patient safety

Patients in the next cohort are treated with the selected dose ac-
ording to Eq. (8). In order to ensure patient safety, we impose the
ollowing overdose control during a trial. The admissible dose set 𝑡 is
efreshed at each test and includes doses that satisfy all conditions as
ollows:

1. If the lowest dose does not satisfy P(𝜋1 > 𝜃 ∣ 𝐷1∶𝑡) ≤ 𝜏1, 𝑡
includes only 𝑥1.

2. All doses in 𝑡 require to satisfy P(𝜋𝑗 > 𝜃 ∣ 𝐷1∶𝑡) < 𝜏2.
3. No dose skip is allowed in this article; therefore, the highest dose

level in 𝑡 is up to one dose level higher than 𝑥(𝑡). If 𝑥(𝑡) = 𝑥𝐽 ,
the highest dose is up to 𝑥𝐽 .

4. If two or more patients experience DLT at 𝑥(𝑡), the highest dose
level is up to one dose level lower than 𝑥(𝑡). If 𝑥(𝑡) = 𝑥1, 𝑡
includes only 𝑥1.

or the first and second conditions, we assume 𝜏1 ≤ 𝜏2 in order not
o miss unsafe situations under the assumption that toxicity increases
onotonically with increasing dose levels. The third condition might

e a typical setting when the CRM is implemented in actual clinical
rials.

.4. Implementation steps

We employ a start-up phase before implementing model estimation
rocedures because the information available at the beginning of a trial
ay be too limited to rely entirely on the model estimation part based

n a Bayesian optimization method when little is known about the
ose–toxicity relationship.

tart-up phase

The start-up phase is described as follows:

1. Patients at the first cohort are treated with the lowest dose 𝑥1.
2. If no DLT is observed, patients in the next cohort are treated with

one level higher dose than the current dose level.
3. If one patient experiences DLT for the first time in the trial,

patients at the next cohort are treated at the same dose level.
4. The start-up phase is stopped when the trial meets one of the

following conditions:

(a) Two or more patients experience DLT.
(b) The test dose reaches the highest dose 𝑥𝐽 .
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Model phase

After the start-up phase, the trial proceeds to the model phase that
is implemented as follows.

1. Design parameters for a Gaussian process prior are determined
as follows:

(a) If there is little information about dose–toxicity relation-
ships, an indifference interval approach can be utilized
for initial guesses that are associated with a prior mean
function for 𝑚(𝑥).

i. According to the systematic approach proposed
for the CRM [41], we calculate an indifference
interval named an optimal 𝛿 while using a power
model and the initial MTD at the center of the dose
range (i.e., 𝐽∕2), which we could maximize the
average percentage of correct MTD selection when
applying the CRM with a power model. The main
purpose of utilizing an optimal 𝛿 is to obtain one
of the good guesses of the slope of initial guesses
pertaining to a prior mean function for 𝑚(𝑥) in our
proposed method. Smaller 𝛿 makes the slope more
gentle. As a result, dose-escalation becomes more
aggressive than larger 𝛿 in our proposed method.
In contrast, initial guesses based on a large 𝛿 tends
to offer more conservative dose-escalation. Empir-
ically, our proposed method would perform well
when using values close to the optimal 𝛿 (e.g., a
range of 𝛿 ± 0.02).

ii. The initial MTD location 𝜈 could be determined
based on the start-up phase. Otherwise, we rec-
ommend putting the initial MTD location on the
center of the dose range (i.e., 𝜈 = 𝐽∕2) to ensure
enough space within the range both below and
above the dose.

iii. We generate the initial guesses using getprior
function in the R package dfcrm with the above 𝛿
and 𝜈 under a power model. We calculate a prior
mean function for 𝑚(𝑥) by logit transformation of
the initial guesses.

If there is an informative belief on dose–toxicity relation-
ships, initial guesses should reflect it.

(b) A signal variance 𝜎𝑓 is set as one because it is a typical set-
ting in the Bayesian optimization and works well in most
cases. A scale parameter 𝜌 indicates a typical distance
between turning points and depends on the conceptual
dose range. Because dose–toxicity curves do not have
many turning points, an appropriate 𝜌 provides up to two
turning points in the range. In our proposed method, a
good value is often comparable to the length of the dose
range.

2. With Eqs. (1) through (4), posterior samples for the function 𝑓
are calculated based on the Bayes’ rule through MCMC. Simul-
taneously, they are transformed with the inverse logit function
to obtain posterior samples of toxicity probabilities 𝜋 to assess
dose–toxicity relationships (e.g., by drawing the posterior dis-
tribution for 𝜋). In addition, posterior samples for the function
𝑔 are calculated with the posterior samples for 𝜋 according
to Eq. (5).

3. Patients in the next cohort are treated with the selected dose
according to Eq. (8).

4. Steps 2 and 3 continue until either pre-specified stopping rules
4

is met. s
5. At the end of a trial, the MTD is determined based on the final
posterior distribution for toxicity probabilities as follows:

MTD = arg max
𝑥𝑗∈{𝑥𝑗 ∣�̂�𝑗<(𝜃+𝜖2)}

P(𝜃 − 𝜖1 < 𝜋𝑗 < 𝜃 + 𝜖1 ∣ 𝐷1∶𝑡), (9)

where �̂�𝑗 is a posterior mean estimate of a toxicity probability
at a dose level 𝑗; 𝜖1 and 𝜖2 are pre-specified small values (𝜖1 ≤
𝜖2). The MTD is selected based on the acceptable range for 𝜃
provided by 𝜖1 from the final MTD candidate set that does not
retain doses with excessive toxicities based on 𝜖2.

.5. An example with illustrations

We illustrate a specific example of the model phase under 𝜃 = 0.3
fter the end of the start-up phase that evaluated five cohorts with
cohort size of three in Fig. 1. The upper section provides posterior

istributions on dose–toxicity relationships at each test as its posterior
ean (dashed line) and 10 to 90 percentiles area (filled area) along
ith observed toxicity probabilities at each tested dose level (filled

ircle). It also provides curves of initial toxicity guesses (dotted line)
nd true toxicity probabilities (solid line). The acquisition function EI
orresponding to each upper figure is shown in the lower section. The
ower section presents doses included in 𝑡 after each test as ranges
ith horizontal lines and points the next dose level selected by Eq. (8)
ith arrow marks as well as the dotted lines.

In the start-up phase with five tests, tested dose levels were 1, 1,
, 3, and 4 with the number of patients who experienced DLT of 1, 0,
, 0, and 1, respectively. The upper-left section illustrates the updated
oxicity probability distribution at the end of the start-up phase. The
osterior mean function drew still similar curve to the initial toxicity
robabilities. Based on the corresponding EI shown in the lower-left
ection and 5, the next dose became 𝑥4. There was no patient with
LT at the 6th test. As shown in the figures in the middle section, the
osterior distribution slightly changed and the EI selected 𝑥5. In the
th test, there was one patient who experienced DLT. The upper-right
ection shows the posterior mean function approached the true dose–
oxicity curve. After the 7th test, the EI selected 𝑥5 again as the next
ose.

. Simulation studies and results

We conducted a simulation study to examine the performance of
Bayesian optimization method (BO). As benchmarks for the perfor-
ance evaluation, we set the Bayesian-based CRM, the product-of-

eta-prior method (PBP), and another curve free method (WTW). In
ection 3.1, we explain the simulation frameworks for each method
nd a brief explanation for the competitors. Section 3.2 presents the
imulation results.

.1. Simulation settings

Suppose that we aimed to find an MTD that has a toxicity probabil-
ty closest to the target toxicity 𝜃 among eight dose levels (𝐽 = 8) under
he maximum sample size of 36 and a cohort size of three. The sample
ize of 36 was based on the average number of patients who enrolled in
odel-guided Phase I clinical trials reported by a review article [45].
s shown in Table 1, fifteen scenarios were used for the simulation
tudy, which included six scenarios excerpted from the existing article
scenario 1 to 6) [35]. We evaluated the operating characteristics of
ach method under two different target toxicity rate settings. For 𝜃 =
.3 that might be a typical setting in dose-finding studies, we used
cenarios 1 to 10. We might encounter a lower target toxicity rate when
nvestigational agents could present severe symptoms as DLT; therefore,
e set 𝜃 = 0.1 and evaluated scenarios 3, 10 to 15.

All methods started to test from the lowest dose. In addition, all
ethods terminated trials when the maximum sample size was reached
nless otherwise specified. The number of trials to evaluate the op-
rating characteristics of each method was 1000 in the simulation

tudy.
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Fig. 1. Posterior distributions and the EI in a Bayesian optimization method.
Table 1
True toxicity scenarios for the simulation study.

Scenario Dose level

1 2 3 4 5 6 7 8

1 0.05 0.08 0.12 0.20 0.30 0.45 0.60 0.70
2 0.05 0.08 0.12 0.20 0.30 0.60 0.80 0.90
3 0.01 0.05 0.10 0.14 0.18 0.22 0.25 0.30
4 0.01 0.05 0.08 0.12 0.16 0.20 0.24 0.26
5 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
6 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80
7 0.01 0.05 0.10 0.14 0.17 0.20 0.30 0.40
8 0.01 0.05 0.30 0.45 0.55 0.70 0.80 0.90
9 0.15 0.30 0.45 0.50 0.55 0.60 0.65 0.70

10 0.05 0.10 0.15 0.30 0.40 0.55 0.65 0.70

11 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
12 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40
13 0.01 0.01 0.02 0.03 0.10 0.20 0.35 0.50
14 0.01 0.02 0.03 0.05 0.07 0.10 0.15 0.20
15 0.01 0.01 0.01 0.02 0.04 0.06 0.10 0.15

3.1.1. BayesIan optimization method (BO)
We generated initial toxicity guesses using the indifference interval

approach as described at Step 1 for the model phase in Section 2.4. We
derived an optimal 𝛿 under each 𝜃 by evaluating possible indifference
intervals from 0.01 to 0.15 by 0.01 running 2000 simulations, where
these settings (i.e., the evaluation range and the number of iterations)
were based on the original article of the systematic approach [41]. In
addition, we performed preliminary evaluations on values around the
optimal 𝛿 from the view of correct MTD selection probabilities and dose
allocations, because the optimal 𝛿 for the CRM might not be optimal for
our proposed method. As a result, 0.05 which was equal to the optimal
value, and 0.02 which was 0.01 lower than the optimal value seemed
suitable for scenarios under 𝜃 = 0.3 and 𝜃 = 0.1, respectively.

For the initial MTD location 𝜈 in the initial guesses under 𝜃 = 0.3,
as a similar approach in the 3+3 method, we set 𝜈 as either the last-
tested dose level at the start-up phase or one dose level lower than
the last-tested dose level if more than two patients experienced DLT at
the last tested dose. Although the 3+3 method algorithm could apply
to scenarios for 𝜃 = 0.3 to set our initial thought of an MTD location,
5

it is not usually applicable to cases with different toxicity rates from
0.3; therefore, we used the center of the dose range (i.e., 𝜈 = 4) when
𝜃 = 0.1.

A covariance function was calculated with 𝜎𝑓 = 1, 𝜌 = 1.4 and 𝜉 =
0.08 under (𝑥1,… , 𝑥8) = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4) regardless of 𝜃.
The value of 𝜌 was the same length as the conceptual dose range. This
indicates that the first turning point of the dose–toxicity function was
placed on the end of the dose range. The value of 𝜉 was decided from
the view of computational speed, while the smaller value is generally
better in terms of less impact on the operating characteristics.

For overdose control, 𝜏1 = 0.5 and 𝜏2 = 0.9 were used under 𝜃 = 0.3.
The assumption of 𝜏1 = 0.5 means to stay at the lowest dose level and
not to escalate to higher doses when the lowest dose level exceeds 𝜃
with a probability of more than a half. Because we set a relatively
small value for 𝛿 under 𝜃 = 0.1 in addition to the lower target toxicity
rate itself, overdose allocations tended to be easier occurred than the
settings for 𝜃 = 0.3; therefore, both 𝜏1 and 𝜏2 had to be smaller values
than those sets for 𝜃 = 0.3. As a result, we used 𝜏1 = 𝜏2 = 0.4 under
𝜃 = 0.1 to avoid overdose allocations. We determined the values of 𝜏2
under each 𝜃 based on a balance between MTD selections and overdose
allocations.

For MTD determination described in Eq. (9), 𝜖1 = 0.05 and 𝜖2 = 0.1
were used under 𝜃 = 0.3, where the proper range with 𝜖1 = 0.05 for
MTD determination is often assumed as a typical setting in dose-finding
studies for 𝜃 = 0.3. The final MTD candidate set composed of doses
with toxicity probabilities that were equal to or less than 0.4 could be
acceptable when 𝜃 = 0.3 considering the estimation accuracy of the
point estimate. Also, 𝜖1 = 𝜖2 = 0.015 was used for 𝜃 = 0.1, where
𝜃 = 0.1 and 𝜖1 = 0.015 provided almost as small a ratio as 𝜃 = 0.3
and 𝜖1 = 0.05. When the target toxicity is lower than a typical setting,
investigators might consider controlling overdose selections as much as
possible from a clinical perspective; therefore, we conservatively set 𝜖2
as the same value of 𝜖1, which also aimed to reduce the possible effect
on overdose selections due to a small 𝛿.

As exploratory analyses under 𝜃 = 0.3, we evaluated a Bayesian op-
timization method that provided only monotonically increasing dose–
toxicity functions (BO-mono) by assuming the following equation in-
stead of Eq. (2):

𝑓 ′ ∼ GP(𝑚, 𝑘) × 1[𝑓 ′ ∶ monotonically increasing function]. (10)
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In practical implementation, posterior samples of toxicity probabilities
were composed of only monotonically increasing functions (i.e., all
posterior samples of toxicity probability functions met a condition of
𝜋1 ≤ ⋯ ≤ 𝜋8) so as to achieve the monotonically increasing restriction
escribed in Eq. (10).

As another exploratory analysis for a Bayesian optimization method
without monotonically increasing restriction) under 𝜃 = 0.3, we
valuated the effect of the slope on initial guesses by applying different
alues of 𝛿 (𝛿 = 0.03 and 0.07).

Supplementary material of this article provides the R code used to
mplement BO in this simulation study.

.1.2. Continual reassessment method (CRM)
The CRM models dose–toxicity relationships with simple

ne-parameter monotonically increasing functions. For example, a
ower model describes a toxicity probability at a dose level 𝑗 as follows:

𝑗 (𝑎) = (𝜋0
𝑗 )

exp(𝑎), (11)

here 𝑎 is an unknown model parameter, and 𝜋0
1 < ⋯ < 𝜋0

𝐽 denote
nitial toxicity guesses at each dose level. The initial toxicity guesses
re pre-specified constants and called skeletons for the model. In our
imulation study, we evaluated a power model and a logistic model
ith an intercept of three that are commonly employed for the CRM.
ased on the systematic approach [41], an optimal 𝛿 was 0.05 for
= 0.3 and 0.03 for 𝜃 = 0.1 when assuming an initial MTD location
= 𝐽∕2 under each model. In addition, assuming a normal formulation

o the prior distribution of a model parameter 𝑎 (i.e., 𝑎 ∼ N(0, 𝜎2𝑎 )),
𝑎 was calibrated by another systematic approach [46] to obtain a
east informative prior variance 𝜎𝐿𝐼𝑎 . A least informative prior variance
rovides that the probabilities with each dose being MTD follow a
niform distribution as a prior distribution in order to minimize the
ffect of the prior in the estimation process because little is known
bout the dose–toxicity relationship at the start of a trial. As a result,
he power model set 𝜎𝐿𝐼𝑎 = 0.76 and 0.72, and the logistic model set
.34 and 0.36 under 𝜃 = 0.3 and 0.1, respectively.

The MTD was determined as a dose with the closest toxicity to
based on the final posterior mean of toxicity probabilities. Dose

elections did not allow either to skip doses in dose-escalation or to
scalate doses immediately after a toxic outcome to ensure patient
afety.

The above key calculations can be implemented by R package
fcrm.

.1.3. A product-of-beta prior method (PBP)
In the PBP, a toxicity probability 𝜋𝑗 at a dose level 𝑗 is reparame-

erized with 𝑏𝑗 as follows:

1 = 1 − 𝜋1 and 𝑏𝑗 =
1 − 𝜋𝑗
1 − 𝜋𝑗−1

for 𝑗 = 2,… , 𝐽 . (12)

A beta prior distribution is independently assumed to each 𝑏𝑗 ; that
is, 𝑏𝑗 ∼ Beta(𝛾𝑗 , 𝜂𝑗 ). Eq. (12) can be converted to 𝜋𝑠 = 1 −

∏𝑠
𝑗=1 𝑏𝑗 ,

here 𝑠 ∈ {1,… , 𝐽}; therefore, the prior distribution for 𝜋𝑗 is called a
roduct-of-beta-prior distribution.

The PBP treats 𝜋𝑗 as if it has a beta distribution; that is, 𝜋𝑗 ∼
eta(𝐴𝑗 , 𝐵𝑗 ), although the product-of-betas are not betas themselves.
his is because a product of an independent beta distribution is de-
ermined by its moments, and a beta approximation for the first and
econd moments is known to provide good fitting results for a product
f an independent beta distribution.

In our simulation study, hyperparameters for 𝜋𝑗 were calculated by
quations in the original articles [31,32]. Because the hyperparameter
alculations needed initial toxicity guesses, they were also generated by
n indifference interval approach. Assuming the initial MTD location of
he center of the dose range, we generated initial guesses with 𝛿 = 0.05
or 𝜃 = 0.3 and with 𝛿 = 0.02 and 0.03 for 𝜃 = 0.1, where 𝛿 was the
ame settings in the CRM and our proposed method.

The MTD was determined as a dose with the closest toxicity to 𝜃
6

ased on the final posterior mean of toxicity probabilities.
3.1.4. Toxicity risk approach (WTW)
The WTW deals with a toxicity risk 𝑟𝑗 that is a probability that a

patient experiences DLT at a dose level 𝑗. The 𝑟𝑗 is modeled directly and
the model assumes 𝑟𝑗 is equal to one of a grid of ℎ values (𝑐1 < ⋯ < 𝑐ℎ).
ollowing the setting that the original article exemplified, we employed
= 5 regardless of 𝜃, and then set {𝑐1,… , 𝑐5} = {0.1, 0.2, 0.3, 0.4, 0.6}

or 𝜃 = 0.3 and {𝑐1,… , 𝑐5} = {0.01, 0.05, 0.1, 0.2, 0.3} for 𝜃 = 0.1. The
etting of {𝑐1,… , 𝑐5} = {0.1, 0.2, 0.3, 0.4, 0.6} under 𝜃 = 0.3 means that,
or example, a dose level 𝑗 is interpreted as very safe, safe, ideal, risky,
nd toxic, respectively, if 𝑟𝑗 is equal to each 𝑐ℎ.

The distributions of a risk 𝑟𝑗 are linked by a monotonicity constraint;
that is, higher doses have a risk of toxicity greater than or equal to
that of lower doses. For a prior distribution of the joint distribution
of 𝑟𝑗 , a uniform joint prior 𝜋0 respecting the monotonicity constraint
was assumed in the simulation (i.e., 𝜋0(𝑑1,… , 𝑑𝐽 ) = P(𝑟1 = 𝑑1,… , 𝑟𝐽 =
𝑑𝐽 ) = 𝑒0, where 𝑑1,… , 𝑑𝐽 ∈ {𝑐1,… , 𝑐ℎ} and 𝑑1 ≤ ⋯ ≤ 𝑑𝐽 , with
𝜋0(𝑑1,… , 𝑑𝐽 ) = 0 otherwise). The value of 𝑒0 was calculated so that
the joint probability 𝜋 had to sum to 1 for all combinations of 𝑑𝑗 .

A dose maximizing the marginal posterior probability that the toxi-
city risk was equal to 𝑐3 (i.e., the ‘‘ideal’’ risk) was selected as the next
dose during a trial and as the MTD at the end of the trial. As overdose
control, the probability of the ‘‘toxic’’ risk was taken into account in the
dose selection to judge whether the dose was admissible or not. Only
doses that satisfied a condition of P(𝑟𝑗 = 𝑐5 ∣ 𝐷1∶𝑡) < 0.2 were included
in an admissible dose set for the next dose selection in our simulation
study, where 0.2 was the same setting in the original article.

3.2. Simulation results

3.2.1. BO and the other methods
Table 2 shows operating characteristics under 𝜃 = 0.3. For observed

toxicity, BO shows the lowest toxicity percentages in all the methods
under all scenarios due to lower overdose allocations. BO treats less
patients with overdose levels than the other methods in most scenarios.
In particular, BO successfully controls overdose allocations in scenarios
5 and 6 where the true MTD is at the lowest dose level compared with
the other methods due to the effect of 𝜏1. BO tends to select safer doses
than the other methods owing to overdose control such as an admissible
dose set. Also, BO identifies the MTD correctly approximately 10%
more than the CRMs (CRM-p (the CRM with a power model) and CRM-l
(the CRM with a logistic model)) even if the MTD locates at the end of
the dose range (i.e., scenarios 3 and 4).

As shown in Table 2, BO shows higher correct MTD selection
probabilities than the CRM-p in all scenarios. Compared between BO
and the CRM-l, BO shows higher correct MTD selection probabilities in
most scenarios, while scenarios 2 and 7 are comparable results between
the two methods, and a lower correct selection probability is shown
in BO under scenario 1. Given the difference between the results of
the CRMs in scenario 1, a logistic model might more fit this scenario.
Also, the fixed MTD location strategy at the center of the dose range is
more efficient to address scenarios where the MTD locates on near the
center of the dose range than the changeable strategy BO employed. In
addition, in scenarios 1 and 2 where the advantages of BO are minimal,
initial guesses for the CRMs at around MTD including adjacent doses
when parallel-shifted in the vertical direction are overlapped with or
close to the true dose–toxicity curves. In such a case, it is highly likely
that an estimated curve around the MTD would successfully approach
the true dose–toxicity curve by updating the model parameter. In
scenarios 3, 4, and 7 where the MTD is close to the highest dose
level, the CRMs especially the CRM-p seem to be harder to reach the
MTD than BO. The CRMs did not allow dose-escalation at the next
cohort when patients in the current cohort experienced DLT. Due to
this overdose control, the CRMs could not reach the MTD that locates
on higher doses in the dose range as quickly as BO.

A comparison of BO and the PBP regarding correct MTD selection

probabilities shows that BO provides lower MTD correct probabilities
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Table 2
Operating characteristics under a typical target toxicity rate (𝜃 = 0.3) by each method and scenario (Selection probabilities of MTD determination (correct and overdose selections),
average percentages of dose allocations at the MTD and overdoses, and average percentages of observed patients with DLT).

Method Scenario MTD determination Dose allocation (%) Toxicity Scenario MTD determination Dose allocation (%) Toxicity

Correct Overdose MTD Overdose (%) Correct Overdose MTD Overdose (%)

CRM-p 1 0.519 0.163 27.6 10.5 21.7 6 0.886 0.114 78.5 21.5 41.3
CRM-l 0.535 0.173 28.3 11.2 22.0 0.884 0.116 78.2 21.9 41.3
PBP 0.512 0.212 29.5 17.2 24.1 0.887 0.113 81.5 18.6 41.6
WTW 0.614 0.173 36.5 13.5 24.1 0.545 0.455 32.8 67.2 47.0
BO 0.520 0.189 24.8 8.9 20.2 0.940 0.060 89.2 10.8 40.5

CRM-p 2 0.590 0.082 30.1 7.8 22.2 7 0.300 0.072 11.0 2.9 16.0
CRM-l 0.603 0.092 31.1 8.2 22.6 0.332 0.082 12.1 3.4 16.3
PBP 0.638 0.073 34.1 11.5 24.4 0.331 0.226 14.7 9.4 18.3
WTW 0.701 0.063 41.7 8.6 24.6 0.385 0.000 13.1 0.0 16.0
BO 0.595 0.097 26.4 6.7 20.6 0.329 0.147 11.3 4.2 15.8

CRM-p 3 0.120 0.000 3.9 0.0 15.7 8 0.609 0.334 44.2 33.6 29.8
CRM-l 0.138 0.000 4.5 0.0 15.9 0.608 0.335 43.8 33.9 29.8
PBP 0.376 0.000 11.8 0.0 17.2 0.627 0.290 43.6 33.1 29.5
WTW 0.000 0.000 0.0 0.0 16.1 0.572 0.387 37.8 43.2 32.0
BO 0.237 0.000 5.8 0.0 15.2 0.695 0.285 48.0 23.2 26.3

CRM-p 4 0.181 0.000 5.6 0.0 14.5 9 0.631 0.258 47.8 29.9 31.3
CRM-l 0.208 0.000 6.3 0.0 14.7 0.628 0.261 47.6 30.3 31.5
PBP 0.487 0.000 14.3 0.0 15.8 0.568 0.260 40.5 33.3 31.3
WTW 0.000 0.000 0.0 0.0 14.9 0.522 0.411 36.4 51.8 37.5
BO 0.312 0.000 7.6 0.0 14.2 0.658 0.232 46.8 19.1 27.4

CRM-p 5 0.662 0.338 59.6 40.4 35.1 10 0.570 0.296 36.3 21.2 24.8
CRM-l 0.660 0.340 59.0 41.0 35.2 0.553 0.319 36.0 22.3 25.0
PBP 0.679 0.321 61.1 38.9 35.1 0.479 0.352 32.7 28.1 26.1
WTW 0.315 0.685 21.9 78.1 42.2 0.537 0.368 37.0 30.5 27.6
BO 0.759 0.241 76.2 23.8 33.4 0.592 0.279 32.5 16.0 22.4
h
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in scenarios 2, 3, and 4, but better or comparable results in the other
scenarios. While the correct MTD selection under scenario 7 is compa-
rable between the two methods , the PBP shows a higher probability
of overdose selection and higher observed toxicity than BO in this
scenario.

The WTW performs very well in one scenario but then provides
much poorer performance than the other methods. The WTW seems
to be not good at dealing with situations where the highest dose
level is the MTD because of the admissible dose criterion (i.e., 0.2) in
the current settings. This low value limits dose-escalation under such
scenarios 3 and 4, while it seems not to control overdose allocations in
the opposite scenarios 5 and 6 where the lowest dose is close to 𝜃. This
esult implies that the cutoff value on an admissible dose set should be
arefully decided.

Table 3 that shows the operating characteristics under a lower target
oxicity (𝜃 = 0.1) supports Table 2. BO provides better or comparable

results than the CRMs in all scenarios except for scenario 13. The
same would be applied for the results in scenario 13 as we explained
for scenarios 1 and 2 under 𝜃 = 0.3. Also, the same trend shown in
cenarios 3, 4, and 7 under 𝜃 = 0.3 is provided in scenario 15. Regarding

why BO arrives at the true MTD more than the CRMs when the MTD
locates near the highest dose, there might be another reason other
than the effect of overdose control. BO considers uncertainties of the
posterior toxicity probabilities to seek the MTD without concentrating
on the current best point. In contrast, the CRMs rely on the exploitation
of the estimated dose–toxicity curve. As a result, possible searching
space for the next dose candidates might be wider in BO than that in
the CRMs. This exploration property seems to perform well in particular
under such a scenario in terms of correct MTD selections. Compared
with the PBPs that are displayed as PBP (𝛿) in Table 3, BO performs
better than the PBPs in most scenarios. Although concern has been
raised that the PBP causes undesirable rigidity when a target toxicity
rate is low due to its vague priors [33,47], the PBPs did not get stuck at
suboptimal dose level under our simulation settings; however, BO and
the CRMs provides better results than the PBPs in most scenarios. In
only scenario 11 where the lowest dose level is the true MTD, the PBPs
outperforms the other methods. Considering that a toxicity probability
at 𝑗 is composed of the product of the toxicity probabilities of all dose
7

levels up to 𝑗−1, it would be reasonable to be able to estimate a toxicity
probability at the lowest dose more accurately than the other doses.
The WTW provides the best performance in scenarios 12, 13, and 14;
however, the correct MTD selection probability for scenario 11 is half
as high as the other methods and the overdose selections are occurred
with higher percentages during and at the end of the trial.

3.2.2. BO with different settings
It might be reasonable to assume that a toxicity probability increases

monotonically with increasing dose levels; however, Table 4 shows
the monotonicity restriction on a GP prior (i.e., BO-mono) does not
improve the performance compared with BO in terms of correct MTD
selections and dose allocations (i.e., Correct selection probabilities and
dose allocations of MTD decrease while overdose selection probabilities
and overdose allocations increase). The posterior distributions by BO
based on Eq. (2) include partially non-monotonically increasing func-
tions; however, posterior distributions, as well as their posterior mean
functions, show a monotonically increasing shape owing to follow the
trend that true dose–toxicity curves and initial guesses draw. On the
other hand, toxicity probabilities in the posterior distribution provided
by BO-mono tend to go down in the lower dose range and go up in the
higher dose range than BO. That is because the posterior distribution is
composed of only functions with a positive slope. As a result, the effect
of the monotonicity restriction only skews the posterior distribution but
does not improve the performance of BO.

Table 5 evaluates impact of initial toxicity guesses with a different
𝛿 on the operating characteristics for BO that uses equation (2). When
the slope becomes gentle by using 𝛿 = 0.03, initial toxicities at the
igher dose range approach 𝜃. The correct selection probability is
igher in scenarios where the true MTD locates at the end of the dose
ange (i.e., scenarios 3 and 4). However, the allocation percentage to
verdose levels also increases because of the effect of a gentle slope. In
ontrast, increasing the slope by using 𝛿 = 0.07 lowers correct selection
robability in scenarios 3 and 4. On the other hand, BO with 𝛿 = 0.07
erforms well when the true MTD locates at lower than the middle
f the dose range (e.g., scenarios 8 and 9), because the steeper slope
akes dose-escalation restrict stronger. For scenarios 5 and 6 where

he toxicity at the lowest dose level is equal to or higher than 𝜃, the
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Table 3
Operating characteristics under a lower target toxicity rate (𝜃 = 0.1) by each method and scenario (Selection probabilities of MTD determination (correct and overdose selections),
average percentages of dose allocations at the MTD and overdoses, and average percentages of observed patients with DLT).

Method Scenario MTD determination Dose allocation (%) Toxicity Scenario MTD determination Dose allocation (%) Toxicity

Correct Overdose MTD Overdose (%) Correct Overdose MTD Overdose (%)

CRM-p 3 0.369 0.420 30.5 35.6 10.3 13 0.539 0.145 28.3 16.5 8.0
CRM-l 0.369 0.436 27.3 39.5 10.6 0.547 0.163 28.7 17.1 8.1
PBP(0,02) 0.322 0.307 22.9 27.2 8.6 0.437 0.129 23.3 14.7 7.4
PBP(0,03) 0.331 0.261 22.3 28.6 8.4 0.370 0.092 22.7 14.1 6.8
WTW 0.337 0.577 27.6 50.1 11.3 0.606 0.195 38.5 13.4 7.6
BO 0.409 0.362 25.6 32.7 9.7 0.462 0.054 13.1 17.1 7.7

CRM-p 10 0.464 0.324 35.0 38.7 12.6 14 0.249 0.180 14.0 12.0 6.5
CRM-l 0.456 0.343 35.2 39.2 12.9 0.281 0.184 14.6 12.0 6.6
PBP(0,02) 0.327 0.248 28.3 25.5 10.4 0.212 0.181 11.5 12.2 6.1
PBP(0,03) 0.377 0.204 30.0 25.2 10.4 0.216 0.123 15.3 7.6 5.5
WTW 0.378 0.578 28.4 61.0 15.5 0.383 0.077 17.7 1.9 5.7
BO 0.495 0.272 38.2 27.7 11.8 0.249 0.144 13.4 13.5 6.5

CRM-p 11 0.783 0.217 61.1 38.9 15.5 15 0.276 0.156 15.8 6.5 5.0
CRM-l 0.786 0.214 60.5 39.5 15.7 0.289 0.148 15.3 7.0 5.1
PBP(0,02) 0.863 0.137 75.0 25.1 13.5 0.229 0.162 11.7 10.7 4.9
PBP(0,03) 0.874 0.126 74.1 25.9 13.6 0.223 0.134 13.2 4.1 4.2
WTW 0.430 0.570 27.7 72.3 20.2 0.240 0.000 4.6 0.0 3.8
BO 0.780 0.220 68.5 31.5 14.8 0.320 0.089 14.1 6.4 4.6

CRM-p 12 0.400 0.325 26.9 26.7 9.2
CRM-l 0.404 0.349 28.9 27.7 9.4
PBP(0,02) 0.307 0.259 20.2 21.7 7.9
PBP(0,03) 0.251 0.223 19.4 21.8 7.4
WTW 0.459 0.378 34.5 29.1 9.4
BO 0.421 0.212 21.7 23.3 8.7
Table 4
Differences of the operating characteristics between Bayesian optimization methods with the monotonicity restriction (BO-
mono) and without the restriction (BO) under 𝜃 = 0.3 (For BO, the results of BO in Table 2 are re-displayed here.)
.

Scenario Method MTD determination Dose allocation (%) Toxicity (%)

Correct Overdose MTD Overdose

1 BO 0.520 0.189 24.8 8.9 20.2
BO-mono 0.495 0.190 23.4 9.4 20.2

2 BO 0.595 0.097 26.4 6.7 20.6
BO-mono 0.589 0.087 25.9 6.0 20.7

3 BO 0.237 0.000 5.8 0.0 15.2
BO-mono 0.208 0.000 4.9 0.0 15.0

4 BO 0.312 0.000 7.6 0.0 14.2
BO-mono 0.287 0.000 7.2 0.0 14.0

5 BO 0.759 0.241 76.2 23.8 33.4
BO-mono 0.698 0.302 72.6 27.4 33.6

6 BO 0.940 0.060 89.2 10.8 40.5
BO-mono 0.920 0.080 87.0 13.0 41.1

7 BO 0.329 0.147 11.3 4.2 15.8
BO-mono 0.331 0.104 10.3 3.1 15.7

8 BO 0.695 0.285 48.0 23.2 26.3
BO-mono 0.674 0.301 47.4 23.1 26.5

9 BO 0.658 0.232 46.8 19.1 27.4
BO-mono 0.681 0.219 48.0 18.2 28.2

10 BO 0.592 0.279 32.5 16.0 22.4
BO-mono 0.592 0.277 33.7 15.3 22.6
correct selection probabilities and the average toxicity percentages are
not affected by 𝛿. Sensitivity analyses for 𝛿, for example around the
optimal 𝛿 ± 0.02, might be needed considering the effect of 𝛿.

4. Discussion and conclusion

In this article, we have evaluated a Bayesian optimization method
that applied a Bayesian optimization framework to dose-finding studies.
If a theoretical model fits a true dose–toxicity relationship at around
the MTD through updating a model parameter, the CRM has good
performance. Even in that case, a Bayesian optimization method could
have almost comparable performance on correct MTD selections with
8

lower toxicity percentages than the CRM. On the other hand, if a
theoretical model is far or different from a true dose–toxicity curve at
around the MTD, the CRM tends to decrease performance. The simula-
tion results show that a Bayesian optimization method provides better
performance than the CRM, especially in the latter cases. In general,
little is known about dose–toxicity relationships; therefore, a Bayesian
optimization method has a potential to provide better results than or
at least comparable results to the CRM regardless of the shapes of true
dose–toxicity curves. Compared with the other two curve-free methods,
a Bayesian optimization method provides more stable results in terms

of correct MTD selections. Also, overdose control works successfully
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Table 5
Impact of the slope of initial guesses (i.e., 𝛿 = 0.3, 0.7) on the operating characteristics
f a Bayesian optimization method under 𝜃 = 0.3 at each scenario.
Scenario Delta MTD determination Dose allocation (%) Toxicity

Correct Overdose MTD Overdose (%)

1 0.03 0.453 0.299 23.6 15.1 22.2
0.07 0.438 0.139 21.1 7.4 19.2

2 0.03 0.610 0.110 27.3 9.8 22.9
0.07 0.505 0.064 23.1 4.9 19.6

3 0.03 0.371 0.000 9.7 0.0 16.1
0.07 0.141 0.000 4.2 0.0 14.9

4 0.03 0.480 0.000 12.3 0.0 15.1
0.07 0.201 0.000 5.7 0.0 13.9

5 0.03 0.768 0.232 75.3 24.8 33.4
0.07 0.762 0.238 76.1 23.9 33.2

6 0.03 0.935 0.065 88.6 11.4 40.7
0.07 0.923 0.077 88.4 11.6 40.5

7 0.03 0.358 0.288 14.4 8.0 17.2
0.07 0.260 0.090 8.6 2.8 15.0

8 0.03 0.637 0.343 45.1 26.4 27.1
0.07 0.700 0.263 49.7 19.9 25.2

9 0.03 0.620 0.263 44.2 21.2 28.0
0.07 0.688 0.158 47.9 14.6 27.2

10 0.03 0.488 0.376 30.6 22.1 24.2
0.07 0.570 0.226 32.8 12.7 21.7

because a Bayesian optimization method provides lower or comparable
observed toxicity percentages than the other methods in most scenarios.

One of the features in a Bayesian optimization method is to select
a dose based on a posterior distribution of dose–toxicity relationships
without neglecting its uncertainty. While the benefit of this feature
is limited owing to an admissible dose set for overdose control, such
restrictions are crucial in dose-finding studies from a safety perspective
compared with other areas the Bayesian optimization applies to. A
Bayesian optimization method achieves to allocate fewer patients to
overdose levels than the CRMs in most scenarios under the overdose
control while providing correct MTD selections that are better than or
comparable to the CRMs.

Our model has five design parameters (i.e., 𝛿, 𝜈, 𝜎𝑓 , 𝜌, 𝜉). Although
it is not mandatory to generate initial guesses by using an indifference
interval approach, it might be familiar with statisticians who belong
to pharmaceutical companies. In this case, 𝛿 that determines the slope
of initial toxicity guesses can refer to an optimal 𝛿 derived by the
systematic approach for the CRM. We recommend evaluating at least
the range of the optimal 𝛿±0.02 from the view of correct MTD selection
probabilities and safe dose allocations. As exemplified in our simulation
study, an initial MTD location 𝜈 can be selected based on the last-
tested dose in the start-up phase or put at the center of the dose range.
For the kernel parameters, 𝜎𝑓 is fixed as a value of 1 as mentioned
in Section 2.4. The scale parameter 𝜌 should be a value providing
less than two turning points in the dose range considering common
premises on dose–toxicity relationships. For general use, the same value
as the conceptual dose range works well. The value of 𝜉 relies on
only computing speed, while a smaller value has less impact on the
operating characteristics. In addition, an admissible dose set and MTD
determination are defined with four design parameters (i.e., 𝜏1, 𝜏2,
𝜖1, 𝜖2). These values are adjusted based on a balance between correct
MTD selections and safe dose allocations, and we should also consider
clinical perspective as well as a typical setting (e.g., 𝜖1 = 0.05 is
often used when 𝜃 = 0.3). The calibration approaches for the design
parameters are still open discussion, and we should further evaluate
them as our future works.

The observed values are generally assumed to follow a normal
distribution in typical Bayesian optimization frameworks. Although
the simulation results under the normal approximation assumption are
9
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not provided in this article, they generally suggested higher doses
than the true MTD with high probability and did not work well in
various simulation patterns consistently. It implies that such a normal
approximation for patient outcomes is inappropriate in dose-finding
studies; hence, we applied the exact distribution for the observed values
(i.e., a binomial distribution).

There are other options about acquisition functions instead of EI(𝑥)
(e.g., the lower confidence bound criteria [48]). According to our ex-
ploratory simulation results that are not shown in this article, the effect
of acquisition functions is minimal at least between the expected im-
provement and the lower confidence bound criteria. In the exploratory
simulation, we also evaluated a Bayesian optimization method based
on an unit probability mass that mTPI uses for its dose selection as an
acquisition function. The strategy based on the unit probability mass
was to search for a dose that maximized a probability falling within a
small range around 𝜃 concerning toxicity distributions (e.g., 𝜃±0.05). It
ad almost similar results to a Bayesian optimization method based on
I(𝑥); however, we note that the unit probability mass strategy is not
standard approach in the Bayesian optimization.

Although we put monotonically increasing constants on a prior
ean function for 𝑚(𝑥) and estimate it through a nonparametric ap-
roach, there might be another option; for example, 𝑚(𝑥) could be
odeled by a parametric model that provides monotonically increasing

unctions. Unlike a Bayesian optimization method, the model misspeci-
ication issue still leaves; however, it might be sometimes a reasonable
pproach when a theoretical model that is likely to fit true dose–
oxicity relationships is known. We might extend a Bayesian optimiza-
ion method by collaborating with such a parametric approach in our
uture works.

While further discussions and evaluations are required in particular
n how to calibrate design parameters, the conclusion of our simu-
ation study is that a Bayesian optimization method has a capability
o perform well in terms of correct MTD selections and safe dose
llocations even if little information is available about dose–toxicity
elationships. In practice, dose selections might be rarely decided by
nly model information, and observed data is carefully reviewed by
linical experts at pre-specified timings. Illustrations of dose–toxicity
elationships such as shown in Section 2.5 will be useful materials
n the comprehensive review by clinical experts. While we conducted
xperimental comparisons, further numerical investigations would re-
eal more detailed properties for a Bayesian optimization method. The
cenarios we addressed in this article assume a single-agent treatment
ith monotonically increasing dose–toxicity relationships. If unknown

unctions we would like to know have more complex situations such as
wo-dimensional inputs or outputs, it is expected that the advantages
f nonparametric approaches appear more; therefore, we will address
pplications of Bayesian optimization frameworks to such complex
ituations for our future work.
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