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Abstract

Water molecules at the protein-small molecule interface often form hydrogen bonds with

both the small molecule ligand and the protein, affecting the structural integrity and energet-

ics of a binding event. The inclusion of these ‘bridging waters’ has been shown to improve

the accuracy of predicted docked structures; however, due to increased computational

costs, this step is typically omitted in ligand docking simulations. In this study, we introduce

a resource-efficient, Rosetta-based protocol named “PlaceWaters” to predict the location of

explicit interface bridging waters during a ligand docking simulation. In contrast to other

explicit water methods, this protocol is independent of knowledge of number and location of

crystallographic waters in homologous structures. We test this method on a diverse protein-

small molecule benchmark set in comparison to other Rosetta-based protocols. Our results

suggest that this coarse-grained, structure-based approach quickly and accurately predicts

the location of bridging waters, improving our ability to computationally screen drug

candidates.

Introduction

Computational ligand docking in drug discovery

Structure-based computer-aided drug discovery (SB-CADD) is a field at the intersection of

computer science and structural biology that uses computational tools to identify small mole-

cule (ligand) binders from the three-dimensional structure of a protein [1]. Computational

protein-ligand docking attempts to predict the structure of a small molecule ligand in complex

with its associated protein. Examples of docking programs include RosettaLigand [2–5], Glide

[6], and AutoDock [7]. This protocol will focus on RosettaLigand, a ligand docking protocol

within Rosetta that takes advantage of the Rosetta protein modeling infrastructure and scoring
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function to virtually dock small molecule ligands with full backbone, side chain, and ligand

flexibility.

Protein-ligand interface water molecules play a crucial role in binding

Up to two-thirds of protein-ligand interfaces contain one or more water molecules within the

binding site, many of which form hydrogen bond networks with both the ligand and the pro-

tein [8]. These “bridging waters” play a key structural role in the binding of a ligand within an

active site, and in many cases dictate the geometry and energetics of a binding event. One well-

studied example is HIV-protease, where key water molecules in the interface stabilize the bind-

ing of class HIV-1 protease inhibitors [9, 10]. Despite this, water is typically ignored during

protein-ligand docking studies due to the increased computational complexity introduced by

both predicting and modeling these waters.

Ligand docking with explicit waters improves accuracy

Previous studies in other common docking software show that including explicit waters in the

immediate vicinity of both the protein and the ligand improves overall docking accuracy [6, 7,

11, 12]. Past efforts to model the effects of water in RosettaLigand leverage the ability of Rosetta

to simultaneously dock multiple small molecules such as waters and cofactors, either keeping

waters stationary relative to the protein (“protein-centric”) or translating waters along with the

ligand (“ligand-centric”) [13]. These approaches have limited applicability, since they rely on

the location and number of experimentally-determined water locations a priori. Recent parallel

efforts within Rosetta use both implicit and explicit water representation methods to improve

sampling and scoring terms for coordinated water molecules at protein-protein and protein-

small molecule interfaces [14–16]. The method described herein complements these

approaches within Rosetta, in particular allowing for rapid placement of water molecules for

later refinement.

Prediction of water molecules in protein-small molecule interfaces

continues to be a largely unanswered question in the field

There have been many approaches to this problem using both explicit and implicit water mole-

cule representation, including (but not limited to) one or a combination of molecule mechan-

ics force fields [15–19], knowledge-based terms [18, 20, 21], homology structures [22], and

manual curation. To the authors knowledge, the 2015 CAPRI assessment [23] is the most

recent blind prediction specifically looking at water molecules in a single protein-protein

interface example, and the results highlight the difficulty of this problem. Briefly, teams were

first asked to predict a protein-protein interaction from a highly conserved system then asked

to predict the water network at this interface. Most teams successfully predicted the protein-

protein interaction; however, water predictions were largely unsuccessful with only 6% of

models successfully recaptured >50% of water-mediated contacts. This type of assessment has

not been performed since, nor specifically for protein-small molecule interactions.

Here we describe the “PlaceWaters” protocol, a new algorithm to predict the locations of

bridging waters during a docking simulation. Notably, and in contrast to previously described

methods, PlaceWaters is independent of prior knowledge of the location of waters in experi-

mental structures or the number of waters to place within a binding site. We also present the

results on a diverse benchmark of protein-ligand associations. Our results demonstrate that

our structure-based water placement algorithm can quickly and correctly predict the locations

of bridging waters to the same success as previously described methods. Though the results are
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promising, we also offer areas for potential improvement that build on our method described

here.

Materials and methods

The PlaceWaters mover algorithm

First, a grid is superimposed onto the ligand, where size of the grid is double the distance

between the center of the ligand to the most distal heavy atom. We iterate through all grid vox-

els and record unoccupied coordinates. We further prune this set of “candidate coordinates”

to remove all coordinates below a certain cutoff to existing atoms, leaving only coordinates

that are a sufficient distance from both the ligand and the protein. The remaining coordinates

are clustered into “voids” based on a user-defined distance and any clusters that are within 2Å
of each other are merged. The final set of candidate coordinates is the centroid of each result-

ing cluster. The final step in the algorithm involves checking each of the remaining candidate

coordinates for hydrogen bond donors and acceptors in a shell around them. If a hydrogen

donor or acceptor atom is present on both the ligand and the protein within the desired cutoff

values, the coordinate is accepted, and a water oxygen is placed at this coordinate. These steps

are represented visually in Fig 1.

Parameter optimization to set default cutoff distances for merging, clustering, and accept-

ing possible hydrogen bonds was performed using Bayesian optimization in the ‘hyperopt’

software [24]These values can be easily modified to the user’s preference in the XML script

Fig 1. Details on PlaceWaters algorithm and comparison to all tested protocols. Top: PlaceWaters steps A) water grid at given density around ligand

in unoccupied coordinates; B) cluster waters to average coordinate; C) final water placement after hydrogen bonding donor or acceptor check. Co-

crystallized waters are shown in red spheres, predicted waters depicted in cyan spheres (PDB: 3K97). Bottom: Workflows for each protocol starting with

the “saturation test” along the top row followed by the different docking tests “With PlaceWaters”, “No waters”, “Protein-centric”, and “Ligand-

centric”.

https://doi.org/10.1371/journal.pone.0269072.g001
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(see S1 File). We use the RMSD distance between oxygen molecules in equivalent native and

added waters as the objective function during optimization. The input files used were the

native poses of the training associations, stripped of all water molecules. The resulting optimal

values of each parameter were used to perform the benchmark test.

Saturation test

The “saturation test” looks to determine the ability of the PlaceWaters algorithm to put waters

correctly into the native protein-ligand interface. This takes the native protein-ligand interface

and places the waters accordingly without any structural perturbation of the protein or the

ligand. We break down the algorithm performance to determine the loss of correct water

placement at each step. In each case, we calculate the distance between the oxygen atoms in

each bridging water and the nearest placed water molecule. A success case is classified as a

water is placed within 1.4Å of a bridging water. Separately, we look at the number of waters

added compared to the known native waters for over- and under-estimation of water addition.

Docking tests

Inclusion of water placement is meant to be used to improve ligand docking predictions,

therefore we ran the benchmark set against other Rosetta-based protocols for comparison. The

relationship between these protocols is displayed in Fig 2. In each docking test (RosettaLigand

with PlaceWaters, RosettaLigand without PlaceWaters, and RosettaLigand with protein- and

ligand- centric water placement), we used the same metrics as in the saturation test to deter-

mine successful water placement. Additionally, we wanted to know if the addition of explicit

water molecules helped with ligand binding predictions during docking. To determine if

Fig 2. Dataset information. A) Selection criteria with respective number of complexes that pass; Distribution of B) number of bridging waters and C)

ligand pocket solvent-accessible surface area across dataset.

https://doi.org/10.1371/journal.pone.0269072.g002
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PlaceWaters aided in sampling the native ligand binding pose, we simply compare the percent-

age of output models<2Å RMSD of the native binding mode between RosettaLigand with

and without PlaceWaters. We also wanted to know if the inclusion of explicit waters scores

native-like ligand poses more favorably. To determine this, we compare the number of<2Å
models in the top 10% by score between RosettaLigand with and without PlaceWaters.

RosettaLigand with and without PlaceWaters

The standard ligand docking protocol in Rosetta briefly consists of the following steps: initial

placement of the ligand into the binding pocket, low- then high-resolution sampling of the

ligand, and a final energy minimization. Using the average coordinate of the co-crystallized

ligand as a starting point, the low-resolution step undergoes random transformations, with an

initial perturbation of 3.0 Å followed by random perturbations within 5 Å and 5˚, or a switch

to a different ligand conformer. This occurs 500 times through a Monte Carlo sampling pro-

cess, wherein a favorable change is always accepted, and an unfavorable change is accepted

based on the Metropolis criteria. The resulting lowest-energy pose is the final output. In high-

resolution sampling, the ligand, any present waters, and side chains within 6.0 Å of the ligand

or within 2.0 Å of any waters, are optimized by small translations up to 0.1 Å and rotations of

up to 5˚. This is followed by a gradient descent algorithm that further adjusts the ligand and

side chain positions. This process is repeated six times, again utilizing a Monte Carlo approach

as described above. The high-resolution step is followed by the final minimization step in

which all waters, ligand torsion angles, as well as backbone φ and ψ angles and side chain χ
angles within 7.0 Å of the ligand or 2.5 Å of any water molecules are perturbed to find the local

energetic minimum. The final output pose is scored and evaluated.

Importantly, we excluded potential differences derived from the low-resolution sampling

step by using the same output from the low-resolution steps in both RosettaLigand protocols

with and without the PlaceWaters mover. In each protein-ligand case, we produced 1000 out-

puts from low-resolution sampling to then be used as input for the PlaceWaters step (Rosetta-

Ligand with PlaceWaters) or straight into high-resolution docking steps (RosettaLigand

without PlaceWaters).

RosettaLigand with protein- and ligand-centric waters

We also compared performance against the existing protein- and ligand-centric docking pro-

tocols [11], using the protein with the interface bridging waters already present as the starting

protein pose for docking. The protein-centric docking method places water molecules in their

known crystallographic coordinates and subsequently performs low-resolution ligand docking

while translating these waters simultaneously with respect to protein structure perturbations.

The ligand-centric docking method also uses known crystallographic water coordinates, but

the waters are translated along with the ligand coordinates during the low-resolution sampling

step.

Benchmark dataset preparation

Selection and curation of a diverse small molecule dataset is visually represented in Fig 3. The

benchmark proteins are taken from the set of associations known as the “Platinum set” [25]

and the CSAR 2014 benchmark [26]. The original dataset contained 4548 protein-ligand inter-

actions; however, we removed systems containing DNA/RNA, non-water cofactors within 6Å
of the ligand, more than 6 bridging waters, and greater than 1.7Å structure resolution. The

final dataset contained 219 protein-ligand interactions. “Bridging waters” were defined as

those within 3Å of both the ligand and the protein in the native structure while “local waters”

PLOS ONE Ligand docking with explicit water sampling in Rosetta

PLOS ONE | https://doi.org/10.1371/journal.pone.0269072 May 31, 2022 5 / 12

https://doi.org/10.1371/journal.pone.0269072


were defined as those within 5Å of any ligand atom (see get_native_waters.py script in S1

File). The total dataset of 219 protein-ligand complexes contains a combined 480 and 2268

bridging waters and local waters, respectively. The PlaceWaters protocol is designed to recap-

ture the bridging waters between a protein and ligand, but we also include local waters for

evaluation.

Results

The saturation test demonstrated that PlaceWaters successfully predicts

explicit waters at the binding interface

We initially tested performance on the native crystallographic ligand poses of the benchmark

set to determine how well the PlaceWaters mover determines water locations without protein

and ligand docking. Out of 480 bridging water molecules across 219 complexes, we success-

fully recapture 166 bridging waters (35%). While this percentage appears low, it is on par or

better when compared to competing algorithms with the same task while other algorithms

have not been benchmarked on this blind prediction. For comparison, the overall results of

the CAPRI assessment demonstrated that out of 176 high or medium quality docking models,

44% successfully recaptured 30% of water molecules at the protein-protein interface, and 6%

captured greater than 50%. Another key finding in the CAPRI assessment demonstrated that

even the successful docking models overestimate the number of waters resulting in roughly

half of water contacts as false positives. Similarly, the PlaceWaters mover overestimates the

number of waters in its predictions (Fig 4). Over-addition could be corrected by adjusting sev-

eral parameters: decreasing the allowed cutoffs for acceptable hydrogen bond donors and

acceptors, leading to fewer candidate meeting these criteria or increasing the clustering dis-

tance when selecting candidate coordinates, leading to fewer, larger clusters. Since we want to

predict putative water locations for further refinement, we aired on the side of over-predic-

tions. Increasing the allowed hydrogen bond donor/acceptor distance or lowering the cluster-

ing distance cutoffs too much, however, tends to over-predict waters in the pocket. In a few

cases, even using the optimized cutoffs, PlaceWaters adds up to eight water molecules in a

pocket without any bridging waters. Upon inspection of these individual cases, these ligand

pockets are entirely solvent-exposed and likely contain bulk water in these regions.

Fig 3. Saturation test results. A) Blue: percentage of crystallographic waters that contain a placed water within 1.4Å at each filtering step; orange: Total

number of placed waters in dataset after each filtering step. B) Comparison of number of crystallographic waters versus number placed in dataset.

https://doi.org/10.1371/journal.pone.0269072.g003
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The full RosettaLigand protocol with the PlaceWaters mover does not

improve docking results in comparison to omitting the PlaceWaters step

We first determined if the addition of PlaceWaters increases sampling the native ligand bind-

ing pose by comparing the number of sub-2Å outputs when using RosettaLigand with and

without the PlaceWaters step. Based on this test, there fails to be an improvement in sampling

low-RMSD binding poses when using PlaceWaters (Fig 4). This result is expected based on the

order of steps in the pipeline and PlaceWaters being implemented between the low- and high-

resolution sampling steps. Typically, the ability to sample near-native ligand conformations is

based on the low-resolution step where there are larger ligand perturbations throughout the

pocket.

We then tested if adding the PlaceWaters step enriched near-native ligand poses by com-

parison the number of near native ligand binding poses within the top 5% of output interface

scores. Based on our benchmark set, there is also little improvement in how scoring with and

without water placement (Fig 5). Since we have not refactored any of the scoring methods to

include water-based interactions, this is expected.

PlaceWaters algorithm improves docking results in comparison to protein-

and ligand-centric water placement algorithms

The addition of PlaceWaters into the RosettaLigand protocol, however, did produce more

sub-2Å ligand RMSD outputs in comparison to the other explicit water protocols in almost all

cases. By breaking these results down by steps in the protocol, this improvement seems to

Fig 4. Number of sub-2Å ligand RMSD output models in comparison to ligand-centric (left) and protein-centric

(right) methods. Within the top 5% by interface score.

https://doi.org/10.1371/journal.pone.0269072.g004
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come from the post-PlaceWaters steps, namely the high-resolution sampling and minimiza-

tion steps (Fig 5). Although this isn’t the PlaceWaters mover enabling this improvement in

itself, these findings suggest that the inclusion of explicit waters in the refinement step

improves sampling accuracy.

Runtime of PlaceWaters mover

In adding to the full RosettaLigand docking protocol, it is important that any additional steps

are not prohibitively time consuming. In comparison to other resource-intensive explicit

water representation algorithms, the PlaceWaters mover took an average of 6 seconds to run

across our dataset. This is faster than the high-resolution dock which takes an average of 9 sec-

onds, but slower than the low resolution, side chain repacking, and final minimization, which

each had runtimes less than 2 seconds. This runtime indicates that addition of the PlaceWaters

mover to the overall docking protocol keeps the overall runtime of each trial short, making

this method possible to include in more extensive docking simulations including virtual

screening.

Case-study: Heat shock protein 90 in complex with known inhibitor

For a detailed walk-through of the algorithm, we present a case-study outlining the results

from the co-crystal structure of heat shock protein 90 (Hsp90) in complex with a known inhib-

itor, 4-chloro-6-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol (PDB

ID: 3K97, ligand ID: 4CD) [27]. As can be seen in Fig 1, there are 2 co-crystallized bridging

waters: HOH 237, which forms hydrogen bonds with the ligand para-hydroxyl, the L63 back-

bone carbonyl oxygen and the S67 sidechain hydroxyl group; and HOH 238, which forms

hydrogen bonds with the ligand ortho-hydroxyl and ligand amide oxygen, D108 sidechain car-

boxyl group and the G112 backbone amide nitrogen. All numbering is based on the deposited

PDB 3K97.

Fig 5. Number of sub-2Å ligand RMSD output models within the top 5% by interface score.

https://doi.org/10.1371/journal.pone.0269072.g005
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As can be seen in Fig 1A, the initial grid successfully identifies the regions where HOH 237

and 238 were co-crystallized, as well as a large region on the solvent-facing side of the ligand.

Fig 1B shows the results from the clustering and merging step resulting in 6 waters being

placed around the ligand, including waters placed at 1.2Å and 0.3Å of HOH 237 and 238,

respectively. As shown in Fig 1C, the PlaceWaters mover kept the water molecule near the

HOH 238, and successfully recaptured this hydrogen bond network. The water placed close to

HOH 237; however, was removed during the final selection step due to being too far from

either a ligand or protein hydrogen bond donor or acceptor atom.

Discussion

The PlaceWaters mover successfully predicts explicit water molecule

placement at native protein-ligand interfaces

The saturation test demonstrates the ability of PlaceWaters to successfully place water mole-

cules within the protein-ligand pocket. This method is strictly statistics-based and is indepen-

dent of time-consuming calculations to optimize water placement. This algorithm is also

independent of a priori knowledge on the number of waters to add in the pocket, and cutoff

values can be tuned to add more or fewer waters depending on different factors such as the

ligand, pocket accessibility, etc. This is optimistic for future work into using explicit water

representation within the Rosetta framework, and could be used in tandem with recent work

done elsewhere in the community [14].

Over-prediction of water molecules in interfaces

The function used to calculate water RMSD did not penalize false positives as it only consid-

ered waters that it was able to pair with the closest native crystallographic equivalent. As this

same function was used as the objective function in parameter optimization, this resulted in

the addition of a greater number of waters than were present in the native structure according

to the interface water criteria. This is especially true for associations with larger binding pock-

ets that result in a large number of candidate clusters and ligands with many hydrogen donors

and acceptors. This setup was used intentionally in order to explore all possible locations for

water molecules. However, this bias could be corrected by limiting the hydrogen contact cutoff

values to accept a narrower set of candidates. The PlaceWaters mover allows for user-modified

parameters as desired. We also felt that the over-prediction of water is better than under-pre-

diction in that outputs can be manually, albeit tediously, curated post-simulation to filter out

unlikely or undesired water placements based on specific residues or substituent groups of

interest.

Further parameter optimizations

While the PlaceWaters algorithm correctly predicts the location of bridging waters in certain

trials, the average number of waters added for each trial is consistently around three, regardless

of the number of native crystallographic bridging waters, and can most likely be attributed to

the cutoff values. As seen in the 3K97 case-study, the final selection step removed a bridging

water molecule near HOH 237 due to being slightly too far from a hydrogen bond donor or

acceptor atom. In this case, it would be better to tune these distance settings. Another potential

way to improve this is to do a more fine-grained sampling of the water within a defined sphere

to check for nearby hydrogen bond acceptor and donor atoms. This could avoid such sharp

cutoffs and be less reliant on the coarse-grained merged coordinate represented. These values

were optimized on the training set using the hyperopt hyperparameter software with an
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objective function that did not penalize false positives. It is likely that optimizing these cutoff

values using an alternative objective function would result in different cutoff values. Exploring

this in the future would result in both more accurate water prediction as well as more trials

with the correct number of waters added.

Interface water networks and protein-protein interactions

In addition to directly bridging waters that form hydrogen bonds with the ligand and the pro-

tein, many protein-ligand interfaces contain a network of water-water hydrogens bonds that

also contribute to the native docked structure of the ligand. The PlaceWaters algorithm could

potentially be updated to predict these networks by expanding the criteria for placing a water

at specific coordinates to include cases where other water candidate coordinates are within

this water-water hydrogen bonding distance. Similarly, bridging waters contribute to protein-

protein docking, and an algorithm to predict the location of bridging waters in these docks

could lead to improved structure prediction in these cases, as well. Future modifications to the

PlaceWaters mover could further generalize the algorithm to apply to these docks by modify-

ing the initial grid placement to encompass the protein-protein interface rather than the ligand

binding pocket.

Conclusion

PlaceWaters achieves successful water placement (average water RMSD below 1.4 Å) in a large

number of protein-ligand associations tested. The addition of PlaceWaters improved ligand

docking sampling over other Rosetta-based methods that use explicit water representation.

Finally, incorporation of the PlaceWaters mover to the full docking protocol extended the

duration of each trial by an average of approximately 6 seconds, allowing it to be incorporated

into the docking protocol without extending the total time of each trial to unviable lengths.

The results of this benchmark serve as evidence that structure-based water prediction algo-

rithms are able to predict the locations of bridging waters in ligand docking with relatively low

runtimes and provides a basis for further exploration into incorporating bridging waters in

future computational ligand docking efforts, particularly in cases with buried, medium-sized

binding pockets.

Supporting information

S1 File. Protocol capture. All scripts for dataset curation, running tests and analysis provided

here.
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