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Abstract: For the treatment of inflammatory illnesses such as rheumatoid arthritis and carditis, as
well as cancer, several anti-inflammatory medications have been created over the years to lower
the concentrations of inflammatory mediators in the body. Peptides are a class of medication with
the advantages of weak immunogenicity and strong activity, and the phage display technique is
an effective method for screening various therapeutic peptides, with a high affinity and selectivity,
including anti-inflammation peptides. It enables the selection of high-affinity target-binding peptides
from a complex pool of billions of peptides displayed on phages in a combinatorial library. In this
review, we will discuss the regular process of using phage display technology to screen therapeutic
peptides, and the peptides screened for anti-inflammation properties in recent years according to
the target. We will describe how these peptides were screened and how they worked in vitro and
in vivo. We will also discuss the current challenges and future outlook of using phage display to
obtain anti-inflammatory therapeutic peptides.

Keywords: phage display; inflammation target; anti-inflammatory peptides; therapeutic peptide;
inflammation pathway

1. Introduction

A number of diseases are driven by inflammation, such as rheumatoid arthritis,
diabetes, Alzheimer’s disease (AD), cancer, and atherosclerosis, as well as autoimmune,
respiratory, and cardiovascular diseases [1,2]. A complex network of numerous mediators,
a variety of cells, and several pathways are involved in inflammation. Current therapy for
inflammatory diseases is limited to steroidal and non-steroidal medications. Moreover, the
anti-inflammatory drugs on the market and used in research usually have significant side
effects, particularly when long-term use is involved [3,4].

Finding a safe and effective drug with which to control inflammation represents
a significant challenge; therefore, many researchers are committed to developing anti-
inflammation drugs. In the past few years, peptides have attracted increasing amounts
of attention due to their specific biochemical and therapeutic features, such as diverse
bio-functionalities based on their components (amino acids) and high binding affinity with
specific targets in a wide range, even though small molecules still dominate the therapeutic
industry [5,6]. Peptide discovery optimization has a significant resource advantage over
small molecules; the relatively simple and increasing automation of the synthesis required
facilitates the success of much smaller teams of medicinal chemists, many-fold smaller
than the sizes necessary for a comparable effort in small molecules. A peptide drug is
easy to produce and has a lower immunogenicity compared with the antibody. With the
improvements made in this technology, the disadvantages of the peptide drug, such as
it being membrane-impermeable and biologically unstable, can be solved under certain
conditions by direct structural change, enzyme inhibitors, absorption enhancers, carrier
systems, and transdermal delivery technologies, promoting peptide drug innovation [7].
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Phage display is a powerful tool for developing new peptide drugs, as it can largely
maintain the conformations and functions of the expressed protein and peptide simulta-
neously, thereby maximizing their retention of biological activities with little risk of the
recombinant phage infecting the host [8]. The genes expressed on the surface of phages
interact directly with various specific targets. For this reason, they are commonly used
as a powerful high-throughput screening tool allowing the potential peptide to quickly
connect to various specific cellular targets, including membrane receptors and enzymes [9].
To detect ligand–receptor interactions, the displayed phage can be screened against the
target proteins immobilized on the enzyme-linked immunosorbent assay (ELISA) plate. In
this way, large peptide libraries can be presented on the surface of the phage and panned
during repeated cycles, including binding, washing, elution, and amplification. After this,
sequencing the genome of the gradually enriched phage provides the display peptide
sequence, which can then be used to synthesize the peptide in recombinant or synthetic
form. Finally, unique binding agents with a high affinity and specificity for the desired
target can be identified [10]. Phage display peptide libraries usually contain up to 1010

diverse variants [9]; phages can appear with peptides of a variety of sizes and structures
on their surfaces. Natural peptides that are directly separated using traditional separation
methods, including high-performance liquid chromatography (HPLC), are usually present
in complex mixtures of biological components at relatively low concentrations. Phage
display, on the other hand, is more effective and economical in selecting peptide ligands
that interact with inflammatory mediators [11,12].

Therefore, it could be effective to use phage display technology to select peptides for
anti-inflammation purposes. However, it remains unclear as to whether these peptides are
effective candidates for developing medicine to treat disease clinically, which has practical
value. In this review, we will summarize the peptides screened for anti-inflammation activ-
ity through the phage display technique. Then, we will discuss the current achievements,
pros and cons, and prospects relating to this topic.

2. How to Use the Phage Display to Screen Peptides

The phage display method was first defined by G. P. Smith et al. in 1985 to express
cloned antigens on the viral surface [13]. It is a combinatorial technology that has attracted
a great deal of attention regarding its potential in the future of drug discovery. This
method is a robust tool in drug discovery, principally for peptide drug identification. It
enables researchers to construct libraries and rapidly isolate and identify specific protein
interactions of molecular targets [14].

Current phage display systems are based on various bacteriophage vectors, including
Ml3 phage, T7 phage, λ phage, and T4 phage display systems [15]. The M13 phage display
is the most frequently used of these phage systems. There are two main methods used to
screen out therapeutic peptides (Figure 1). One employs different targets to obtain a peptide
from a random peptide library. In this method, researchers always use different targets
associated with inflammation, and the phage display peptide library Ph.D.-7 is the most
commonly used library. This method is relatively convenient because it does not require
a phage library to be built. Another method involves constructing a phage according to
specific demands. For example, some researchers want to obtain functional peptides from a
mixture as with a natural product. They would use their mixture to construct a phage that
could display these candidate peptides on the surface, then use the target for biopanning to
obtain the peptides which have affinity with the target. For researchers aiming to build a
new peptide library according to their demands, the T7 system is most likely to be used. As
a phage display platform, M13 contains single-stranded DNA, whereas T7 contains double-
stranded DNA, which exhibits increased stability and is less prone to mutation during
replication. The T7 phage does not depend on a protein secretion pathway in the lytic cycle.
Its display system inserts the gene that encodes the specific peptide into its genome so that
the target peptide is fused to the C-terminus of the 10B capsid; thus, the target peptide is
expressed on the surface of the phage particle, thereby avoiding problems associated with
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steric hindrance [16]. T7 phage particles exhibit a high stability under extreme conditions,
such as high temperatures, and low pH values, which facilitates effective high-throughput
affinity elutriation [17].

Although the techniques used to screen the peptides are different, the methods fol-
lowed to verify their function are quite similar. Firstly, researchers need to verify the affinity
between the target and the peptides. Surface plasmon resonance technology (SPR), a major
tool used for characterizing and quantifying interactions between biomolecules, is the
commonly used and effective way to confirm this affinity. SPR is a technology developed in
the 1990s [18], which can monitor the dynamic interaction between ligands and receptors
in a fluid environment in real time, so that the affinity constants between ligands and
receptors can be calculated [19]. Besides SPR, there are other means to examine the affinity,
such as coimmunoprecipitation, but SPR is the most common method used in recent years
because it offers exceptional advantages such as being label-free, being able to be used in
situ, and providing real-time measurement ability [20].

After confirming the peptides’ affinity, various animal disease models, such as collagen-
induced arthritis, lipopolysaccharide (LPS)-induced paw edema, carrageenan-induced paw
edema, etc., can be used to verify peptides’ anti-inflammatory activity. In their study,
Vogel et al. [21] described many kinds of in vivo and in vitro methods that are used for the
pre-clinical assessment of anti-inflammatory drugs. Kalpesh et al. [22] then summarized
the advantages and limitations of these animal disease models, so we will not go into
detail here.
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library; the right is the flowchart of screening the peptide from the construct library.
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3. The Peptides Obtained according to Different Targets Related to Inflammation

Below, we have listed nearly all the peptides screened for their anti-inflammation
properties through phage display in the last 10 years (Table 1). These do not work identically
on disease models. The different functions of these peptides depend on the variety of
specific targets related to inflammation. According to their different targets, we evaluated
some of the peptides screened out for anti-inflammatory properties by describing their
screening mechanisms and mechanisms of action in vitro and in vivo.

Table 1. The peptides screened for anti-inflammation properties in recent years.

Name/Sequence Target Phage Library Type Properties References

Davp-1 Tumor necrosis factor
receptor 1(TNFR1)

Venom gland T7 phage
display library

(Deinagkistrodon acutus)
Has the affinity with TNFR1. [23]

Hydrostatin-SN1 TNFR1
Venom gland T7 phage

display library
(Hydrophis cyanocinctus)

Lowers the clinical parameters of
acute colitis, including the disease

activity index and
histologic scores.

Reduces inflammation in a mouse
model of acute lung injury (ALI)

with significant anti-inflammatory
effects both in vitro and in vivo.

[24]

CVX51401
Rat heart microvascular

endothelial cells
(RHMVEC)

Novagen T7 select
phage display system

RRPPR is potent in blocking
NO release.

Fusing RRPPR with a minimal Cav
inhibitory domain could

dose-dependently
block NO release, vascular
endothelial growth factor

(VEGF)-induced permeability, and
retinal damage in a model of

uveitis.

[25]

Phpep3D/Pep3D
Rabbit polyclonal

antibody anti-human
interferon α1 (IFNα1)

Ph.D.™-7 Phage
Display Peptide

Library

Limits psoriasis-like lesions
in mice. [26]

810A

Thioredoxin-
connective tissue

growth factor
(TrxA-CTGF)

Phage dodecapeptide
peptide library

Alleviates fibrosis in the
pulmonary index and
inhibits inflammation.

[27]

HP3
Peripheral blood

mononuclear cells
(PBMCs)

Ph.D.™-7 Phage
Display

Peptide Library

Inhibits the development of
psoriatic lesions. [28]

hC3a-specific
protein binder hC3

Repebody library was
constructed by

introducing random
mutations into six

variable sites in nearby
two modules, LRRV2

and LRRV3

Suppresses the effect of
pro-inflammatory responses in

monocytes, by blocking the
interaction between hC3a and

its receptor.

[29]

LRH7-G5 G protein-coupled
receptor 1 (GPR1)

Ph.D.™-7 Phage
Display

Peptide Library

Suppresses triple-negative breast
cancer (TNBC) tumor growth. [30]

RSH-12 Metalloproteinase 9
(MMP-9)

M13 phage display
peptide library

(Ph.D.-12)

Decreases the gelatin degradation
by specifically preventing gelatin
binding to MMP-9 and MMP-2.

[31]

M219hy MMP-2 [32]

MIT B cell mimotopes Random heptamer
peptide library

Alleviates allergic responses in a
mouse model. [33]
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Table 1. Cont.

Name/Sequence Target Phage Library Type Properties References

YSA/SWL EphA2
M13 phage library
displaying random

12-mer peptides
Has the affinity with EphA2. [34,35]

P-FN12 Anti-H4R antibody A 12-mer random
peptide library

Decreases the production of
ovalbumin (OVA)-specific IgE, Th2
immunity, and tissue eosinophilia.

[36]

Anti- inducible T cell
costimulatory ligand

(ICOSL) variable
domain (VNAR)

Antigen A synthetic
VNAR library

Decreases the inflammation of
joints, delays overall disease

progression, and reduces severity.
[37]

TSL1 gTie2-ectodomain
Ph.D.™-7 Phage
Display Peptide

Library
Has the affinity with Ang2. [38]

BKT120Fc and
BKT130Fc

Chemokines CCL11,
CXCL8, CXCL12,

CXCL9, and CCL2

Ph.D-12™ and
Ph.D.™-7 Phage
Display Peptide

Library

Inhibits the ability of
inflammatory chemokines
to induce the adhesion and
migration of immune cells.

Inhibits disease progression in a
variety of animal models of

autoimmunity and inflammation.

[39]

HAP Interleukin (IL)-17R-Fc Cyclic and linear
peptide libraries Has the affinity with IL-17R-Fc. [40]

P725 IL-7Rα
Ph.D.™-7 Phage
Display Peptide

Library

Competes with IL-7 for IL-7Rα
binding sites. [41]

pm26TGF-β1

Phages that were
bound to receptors on
the cell surfaces were
competitively eluted

with 10 ng/mL of
recombinant TGF-β1.

Ph.D.™-7 Phage
Display Peptide

Library

Has direct inhibitory effects on
neutrophil migration in a

carrageenan-induced
peritonitis model.

[42]

ZW1 Aβ42
Ph.D.™-7 Phage
Display Peptide

Library

Suppresses the inflammatory
response by decreasing the release

of proinflammatory cytokines,
such as tumor necrosis factor α
and interleukin 1β, in microglia
and reducing microgliosis and

astrogliosis in AD transgenic mice.

[43]

P1
A cluster of

differentiation 14
(CD14)

LPS-binding protein
(LBP) mutants phage

peptide library

Reduces the LPS-induced rat lung
tissue injury. [44]

NP31
Human cluster of
differentiation 40

(CD40)-murine IgG

pIF15 phage library
containing randomized

linear 15-mer amino
acids peptide sequence

Allows targeted diagnosis of and
intervention in inflammatory

disorders such as atherosclerosis
and autoimmune disease.

[45]

CKGERF and FERKGK
Human chemokine

receptor C-C receptor 3
(hCCR3)

6-mer
linearpeptidelibrary

Has inhibitory effects on
eosinophil chemotaxis in a murine

model of mCCL11-induced
peritoneal eosinophilia.

[46]

P15-1 Hyaluronan (HA)
oligosaccharides

15mer phage display
libraries

Attenuates proinflammatory,
fibrotic repair by blocking

hyaluronan
oligosaccharide signaling.

[47]

pep419 Caspase-6 Linear and cyclic
peptide phage libraries Has the affinity with pep419. [48]

LPS peptide mimics LPS antibody
Ph.D.™-7 Phage

Display
Peptide Library

TLR-4 agonist adjuvants. [49]
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Table 1. Cont.

Name/Sequence Target Phage Library Type Properties References

PP1 Scavenger receptor
A1(SR-AI) pIF4 phage libraries SR-AI antagonist. [50]

CI-S5 PBMCs
Ph.D.™-7 Phage
Display Peptide

Library

Broad-spectrum antagonist of
pro-inflammatory chemokines

through enhancing the expression
of TTP to reduce chemokine

mRNA expression.

[51]

R1antTN Human TNFR1
Fc chimera

Tumor necrosis factor
(TNF) variants in which
six amino acid residues

Contains the clinically useful
TNF-α antagonist used

in hepatitis.
[52–54]

SQSHPRH Inflamed bowel
Ph.D.™-7 Phage
Display Peptide

Library

Has affinity with
inflammatory bowel. [55]

TM11 Fc-specific goat
antihuman IgG

pComb8
phage-displayed

peptide library CX15C
(in which X is any

amino acid and C is a
fixed cysteine residue)

New class of
small-calcium-dependent

P-selectin antagonists based
on single-letter

amino acid code (EWVDV)
core motifs.

[56]

3.1. TNFR1

Primary inflammatory stimuli, including microbial products and cytokines, which
mediate inflammation through interaction with the toll-like receptors (TLRs), IL-1 receptor
(IL-1R), IL-6 receptor (IL-6R), and the tumor necrosis factor receptor (TNFR) [57], can
trigger significant intracellular signaling pathways, including the nuclear factor kappa-B
(NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase (JAK) signal transducer,
and activator of transcription (STAT) pathways [58–60]. To obtain peptides to antagonize
the factors in these inflammatory pathways, many researchers have employed inflammatory
pathway-related factors as targets to screen the peptides that have an affinity with these
factors through phage display. These affinity peptides might have the ability to inhibit
downstream signaling pathways and thus could reduce the inflammatory response in vitro
and in vivo.

Tumor necrosis factor α (TNF-α) is a multifunctional cytokine [61] which can control
the inflammatory process caused by bacterial and viral infections and promote autoim-
mune diseases as well as cancer [62–64]. The biological functions of TNF-α are mediated
by two different receptors, TNFR1 and TNFR2, in the cell membrane. To return to home-
ostasis, the mechanisms that shut down the inflammatory response are of paramount
importance [65]. The current research on this topic is focusing on anti-inflammatory drug
trends, aiming to identify new small molecules that can directly bind to TNF-α and/or
TNFR1 to prevent TNF-α from interacting with TNFR1, thus modulating downstream
signaling pathways [66].

However, inhibiting TNF-α occasionally has negative effects, including enabling life-
threatening infections, and the reactivation of hepatitis B and tuberculosis [67,68]. In
addition, TNF-α blockers cannot show efficacy in diseases where TNF-α acts as a disease-
promoting factor, including multiple sclerosis and heart failure. This may reflect the fact
that TNF-α blockers prevent not only TNFR1 signal transduction but also the activation of
TNFR2 [69,70]. Specifically blocking sTNF/TNFR1 signaling while maintaining the func-
tioning of tmTNF/TNFR2 signaling appears to be adequate to interfere with pathological
TNF signaling. The side effects of this class of therapeutics may be less severe than those
associated with global TNF blockers that neutralize sTNF and tmTNF and may be effective
therapeutic for other diseases, including multiple sclerosis (MS) and neurodegenerative
diseases, where it is not recommended to completely inhibit TNF [71].
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Therefore, many researchers have used TNFR1 as the target for developing alternative
therapeutic interventions rather than TNF-α [72,73]. A peptide Hydrostatin-SN1 (H-SN1)
screened from the snake venom of Hydrophis cyanocinctus phage libraries not only verified
the affinity between SN-1 and TNFR1 but also inhibited the binding between TNF-α
with TNFR1 in SPR. Moreover, its anti-inflammatory activities have been verified. H-
SN1 suppressed TNFR1-associated signaling pathways by decreasing NF-кB activation
and MAPK signaling in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines
induced by TNF-α. It has also been found to have an effect in vivo by researchers, using
a murine model of acute colitis induced by dextran sodium sulfate, showing that H-SN1
lowered the disease activity index and histological scores in acute colitis and that it could
inhibit TNF/TNFR1 downstream targets at both the mRNA and protein levels [74]. The
follow-up research on this topic used LPS-induced ALI, LPS-induced bone marrow-derived
macrophage (BMDM) cells, and IL-10 knockout mice to test H-SN1’s anti-inflammatory
activity; the results suggested that H-SN1 has significant anti-inflammatory effects, both
in vitro and in vivo, demonstrating H-SN1 to be a suitable candidate for use in the treatment
of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases [24,75].
In addition to H-SN1, A 41-amino acid peptide named DAvp-1 employed TNFR1 as the
target, screening it from the T7 phage library of Deinagkistrodon acutus venom glands [23].
WH701 was screened from the phage 6-mer peptide library, which is a kind of random
library. DAvp-1 and WH701 can both specifically bind to TNFR1 [76,77].

Apart from the peptides screened from the constructed natural product library and
random peptide library, a TNFR1-selective antagonistic mutant TNF-α (R1antTNF) was
screened from the TNF variant phage library. This research constructed phage libraries
which could display the structural TNF variants, where the six amino acid residues (amino
acids 29, 31, 32, 145–147, library I; amino acids 84–89, library II) in the predicted receptor
binding sites of TNF were replaced with other amino acids. Thus, these phages include
many kinds of TNF variant phages. R1antTNF is one TNF variant that can bind with
TNFR1 without activating it. This research employed human TNFR1 Fc chimera, which
had the same function as TNFR1 but was harder to degrade and easier to separate and
purify. According to the results obtained from SPR and x-ray crystallography experi-
ments, although its affinity for the TNFR1 was almost the same as that of the human
wild-type TNF, R1antTNF did not activate TNFR1-mediated responses. It also neutralized
the TNFR1-mediated bioactivity of wild-type TNF without influencing its TNFR2-mediated
bioactivity and could inhibit hepatic injury in an animal model [52]. In later research, the
researcher used two independent experimental models induced by carbon tetrachloride or
concanavalin A, demonstrating that R1antTNF might be a clinically useful TNF-a antago-
nist in hepatitis [53]. Referring to the example above, the peptides which blocked TNFR1
had great potential in clinical drug research and development.

3.2. CD40

CD40 is an important target belonging to the TNFR family. The CD40/CD40 ligand
(CD40L) dyad plays a significant role in several immunogenic and inflammatory processes,
including atherosclerosis [78–80]. CD40 is expressed by different kinds of cell types rel-
evant to atherosclerosis, including endothelial cells, smooth muscle cells, macrophages,
and lymphocytes. CD40 ligation induces a series of inflammatory and apoptotic mediators;
hence, CD40 signaling has been associated with the pathophysiology of immunodefi-
ciency, neurodegenerative disorders, collagen-induced arthritis, graft-versus-host disease,
atherosclerosis, and cancer. Blocking CD40/CD40L signaling by monoclonal antibodies
was shown to be beneficial in the treatment of arthritis and atherosclerosis by disrupting
CD40 function, and CD40 has been a key immunotherapeutic target for over 20 years [81].

NP31, which contains a randomized linear 15-mer amino acids peptide sequence,
was screened from the human pIF15 phage library using CD40-murine IgG as the target.
NP31 inhibits VEGF and IL-6 transcriptional activation and decreases IL-6 production
by CD40L-activated endothelial cells. In particular, NP31 was found not only to alter
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the biodistribution profile of a streptavidin scaffold but also to significantly increase the
accumulation of the carrier in aged apolipoprotein e (ApoE) mice with atherosclerosis
lesions in a CD40-dependent manner [45]. These instances demonstrate that CD40 could
be an available target for screening anti-inflammatory peptides.

3.3. IL-17

T helper (Th) cells differ in their cytokine profiles, which identify their subsets. Th1
cells have the characteristics of secret Interferon-gamma (IFN-γ) and TNF-α [82,83]. After
the discovery of the Th1 dichotomy, many other Th subsets were discovered, each one
having identical functional properties, cytokine profiles, and roles in autoimmune tissue
pathology. These Th subsets include Th17 cells, which can produce IL-17 [84].

The IL-17 cytokine family consists of six polypeptides, IL-17A-F, and five receptors, IL-
17RA-E1 [85]. This family of cytokines comprises potent inflammatory mediators involved
in host defense against extracellular bacteria, fungi, and other eukaryotic pathogens, in
which IL-17 cytokines have been implicated in a broad spectrum of inflammatory conditions
and autoimmune diseases [86]. IL-17A signals through a specific cell surface receptor
complex, which consists of IL-17RA and IL-17RC3, and its downstream signaling leads
to an increased production of inflammatory cytokines such as IL-6, IL-8, CCL-20, and
chemokine (C-X-C motif) ligand 1(CXCL1) through different kinds of mechanisms, such
as the stimulation of transcription and the stabilization of mRNA [87–89]. IL-17A and
its signaling are significant aspects of host defense against certain fungal and bacterial
infections [90,91], and it is an important pathogenic factor in inflammatory and autoimmune
diseases. Furthermore, inhibiting IL-17A has preclinical and clinical efficacies in ankylosing
spondylitis and rheumatoid arthritis [92–94].

HAP is an IL-17A peptide antagonist which was obtained through phage display.
Screening followed by saturation mutagenesis optimization and amino acid substitutions
produced HAP, which has a high affinity with IL-17A and is able to inhibit the interaction
of the cytokine with its receptor, IL-17RA [40]. In the other example, P725 was selected
from the phage library of random linear heptapeptides based on their affinity for the
target (extracellular domain of IL-7RA, which contains a fibronectin type III repeat-like
sequence). P725 had a strong ability to compete with IL-7 for IL-7RA binding sites and can
prevent the signal transducer and activator of transcription 5 activations induced by IL-7 in
5-Aza-2′-deoxycytidine (ADC)-stimulated Jurkat cells; thus, it could be a good candidate
for blocking applications [41].

3.4. IFN-α

IFN-α is a member of the type I IFN family, and IFN-α encompasses 13 partially homol-
ogous IFN-α protein subtypes encoded by several genes in humans. All members of this
family signal through interferon alpha/beta receptor (IFNAR), a heterodimeric transmem-
brane receptor comprising IFNAR1 and IFNAR2 subunits, which associate upon ligand
binding to activate the protein tyrosine JAK1 and tyrosine kinase 2 (TYK2). This can lead to
the phosphorylation of signal transducer and STAT1 and STAT2. Finally, it can associate with
IFN regulatory factor 9 (IRF9) and form the IFN-stimulated gene factor 3 (ISGF3). The latter
induces the transcription of IFN-stimulated genes (ISGs), with subsequent immunomod-
ulatory effects on both innate and adaptive immune responses [95–97]. The IFN pathway,
particularly well-documented for IFN-α, has emerged as a major driver of several autoim-
mune rheumatic diseases encompassing, but not restricted to, systemic lupus erythematosus
(SLE) [98], Sjogren’s syndrome (pSS) [99], systemic sclerosis (SSc) [100], and dermatomyosi-
tis (DM) [101]. A large amount of evidence supports the important role played by IFN-α in
the pathophysiology of several rheumatic autoimmune diseases. Specifically targeting IFN-
α or its receptor appears to be a valid approach to ensure its sustained anti-inflammatory
efficacy in most patients [102]. To screen a novel IFN-α/β signaling inhibitor to decrease
the skin lesions in imiquimod (IMQ) and 12-O- tetradecanoylphorbol-13-acetate (TPA) mice
models of psoriasis, one researcher used rabbit polyclonal antibody anti-human IFNα1 as
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their target to obtain phage peptides (Phpep3D). The derived peptide (Pep3D) reduced
skin thickness, redness, and acanthosis despite the presence of the psoriasis inducers IMQ
and TPA. Pep3D has also been found to reduce the number of GR1+ infiltrated cells and
decrease the production of IL-17A and TNF-α in the psoriatic skin of mice; thus, Pep3D has
the potential to be used as a new drug for psoriasis [26], and this demonstrates IFN-α as an
effective target.

3.5. MMP

In normal cases, TNF-α acts as an immune modulator, and it is a potent inducer of nu-
merous metalloproteinases (MMPs), pro-inflammatory cytokines, adhesive molecules, and
chemokines, in which MMPs could increase inflammation [31]. As a kind of zinc-dependent
endopeptidase, MMPs break down diverse extracellular matrix compounds [103]. This fam-
ily of enzymes has multiple common domains in their structure, including a pro-peptide
domain, a catalytic domain, and a hemopexin domain in C-terminus, and a fibronectin
domain only in MMP-2 and MMP-9 [104]. MMP-2 is an anti-cancer drug target in several
aggressive tumors, whereas MMP-9 inhibitors may prove useful in treating cancer in its
early stages as well as multiple autoimmune diseases [105]. Abnormal expressions of
MMP-2 and MMP-9 are significant factors in some diseases, and so developing an effective
inhibitor for the specific and selective inhibition of gelatinases would be helpful. In a study,
the researcher chose MMP-2 as a target, to obtain an MMP inhibitor M219hy [32]. In another
study, the researcher selected RSH-12 from a library of random 12-mer peptides. RSH-12
could decrease the gelatin degradation by preventing gelatin combinate with MMP-9 and
MMP-2. Selective gelatinase inhibitors might prove the usefulness of the new peptide
discovered in tumor targeting and anticancer and anti-inflammation therapy [31].

3.6. Complement Component 3a (C3a)

The complement system is a significant participant in the innate immune response,
where it serves as the initial line of defense against invading pathogens [106]. It might play a
crucial role in the immune response and host defense by mediating the activation of immune
cells and the eradication of infections [107]. C3a is a thoroughly studied anaphylatoxin that
induces proinflammatory reactions together with complement component 5a (C5a). When
C3a binds to its receptor, signaling cascades involving C3a are activated, which results
in the generation of cytokines and other pro-inflammatory responses. For inflammatory
conditions including sepsis and asthma, the inhibition of dysregulated complement activity
has been viewed as a possible treatment strategy. This study described the creation of
a protein binder that is unique to human C3a (hC3a) and may effectively reduce pro-
inflammatory reactions. Six variable sites in the neighboring LRRV2 and LRRV3 modules
were subjected to random mutations in order to create a library. Preventing the interaction
between hC3a and its receptor, Rb1-H12, which was created through biopanning, had a
notable suppressive impact on the proinflammatory response in monocytes. Its specificity
to hC3a was shown to be more than ten times greater than that of human C5a [29].

3.7. GPR1

GPR1 is a receptor for chemokine-like peptide (chemerin), which is crucial for
metabolism and reproduction [108]. Recent studies have shown that GPR1 promotes
cancer cell proliferation and invasion in choriocarcinoma cells and gastric cancer cells [109].
The Cancer Genome Atlas (TCGA) has shown a correlation between TNBC and GPR1,
especially in TNBC cell lines. TNBC and GPR1 have been shown to be strongly expressed
in breast cancer tissue and cell lines, especially in TNBC cell lines [110]. The GPR1-specific
peptide LRH7-G5, which competes with chemerin to block chemerin/GPR1 signaling,
was screened from the Ph.D.-7 random phage library. The anti-tumor response of this
peptide was found to be dose-dependent, inhibiting the proliferation of TNBC cell lines
MDA-MB-231 and HCC1937 and suppressing tumor growth, but not T47D cells, through
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phosphatidylinositol-3-kinase (PI3K)/V-akt murine thymoma viral oncogene homolog
(AKT) signaling [30].

3.8. CD14

LPS, or endotoxin, is the major structural and functional component of the outer mem-
brane of Gram-negative bacteria [111,112], which has been recognized as the principal com-
ponent responsible for causing ALI/ acute respiratory distress syndrome (ARDS). These
complex macromolecules exhibit a variety of toxic and proinflammatory activities [113].
The proinflammatory role of such low-level LPS relies on the endotoxin-sensitivity enhanc-
ing system, LBP/CD14, which is located upstream of the proinflammatory signal path
and can pass on and proliferate the LPS proinflammatory signal. Thus, antagonism of the
endotoxin-sensitivity enhancing system, LBP/CD14, can efficiently inhibit the proinflam-
matory role of LPS [114].

In one example, phage display peptide library, phages ELISA and LBP competitive
inhibition experiments and DNA screening for testing sequence were jointly adopted, along
with the attainment of mimetic peptide sequences (MP12). In both in vivo and in vitro
experiments, the biological activity of LPS to cause inflammation was blocked by MP12
and rats suffering from LPS-type ALI were protected by MP12 [115]. In another example,
Polypeptide P1, which competes with LBP for CD14 binding, was obtained by screening
from a mutant phage display library. It was shown to use error-prone polymerase chain
reaction (PCR), induce mutations in the C-terminus of LBP, and attach PCR products to
T7 phages. P1 could inhibit LPS-induced TNF-α expression and NF-kB activity in U937
cells and improve arterial oxygen pressure, oxygenation index, and lung pathology scores
in rats with LPS-induced acute respiratory distress syndrome (ARDS) [44]. Furthermore,
the researcher could use LPS specific antibody as the target to obtain LPS peptide mimics
from Ph.D.™-7 Phage Display Peptide Library. This peptide also exhibits certain anti-
inflammatory activity [49].

3.9. Cell

In addition to proteins, cells can also be used as targets. Using PBMCs as the target
could allow us to obtain the heptapeptide HP3 from phage display peptide library Ph.D.-7.
HP3 was found to block mononuclear cell adhesion to endothelial cells and inhibit trans-
endothelial migration in vitro. The activity of the heptapeptide in a murine model of
psoriasis was also assessed, indicating that early administration inhibited the development
of psoriatic lesions. Therefore, the results suggested that HP3 may serve as a potential
therapeutic target for psoriasis [28].

3.10. Others

The above studies uniformly demonstrate that the use of phage display technology to
obtain anti-inflammatory peptides is efficient and feasible. The principle of screening is
basically to use antagonists of screening targets to antagonize the inflammatory response.
Most of these peptides would be used directly after the screening; however, some therapeu-
tic peptides are not directly screened from phages, with researchers instead using peptides
screened through phage display and corresponding with other decorations to qualify these
peptides. For example, CVX51401 is a Cav modulator that reduces VEGF and immune-
mediated inflammation, which fuses RRPPR with a minimal Cav inhibitory domain. In
CVX51401, RRPPR was screened from random phage libraries; it was found to be able to
internalize efficiently and was demonstrated to be potent in blocking NO release. Caveolin
(Cav) regulates various aspects of endothelial cell signaling and cell-permeable peptides
(CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus,
CVX51401 dose-dependently blocked NO release, VEGF-induced permeability, and retinal
damage in a model of uveitis [25]. Taking R1antTNF, which is discussed above, as an exam-
ple, the molecular stability and bioactivity were improved by converting the homotrimeric
R1antTNF into a single-chain derivative (scR1antTNF) through the introduction of short
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peptide linkers of 5 or 7 residues between the three protomers [116]. The researcher also
engineered polyethylene glycol (PEG)-modified R1antTNF (PEG–R1antTNF) to improve
stability. As a result of its long plasma half-life, PEG–R1antTNF improved the incidence
and clinical score of arthritis. In particular, PEG–R1antTNF showed a greater therapeutic
effect than Etanercept in therapeutic protocols. Additionally, it did not reactivate viral
infection, unlike Etanercept [54]. This combination means that polypeptides will have more
functions and may increase the peptides’ permeability, validity, and stability.

4. Conclusions and Future Perspectives

Due to its advantages of a large screening capacity, enabling mass production through
fermentation, being high-throughput, and having a straightforward method of execution,
phage display has been widely used in bioengineering and biomedicine, especially for diag-
nostics and therapeutics. With the advent of next-generation sequencing and microfluidic
technologies, phage display has become an even more powerful and popular tool for use
in drug discovery and development.

However, it also has some limitations. In some constructed libraries, because the
peptides displayed on the surface of phages lack modification and the original peptides
conformations are different to a certain extent, constructed libraries cannot fully display
the original conformations of peptides in vivo. Although the screened peptides have a
binding force, they might not play an antagonistic role or even have a therapeutic function.
For example, using semaphorin 3F (SEMA3F)/plexin-A2 as the target to screen a peptide
with affinity, researchers obtained four peptides AV1, AV2, AcBl3, and AcBl4, which have
affinity but which cannot be used in an animal model [117]. We believe there are many
peptides, that have not yet been reported, that do not have anti-inflammatory function
despite being an inhibitor of the target. Therefore, it is necessary to improve the screening
techniques through designs based on experience. Some researchers have combined phage
display with other techniques, such as high-throughput sequencing [118], which could
help us to better understand and categorize phages after screening.

The therapeutic peptide market is an emerging field that is currently growing, and
there are some problems relating to peptide drugs that still need to be solved. For example,
the pharmacokinetic properties, the cost of synthetic peptides, and the delivery of peptides
to their specific target need to be improved [119–121], as these are technical hurdles to the
development of more effective peptide-based therapeutics.

Nevertheless, the natural sources or random libraries from which active peptides can
be isolated are virtually unlimited. Thus, the appearance of new peptides will not stop
soon. According to Craik et al., the market for protein and peptide-based drugs represents
about 10% of the total pharmaceutical market, and this proportion is still increasing [120].
Numerous scientific publications demonstrate the intense basic research that is currently
taking place in this field, with thousands of peptides being studied as we write, of which
400 to 600 are enrolled in preclinical studies [122]. Although more researchers have used
phage displays to screen peptides with anti-inflammatory properties over the past 20 years,
the anti-inflammatory peptides developed as drugs are frequently only tested in cells
and animals, and clinical trials are required to verify their efficacy. Further research is
still needed to improve the effectiveness of screening and the use of peptides as anti-
inflammatory drugs.
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