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Abstract: Multidrug resistance of bacteria is a worrying concern in the therapeutic field and an
alternative method to combat it is designing new efflux pump inhibitors (EPIs). This article presents
a molecular study of two quinazoline derivatives, labelled BG1189 and BG1190, proposed as EPIs.
In silico approach investigates the pharmacodynamic and pharmacokinetic profile of BG1189 and
BG1190 quinazolines. Molecular docking and predicted ADMET features suggest that BG1189 and
BG1190 may represent attractive candidates as antimicrobial drugs. UV-Vis absorption spectroscopy
was employed to study the time stability of quinazoline solutions in water or in dimethyl sulfoxide
(DMSO), in constant environmental conditions, and to determine the influence of usual storage tem-
perature, normal room lighting and laser radiation (photostability) on samples stability. The effects of
irradiation on BG1189 and BG1190 molecules were also assessed through Fourier-transform infrared
(FTIR) spectroscopy. FTIR spectra showed that laser radiation breaks some chemical bonds affecting
the substituents and the quinazoline radical of the compounds.

Keywords: multidrug resistance (MDR); efflux pump inhibitor; AcrAB-TolC pump; quinazoline;
molecular docking; UV-Vis spectroscopy; FTIR spectroscopy

1. Introduction

The rise of multidrug resistance (MDR) of bacteria is a worldwide health problem,
as hundreds of thousands of people die every year from bacterial infections. If actions are
not taken, it is estimated that in less than 30 years, MDR bacteria will cause more deaths
than cancer [1,2].

Different types of mechanisms are involved in the MDR acquired by bacteria: an ac-
cumulation of genes coding for single drug resistance or expelling medicines out of the
bacteria through multidrug efflux pumps [3,4]. Efflux pumps are proteins located in bac-
terial membranes and their role is to extrude xenobiotics, preventing their accumulation
inside the cells [5,6]. These transporters can mediate the bacterial resistance to a wide range
of medicines. Efflux-pump mediated resistance is a major problem not only in fighting
bacterial infections but also in the chemotherapy of cancer [7–9].

Considering the weak development of new antibiotics active in Gram-negative bacte-
ria, alternative approaches in fighting resistance mechanisms must be investigated. One al-
ternative is designing new chemosensitizers for combinational therapy with antibiotics
which are sensitive to bacterial resistance process that can bypass the resistance mechanism
and restore the bacterial susceptibility [10–13]. Over the years, several molecules were
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investigated with the purpose of inhibiting the efflux pumps of bacteria. First efflux pump
inhibitor (EPI) described to inhibit multiple resistance-nodulation-division (RND) trans-
porters from Pseudomonas aeruginosa was labelled MC-207,100 and now is known as PAβN
(Phe-Arg-β-naphthylamide) [14,15]. Furthermore, a wide range of compounds was at-
tested as EPIs. They can be natural, chemically synthesized, or semi-synthetic compounds,
derived from existing EPIs [13]. The compounds studied in this article are part of the fully
synthetic class.

Several series of quinazoline derivatives were tested for their ability to inhibit the
activity of the efflux pumps in a panel of Gram-negative bacteria. Among them, 3-[3-
(dimethylamino)propyl]-6-nitroquinazolin-4(3H)-one and 6-nitro-3-[2-(pyrrolidin-1-
yl)ethyl]quinazolin-4(3H)-one, labelled BG1189 and BG1190, respectively, enhanced the
activity of chloramphenicol against several Gram-negative isolates [16].

In this study, we evaluated the drug-likeness of quinazoline derivatives BG1189 and
BG1190 by applying drug-like rules: Lipinski, Ghose and Veber [17–19]. Solubility, molecu-
lar weight or molar refractivity are properties that can indicate if a chemical compound
has “drug-like” proprieties or not. Besides importance in “drug-like”, lipophilicity can
be an indicator of antimicrobial activity. A coefficient of partition between octanol and
water (log Po/w) with values between 1 and 2 is associated with high antimicrobial activ-
ity [20]. Pharmacokinetics of the two quinazoline derivatives were also predicted using
in silico approaches.

Since these compounds are active on bacteria overexpressing the AcrAB–TolC pump,
it is concluded that they inhibit the pump activity [16,21]. AcrB subunit of AcrAB–TolC
drug export complex, is the active subunit of the complex and is well-characterized in
Gram-negative bacteria [6,22].

To evaluate the mechanism of action of BG1189 and BG1190 we have used the crys-
tal structure of the AcrB subunit from multidrug efflux pump (PDB code: 5NC5) from
Escherichia coli K-12 [23].

It was important to define the stability of the compounds before considering them
for biomedical applications. The characteristics can vary under the influence of natural or
artificial environmental factors and we should know for how long is it safe to keep them
for a possible future utilization [24].

Time stability studies of quinazoline derivatives solutions were performed in constant
environmental conditions (constant temperature and illumination), but also in variable
environmental factors, analyzing the influence of usual storage temperature, normal room
lighting and laser radiation (photostability). Photostability analyses first give informa-
tion about the dose of radiation (normal room lighting or laser radiation) a medicine
may be exposed to, without changing its properties and secondly may establish the
illumination conditions needed to modify the molecules in order to create photoprod-
ucts with enhanced antimicrobial activity. Studies showed that exposing a medicine to
UV-Vis radiation may alter its structure; the laser radiation, due to specific properties
(wavelength and high energy), modifies medicines’ molecules in solutions, faster than
incoherent radiation [25]. Laser modification of molecules and formation of derivatives
was studied on different classes of compounds: phenothiazines [26–30], antibiotics [31],
hydantoin derivatives [32,33], and ecdysteroids [34].

This study presents an overview of the spectral characteristics of two quinazoline
derivatives previously designed as potential EPIs. It also intends to provide an insight
into their stability and photostability in different environmental conditions. Moreover, us-
ing computational approaches, we evaluated the pharmacokinetic and pharmacodynamic
profiles of quinazoline derivatives.

2. Results and Discussion
2.1. Pharmacokinetic Profile

BG1189 and BG1190 molecules fitted in with drug-like rules Lipinski, Ghose and
Veber showed that both compounds respect all the applied rules. Based on these results,
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we can say that both BG1189 and BG1190 could be administrated as drugs. Drug-like rules
validation for both derivatives and molecular descriptor predicted values are presented
in Table 1.

Table 1. Drug-like rules Lipinski, Ghose and Veber validation for molecules BG1189 and BG1190.

Molecule
BG1190 BG1189

Validate Molecular Descriptors Value Validate Molecular Descriptors Value

Lipinski Yes

MW ≤ 500 289.31

Yes

MW ≤ 500 277.30
MlogPo/w ≤ 4.15 1.04 MlogPo/w ≤ 4.15 0.37

Acc ≤ 10 5 Acc ≤ 10 5
Don ≤ 5 1 Don ≤ 5 1

Ghose Yes

160 ≤ MW ≤480 289.31

Yes

160 ≤ MW ≤ 480 277.30
−0.4 ≤ WlogPo/w ≤ 5,6 0.91 -0.4 ≤ WlogPo/w≤ 5,6 1.15

40 ≤ MR ≤ 130 81.07 40 ≤ MR ≤ 130 74.46
20 ≤ atoms ≤ 70 38 20 ≤ atoms ≤ 70 37

Veber Yes
Rotatable bonds ≤ 10 4

Yes
Rotatable bonds ≤ 10 5

TPSA ≤ 140 Å2 78.44 Å2 TPSA ≤ 140 Å2 78.44 Å2

We have analyzed ADMET features and compared them with norfloxacin. In silico
ADMET results showed that BG1189 and BG1190 present high water solubility and high
intestinal absorption, similar to norfloxacin.

Caco2 permeability reflected the ability of the compound to be absorbed by the
intestinal cells. BG1189 and BG1190 permeability is lower than the antibiotic, but both
derivatives have a higher predicted VDs’ value which indicates that they are expected to
be distributed in tissue. Both molecules have a higher unbound fraction than norfloxacin,
suggesting that these quinazoline derivatives diffuse or traverse easier in the cell membrane
than norfloxacin. Total clearance of the new compounds is higher than norfloxacin total
clearance. Norfloxacin and BG1189 are not Renal OCT2 substrate, so those drugs are not
transported via OCT2. Regarding toxicity, BG1189, BG1190 and norfloxacin present similar
hepatoxicity and rat LD50. BG1189 and BG1190 are both hERG II inhibitors (Table 2).

Table 2. Predicted ADMET results for BG1189 and BG1190 quinazoline derivatives compared with predicted ADMET
values of norfloxacin.

Model Name Predicted Value
BG1190

Predicted Value
BG1189

Predicted Value
Norfloxacin Unit

Water Solubility −1.992 −1.549 −3.176 log mol/L
Caco2 Permeability 0.76 0.597 1.242 log Papp in 10−6 cm/s

Intestinal Absorption (Human) 87.391 78.106 86.904 % Absorbed
VDss (Human) 0.909 0.84 0.064 log L/kg

Fraction Unbound (Human) 0.713 0.612 0.462 Fu
Total Clearance 0.811 0.594 0.366 log ml/min/kg

Renal OCT2 Substrate Yes No No Yes/No
hERG I Inhibitor No No No Yes/No
hERG II Inhibitor Yes Yes No Yes/No

Oral Rat Acute Toxicity (LD50) 2.55 2.541 2.217 mol/kg
Hepatotoxicity Yes Yes Yes Yes/No

2.2. Pharmacodynamic Profile
2.2.1. Lipophilicity Evaluation

BG1189 and BG1190 lipophilicity or hydrophobicity evaluation indicate a LogP(o/w)
predicted value close to 1. This suggests a high antimicrobial activity of these com-
pounds [20]. Values are presented in Table 1 as MlogPo/w and WlogPo/w.
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2.2.2. Molecular Docking

Low free energy of binding is correlated with high biological activity; a molecule is con-
sidered to have no biological activity if its binding energy is higher than −6 kcal/mol [35].

Molecular docking results indicate that the two quinazoline derivatives present a
low estimated free energy of binding (EFEB) on the AcrB subunit of the multidrug efflux
pump (Table 3).

Table 3. Molecular docking results for quinazoline derivatives BG1189 and BG1190 on multidrug
efflux pump subunit AcrB (PDB code: 5NC5). AA residues in h-bound with quinazoline derivatives
are underlined.

Multidrug Efflux Pump Subunit AcrB (PDB Code: 5NC5)

AA Residues from Allosteric Situs
of AcrB Subunit. Met573; Phe617; Phe628; Phe666; Leu668.

Lowest EFEB BG1190 −8.21 kcal/mol

AA from the Run with Lowest
EFEB of BG1990

Gln34; Pro36; Thr37; Ala39; Ser134; Ser135; Phe136;
Tyr327; Thr329; Leu668; Ile671; Val672; Glu673.

Lowest EFEB BG1189 −7.40 kcal/mol

AA from the Run with Lowest
EFEB of BG1989

Gln34; Tyr325; Pro326; Tyr327; Asp328; Thr329; Pro331;
Phe332; Gly570; Val571; Gln569; Glu607; Ser608; Ser630;

Leu631; Trp634; Leu668.

The lowest EFEB is between BG1190 and the AcrB subunit, namely −8.21 kcal/mol
(Figure 1e and Table 3). In both predicted cases, the compounds have a different binding
situs from the allosteric one (Figure 1). The quinazoline derivatives are binding in the
pocket domain [22] of AcrB, as well as puromycin antibiotic from the crystalized structure
(Figure 1). This region actively presents the substrate to TolC tunnel for final expel [22].

2.3. Spectral Characterization
2.3.1. Stability Study Using UV-Vis Absorption Spectroscopy

The stability of quinazoline derivatives was monitored under constant environmental
conditions by recording the UV-Vis absorption spectra. The absorption spectra of the
BG1189 and BG1190 solutions in ultrapure water at 10−3 M are presented in Figure 2.

Quinazoline derivatives’ solutions are highly stable in selected conditions for the
incubation period (624 h), the difference in intensity between the absorption spectra re-
maining within the limits of error intervals. An extensive time stability study of a similar
quinazoline derivative was performed in [37], indicating a high stability of the compound
for 44 days, if kept in dark, at 4 ◦C.

In Figure 2a BG1189 exhibits three absorption peaks at 209, 224 and 318 nm. The ab-
sorption spectra of BG1190 (Figure 2b) are similar to the ones of BG1189, having the peaks
at 207, 224 and 314 nm.

The absorption bands with maxima at 224 and 318/314 nm are representative for
quinazolines and the absorption peak at 209/207 nm—a shoulder of 224 nm band—may
be due to the influence of atmospheric oxygen.

The absorption band with the peak at 224 nm has a high absorbance and may orig-
inate from π–π* (1B) transitions. The absorption bands having the maximum at 318 nm
for BG1189 and 314 nm for BG1190 may be assigned to π–π* (1La and 1Lb) transitions.
Additionally, the wide aspect of these absorption bands suggests a superposition with a
band attributed to a n–π* transition [38].
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Figure 1. AcrB subunit of the multidrug efflux pump chain B (PDB code: 5NC5). (i) Experimental data—(a) AA in close
contact with puromycin (antibiotic crystallized with the protein); (b) puromycin allosteric binding situs. (ii) Predicted
data—(c,e) AA in close contact with BG1189 respectively BG1190; (d,f)—BG1189 respectively BG1190 interacting with pore
domains of AcrB subunit. (a,c,e) Light green: van der Waals interactions; green: conventional hydrogen bond, grey: carbon
hydrogen bond; red: unfavorable acceptor–acceptor interaction; dark pink: Pi–Pi T-shaped interaction; light pink: Pi–Alkyl
interactions; (b,d,f) alpha helices of the protein are represented in red color, beta sheets in blue, turns in green, and random
coil in grey. Images were obtained using Discovery Studio Visualizer [36].

Figure 2. Time evolution of absorption spectra of quinazoline derivatives: (a) BG1189 and (b) BG1190. Solutions prepared
in ultrapure water at 10−3 M; kept in dark, at 22 ◦C.

Theoretical UV spectra and computations of the absorption spectrum of quinazolinone
derivatives, having similar radicals to ours, assign the bands in 210–285 nm range to π–π*
transitions, and the ones appearing in 285–320 nm to n–π* transitions. More so, the bands
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appearing at longer wavelengths were correlated to n–π* transition of the >C=O bonds
coupled with the transition due to intramolecular charge transfer from phenyl ring and
N=C–N bonds to >C=O group [39].

Figure 3 displays the UV-Vis absorption spectra of the quinazoline derivatives in the
range 250–600 nm (DMSO absorption is very strong below 250 nm saturating the detector).

Figure 3. Time evolution of absorption spectra of quinazoline derivatives: (a) BG1189 and (b) BG1190. Solutions prepared
in dimethyl sulfoxide (DMSO) at 10−3 M; kept in dark, at 22 ◦C.

BG1189 presents a maximal absorption band at 330 nm and BG1190 has a similar band
with the peak at 326 nm. These bands, assigned to π–π* coupled with n–π* transitions,
undergo a bathochromic shift compared to the absorption maxima of the quinazoline
derivatives in water (318 nm for BG1189 and 314 nm for BG1190). Due to the solvent
polarity, a blue shift appears with more polar solvent (from DMSO to water), which happens
in the case of n–π* transitions [40]. This shift of the absorption maximum allows to identify
that the dominant transitions responsible for the appearance of the longer wavelength
peaks are n–π* transitions.

The long-term stability of the solutions in DMSO was assessed by comparing UV-
Vis absorption spectra recorded periodically, from immediately after preparation up to
9 months.

For BG1189 solutions, the spectra remain stable up to 552 h (23 days) after preparation
and this period may be considered as shelf life. On the other hand, BG1190 solutions in
DMSO remain stable only for 216 h (9 days) after preparation.

For both compounds, the stability is better in water solutions (624 h) than in DMSO.
Three temperatures were selected: 4 ◦C (refrigerator temperature), 22 ◦C (room tem-

perature) and 37 ◦C (body temperature).
From the grouping of the BG1189 absorption spectra, Figure 4a indicates that the most

stable samples are observed at 22 ◦C. Even if before 120 h after preparation, all solutions
are stable regarding the storage temperature, at the end of the experiments (624 h) the
absorption spectra are outside the limits of the error bars. For potential biomedical applica-
tions, BG1189 in ultrapure water at 10−3 M should be preserved at 22 ◦C, if kept in dark,
but no more the 624 h.
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Figure 4. Influence of the storage temperature (4, 22 and 37 ◦C) on the absorption spectra of: (a) BG1189 and (b) BG1190.
Solutions prepared in ultrapure water at 10−3 M, kept in dark.

The absorption evolution of BG1190 solutions is similar to the one of BG1189 samples.
The only difference observed in Figure 4b, is that the only spectrum that exceeds the error
bars is the one recorded at 624 h for the BG1190 solution kept at 37 ◦C. The grouping of the
absorption spectra for the entire time domain allows to conclude that BG1190 solutions
have high stability, up to 624 h, if kept in dark at 4 ◦C or at 22 ◦C.

An important part of stability behavior for a new medicine is the evaluation
of photostability.

Figure 5 presents the influence of different illumination conditions on the absorption
spectra of BG1189 and BG1190.

Figure 5. Influence of the illumination conditions on the absorption spectra of: (a) BG1189 and (b) BG1190. Solutions
prepared in ultrapure water at 10−3 M, kept at 22 ◦C.

For both quinazoline derivatives, normal room lighting conditions influence their
spectral properties. BG1189 and BG1190 are unstable if they are not kept in dark, even in
the first 24 h after preparation.

The only absorption spectrum similar to the one of the fresh prepared solution of
BG1189 is the spectrum of the irradiated solution at 355 nm for 2 min, with an average
energy per pulse E = 6 mJ. Consequently, the total energy absorbed by solution in 2 min was
not enough to modify a significant fraction of the molecules. Even though the total energy
emitted in 2 min was the same for both wavelengths (Etotal = 7200 mJ, considering E = 6 mJ
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and pulse frequency 10 pps), the BG1189 solution was modified in the first 2 min when
exposed to laser radiation, at λ = 266 nm.

Two explanations can support the rapid modification at λ = 266 nm: first, the molar
extinction coefficient (ε) for BG1189 calculated from the absorption spectra was higher at
266 nm (ε266nm = 4866 L mol−1 cm−1) than at 355 nm (ε355nm = 3060 L mol−1 cm−1), so that
BG1189 solution absorbs more at 266 nm, and, secondly, the photon energy is larger at
266 nm (Eph266nm = 449.7 kJ/mol) than at 355 nm (Eph355nm = 336.9 kJ/mol) and it is more
likely to break more chemical bonds at λ = 266 nm.

For BG1190 photostability study, spectra of solutions exposed for 2 min and for 5 min
to laser radiation at λ = 355 nm remain in the error limits, indicating that the solutions
remain stable in these conditions (Figure 5b) for the same reasons as in the case of BG1189;
for BG1190 solution, ε266nm is 3855 L mol−1 cm−1 and ε355nm is 2800 L mol−1 cm−1.
The lower value of ε355nm explains why more than 5 min of irradiation are needed to
modify the BG1190 solutions, whereas in the case of BG1189 less than 5 min of exposure to
laser radiation at 355 nm are enough.

For longer periods of irradiation, modifications of the absorption spectra are obvious.
Due to higher absorbance at 266 nm, quinazoline derivatives start to modify rapidly (before
2 min) when exposed to laser radiation having this wavelength.

Figure 6 presents the absorption spectra of BG1189 and BG1190 irradiated for different
periods (up to 60 min). The hypochromic effect observed during irradiation indicates
a modification of the compounds. Moreover, a hypsochromic shift was observed from
318 nm to 307 nm for BG1189 (Figure 6a) and from 314 nm to 308 nm in the case of
BG1190 (Figure 6b).

Figure 6. Laser induced modifications of the absorption spectra of: (a) BG1189 and (b) BG1190. Solutions prepared in
ultrapure water at 10−3 M. Laser irradiation conditions: E = 6 mJ, λ = 266 nm.

Considering that the absorption band with the peak at 224 nm is due to π–π* transition,
and the bands at 318/314 nm are attributed to n–π* transition (as resulted from the blue
shift obtained when changed to a more polar solvent), these bands being characteristic for
the quinazoline radical [38], the hypochromic effect and the hypsochromic shift indicate
that the quinazoline radical of both derivatives was modified during irradiation.

In Figure 6a, three isosbestic points are detected at 251, 288 and 352 nm. In Figure 6b,
there are also three isosbestic points, at 246, 288 and 348 nm. The existence of an isos-
bestic point reflects the presence of two chemical species in the solution [41]. Considering
that it is less likely to have two chemical species with the same ε at three different wave-
lengths, Figure 6 shows that after 60 min of irradiation it is possible to generate at least six
photoproducts for each tested quinazoline.
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When BG1189 and BG1190 solutions are exposed to laser radiation at λ = 355 nm,
E = 6 mJ, the curves are similar to the ones in Figure 6. It can be noted that hypochromic
effect is somewhat smaller because the absorbance is smaller at 355 nm than at 266 nm and
the modifications of molecules do not occur as rapidly. Another difference would be that
the isosbestic points appear at 248, 290 and 351 nm for BG1189 and at 247, 289 and 347 nm
for BG1190.

2.3.2. FTIR Spectroscopy

The frequencies of bands obtained for the non-irradiated BG1189 solution from the
recorded FTIR spectrum were compared with the theoretical frequencies calculated with
Gaussian 09 and GaussView 5.0 (see Table S1 from Annex 1) [42]. Similar data are given for
BG1190 in Table S2 from Annex 1.

Quinazolines have strong IR absorption bands between 1635–1610 cm−1, 1580–1565 cm−1

and 1520–1475 cm−1, and other bands with variable intensity in the range 1500–1300 cm−1,
all originating from aromatic ring vibrations. They also display IR absorption bands between
1290 and 1010 cm−1, due to C–H in-plane deformation vibrations; between 1000 and 700 cm−1

they have bands originating from the C–H out-of-plane deformation vibrations [43].
The FTIR spectra recorded for the BG1189 solutions in water before and after exposure

to laser radiation are given in Figure 7.

Figure 7. FTIR spectra of the unirradiated and 1 h irradiated BG1189 10−3 M solutions in water.

The FTIR spectrum of the BG1189 exposed one hour to laser radiation (λ = 266 nm;
E = 6 mJ) presents modifications compared to the unirradiated sample. Absorption bands
with increased intensity may be observed with the maxima at 3140, 3044, 2979 and
2707 cm−1. This modification suggests an increase of CH2 asymmetrical and symmet-
rical stretching vibrations. The disappearance of the 1716 cm−1 peak and the formation
of a new wide absorption band with maximum at 1683 cm−1 indicates the disruption of
the majority of C=O bonds and an increase of C–C and C–N stretching vibrations from
quinazoline radical, or just a superposition of the remaining C=O stretching vibrations with
the remaining C–C and C–N stretching vibrations leading to appearance of new weaker
and wider absorption ban. The absence of the 1561 cm−1 peak in the spectrum of the
irradiated BG1189 shows a decrease of C–C ring stretching, N–O stretching, O–H defor-
mation and C–H deformation vibrations suggesting disruption of some of these bonds.
A decrease in intensity of the 1401 cm-1 band indicates a diminution of C–H deformation
and C–N stretching vibrations. The disappearance of the absorption band with maximum
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at 1214 cm−1 and the reduction of the ones at 1138 and 1078 cm−1 point to a reduction of
C–C and C–N ring stretching vibrations, C–H and O–H deformation vibrations and CH2
wagging vibrations from CH3 groups. After exposure to laser radiation for one hour, the
IR absorption bands observed for BG1189 sample in the range 1100–450 cm−1, either dis-
appear, or their intensity is extremely reduced, indicating a decrease of C–C and C–N
stretching vibrations from the quinazoline ring, N–O stretching or deformation vibrations,
O–H and C=O deformation vibrations and all types of C–H deformation vibrations.

All these modifications observed in IR spectrum of the irradiated BG1189 in compari-
son with the spectrum of the unirradiated sample suggest that laser radiation breaks part
of the chemical bonds, affecting not only the substituents, but also the quinazoline radical
of BG1189 molecules.

The FTIR spectrum of the irradiated solutions of the BG1190 at 10−3 M in water,
shown in Figure 8, displays modifications in comparison to the spectrum of the unirradiated
BG1190. After exposure to laser radiation (λ = 266 nm; E = 6 mJ; t = 1 h), the IR absorption
bands in the range 3100–2800 cm−1 decreased in intensity, indicating the breaking of the
majority of CH bonds, which were performing CH2 symmetrical and asymmetrical stretch-
ing vibrations. The band with maximum at 1685 cm−1 diminishes to approximately half
of its intensity after irradiation, suggesting that the number of C=O stretching vibrations,
hence the number of carbonyl groups, is reduced by half. Larger decreases in intensity are
observed for the bands with maxima at 1615, 1574, 1524 and 1474 cm−1, indicating a de-
crease of C–C and C–N stretching vibrations from the quinazoline radical, N–O stretching
vibrations, C–N deformation vibrations, O–H deformation vibrations, C–H deformation
vibrations from quinazoline ring and CH2 scissoring. Reduction in intensity of the peak
at 1345 cm−1 suggests a diminished number of N–O stretching, O–H deformation and
CH2 twisting vibrations. The intensity decrease of the absorption bands with maxima at
1167, 1126 and 1081 cm−1 hints about the breaking part of the C–C, C–N and C–H bonds
from the quinazoline ring and N–O, C–C and C–N bonds from the substituents. The range
1000–400 cm−1 displays bands that also have reduced intensity compared to the FTIR spec-
trum of the unirradiated sample. This suggests a diminution of the following vibrations:
C–C, C–N and C–H deformation and stretching from quinazoline radical, N–O and NO2
deformation, along with CH2 rocking and wagging vibrations.

Figure 8. FTIR spectra of the unirradiated and 1 h irradiated BG1190 10−3 M solutions in water.
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Similar to BG1189 samples, FTIR spectra recorded before and after exposure to laser
radiation show that BG1190 molecules are modified during irradiation, part of the chemical
bonds being braked in the substituents and in the aromatic rings.

3. Materials and Methods
3.1. Materials

Due to the fact that quinazoline derivatives have a wide range of biomedical activi-
ties and applications, including anti-bacterial, anti-cancer, anti-inflammatory, analgesic,
anti-virus, anti-tuberculosis, anti-malarial effect, some of them were chosen as potential
chemosensitizers [44].

The quinazoline derivatives, labelled BG1189 and BG1190, studied in this paper were
designed as EPIs at UMR-MD1, Facultés de Médecine et de Pharmacie, Université de la
Méditerranée, Marseille, France. The chemical synthesis of these derivatives was reported
in [45].

The molecular formulas of BG1189 and BG1190 are C13H16N4O3 and C14H16N4O3,
respectively. Their chemical structures are shown in Figure 9.

Figure 9. Chemical structures of quinazoline derivatives: (a) BG1189 and (b) BG1190.

3.2. Methods

For molecular docking assay we have used Autodock 4.2.6 [46]. Using Open Babel
we have converted BG1189 and BG1190 molecules optimized initially with Gaussian 09 in
pdbqt format [47]. The 3D structure of the membrane protein was imported from RCSB
Protein Data Bank [48] in PDB format. We kept only subunit AcrB chain B for AcrB (PDB
code: 5NC5) for molecular docking protocol [23]. We have used our molecular docking
protocol to simulate the interaction between quinazoline derivatives in target protein [29].

We set the specific grid points (x, y, z) at 50, the grid point spacing at 0.05 nm and the
coordinates of the central grid point of maps (x, y, z) 30.547, −51.785, −51.989.

The solutions of BG1189 and BG1190 were prepared in ultrapure deionized water,
prepared with a filtering system described in [49]. The concentration of both quinazoline
solutions was 10−3 M and it was chosen according to the biological activity assessments.
For each compound, six samples were prepared in total, out of which three were kept in
dark at 4, 22 and 37 ◦C, respectively, one was kept at 22 ◦C and at normal illumination of the
room, and two were exposed to laser radiation at two different wavelengths immediately
after the solution was prepared.

The stability studies were performed comparing the UV-Vis absorption spectra ob-
tained at different times after preparation for samples kept at usual storage and body
temperatures (4, 22 and 37 ◦C) and in different illumination conditions: dark, normal room
lighting, exposed to laser radiation. UV-Vis absorption spectra were measured using a
Perkin Elmer Lambda 950 UV/Vis/NIR spectrophotometer, with an error of ± 0.004%.
The spectra were recorded between 200 and 800 nm, using as reference an optical cell
containing the solvent, either ultrapure deionized water or DMSO. The thickness of the
optical cells used for absorption spectra measurements was 1 mm, which may cause
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measuring errors due to the positioning of the cell in the sample holder of the spectropho-
tometer. For this, 20 repetitive measurements were performed, repositioning each time
the optical cell. The error is given as a percent of the absorbance values and was calcu-
lated as the difference between the highest and lowest intensities of the absorption peak
obtained in the 20 repetitive measurements. The spectra were recorded every hour in
the first day after solutions’ preparation and then every 24 h for the next month (624 h).
The method of measuring and calculating the experimental errors was fully described
in [37]. The graphs were made by superimposing the recorded spectra in Origin 2019 (9.6)
software, without any preprocessing.

Two types of photostability studies were performed: first, to assess for how long
the solutions of quinazoline derivatives can be kept in dark at normal room illumination
without changing their properties; secondly, to determine the radiation dose needed
to obtain photoproducts with enhanced antimicrobial activity in comparison with the
initial/parent molecules.

For the photostability study, three samples of each quinazoline derivative solutions in
ultrapure water, with a concentration of 10−3 M, were prepared. One was stored at normal
room lighting for 624 h and two were exposed to laser radiation, with average pulse energy
E = 6 mJ, at wavelengths 266 and 355 nm, respectively.

The laser radiation used to irradiate the solutions was provided by the third harmonic
generation (THG) at 355 nm and fourth harmonic generation (FHG) at 266 nm of a Nd:YAG
(Continuum, Excel Technology) pulsed laser, model Surelite II with 10 Hz pulse repetition
rate and 6 ns pulse duration. The average beam energy was 6 mJ, at both wavelengths.

In addition to UV-Vis absorption spectroscopy, FTIR spectroscopy was employed to
evaluate the photostability of the quinazoline derivatives solutions.

FTIR spectra of solutions before and after exposure to laser radiation were recorded
with a FTIR spectrometer Nicolet iS50 (Thermo Scientific, Waltham, MA, USA). To acquire
the spectra, a 40 µL sample was placed on a KRS-5 (Thallium Bromo-Iodide) optical
crystal and dried before recording their absorbance to minimize the influence of water.
The recorded FTIR spectra were smoothed with Origin 2019 (9.6) software by Savitzky–
Golay 25 points method.

The recorded FTIR spectra of the quinazoline derivatives were compared to the ones
calculated by Gaussian 09 and GaussView 5.0., using the method described in [50]. Den-
sity functional theory (DFT) with the B3LYP (Becke, 3-parameter, Lee-Yang-Parr) method
and 6-311G(d,p) basis set were employed for calculating the vibrational frequency of the
BG1189 and BG1190 molecules. The calculations reported in this paper were performed for
the quinazoline derivatives solvated in water.

4. Conclusions

This paper presents the pharmacokinetic and pharmacodynamic profiles, along with
a spectral characterization of two quinazoline derivatives, labelled BG1189 and BG1190,
designed as potential EPIs.

Both derivatives are good candidates as drugs since they follow all the applied drug-
like rules (Table 1). ADMET predictions illustrate that these derivatives had a high ab-
sorption (if administrated orally), are well distributed in tissues, and have relatively low
toxicity, compared to clinically used drugs (Table 2).

Molecular docking simulations showed that both compounds present a good in-
hibitory activity on subunit AcrB chain B. Additionally, the low LogP values recommend
these derivatives as promising antibacterial drugs (Tables 1 and 3). Previous studies demon-
strated the affinity of the tested compounds. Firstly, minimum inhibitory concentrations
(MIC) of the compounds have been assayed on a strain that overexpressed AcrAB pump
(CM64, an ATCC 13048 derivative), the parental wild type strain, and several clinical iso-
lates that overexpressed AcrAB pump. Results indicated that the quinazoline derivatives
had no activity on AcrAB-deleted strain. Secondly, the compounds significantly increased
the accumulation of radiolabeled chloramphenicol, a well-known substrate of AcrAB
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pump, in strains overexpressing AcrAB. Moreover, the same study showed a variation of
ligands location inside the AcrB cavity [16]. We obtained similar results in our theoretical
model as we presented in Figure 1.

Given the above data and previous tests on bacteria, these quinazoline derivatives
represent suitable candidates in future experiments as antimicrobial agents, and further
affinity tests on AcrAB-TolC are recommended [16].

Spectral characterization provided an insight into the stability and photostability of
the studied compounds.

UV-Vis absorption spectroscopy allowed to determine the stability of quinazoline so-
lutions in water or in DMSO, in constant or in variable environmental conditions. The pho-
tostability of the samples was assessed through UV-Vis absorption spectroscopy and
FTIR spectroscopy.

The UV-Vis absorption spectra of BG1189 and BG1190 in water, at 10−3 M concentra-
tion, kept in dark, at 22 ◦C (room temperature), remained in the limits of error, showing
that the samples were stable for 624 h. The solutions prepared in DMSO, kept in similar
conditions, remained stable only 552 h after preparation in the case of BG1189 and 216 h in
the case of BG1190.

A comparison between UV-Vis absorption spectra of samples from both quinazoline
derivatives, kept at 4 ◦C (refrigerator temperature), 22 ◦C (room temperature),
and 37 ◦C (body temperature), showed that the most stable samples were the ones kept at
room temperature, indicating 22 ◦C as best fitted storage temperature.

The photostability study identified first the illuminations conditions needed to keep
the quinazoline derivatives solutions unaltered. Afterwards, illumination conditions were
varied (from ambient light to laser radiation exposure) so that we could determine the
modifications of the quinazoline derivatives and the generation of photoproducts.

FTIR spectra of BG1189 and BG1190 recorded before and after irradiation, demon-
strated that both derivatives were modified during laser exposure, suffering alterations of
the substituents and of the aromatic rings.

Further studies need to be conducted for a better understanding of the modifications,
but current data allowed us to have an insight on the stability of these compounds proposed
as EPIs.

Supplementary Materials: The following are available online, Annex 1—FTIR spectroscopy.
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