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Abstract

Stress can precipitate or worsen symptoms of many psychiatric disorders by dysregulating 

glutamatergic function within the prefrontal cortex (PFC). Previous studies suggest that 

antagonists of group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3) reduce 

stress-induced anhedonia through actions in the PFC, but the mechanisms by which these 

receptors act are not known. We now report that activation of mGlu3 induces long-term depression 

(LTD) of excitatory transmission in the PFC at inputs from the basolateral amygdala. Our data 

suggest mGlu3-LTD is mediated by postsynaptic AMPAR internalization in PFC pyramidal cells, 

and we observed a profound impairment in mGlu3-LTD following a single, 20-min restraint stress 

exposure. Finally, blocking mGlu3 activation in vivo prevented the stress-induced maladaptive 

changes to amygdalo-cortical physiology and motivated behavior. These data demonstrate that 

mGlu3 mediates stress-induced physiological and behavioral impairments and further support the 

potential for mGlu3 modulation as a treatment for stress-related psychiatric disorders.

Introduction

Stress, which is known to cause or exacerbate symptoms of mood disorders, alters synaptic 

function in the prefrontal cortex (PFC) and induces coincidental impairments to PFC-
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dependent motivational tasks1–4. Patients with major depressive disorder (MDD) exhibit 

reduced total PFC volume5, impaired PFC activation during cognitive performance6, and 

loss of dendritic branching of pyramidal cells7,8. Furthermore, findings from preclinical 

studies in rodent models align with clinical studies and suggest that dysfunction of PFC 

glutamatergic neurotransmission is a key substrate underlying the cognitive and motivational 

effects of stress exposure9–11.

Along with intra-cortical glutamate signaling, the PFC receives substantial excitatory input 

from the basolateral amygdala (BLA) and ventral hippocampus (VH)12. These afferents are 

thought to convey distinct components of motivation; specifically, BLA activity is associated 

with emotional state13,14 and VH activity regulates the expression and retrieval of previous 

memories15,16. This convergent excitatory signaling is processed, and Layer 5 pyramidal 

neurons provide the primary PFC output that encodes for the selection and execution of 

complex, goal-directed tasks17,18. Despite the accepted role of this motivational circuit, it is 

unknown to what extent physiological differences between the long-range glutamatergic 

afferents to the PFC may exist. A better understanding of these mechanisms is essential for 

the development of novel treatments for mental illnesses associated with motivational 

deficits19.

In recent years, metabotropic glutamate (mGlu) receptor subtype 3 (mGlu3) has emerged as 

a promising target for modulating glutamatergic transmission in the PFC9,20. Loss-of-

function mutations in GRM3 are associated with PFC-related behavioral deficits in 

schizophrenia patients and healthy volunteers21,22. Conversely, recent studies suggest that 

activation of mGlu3 plays important roles in PFC-dependent working memory23,24 and 

extinction learning25. These data suggest that mGlu3 likely regulates key aspects of PFC 

function. Recent studies from our lab and others suggest that mGlu3 is postsynaptically 

localized in PFC pyramidal cells in both rodents and primates, where it modulates calcium 

and cAMP signaling23,25. Furthermore, activation of mGlu3 induces robust long-term 

depression (LTD) of excitatory transmission onto PFC pyramidal cells25–27. Each of these 

actions is likely to underlie the ability of mGlu3 to regulate PFC-mediated responses.

We now present a series of studies in which we found that mGlu3-LTD is restricted to 

excitatory transmission on pyramidal cells and the mechanism is consistent with 

postsynaptic AMPAR internalization. Furthermore, using projection-specific optogenetic 

techniques, we found that PFC mGlu3-LTD is selectively expressed at amygdalar but not 

hippocampal inputs. Remarkably, we found that a single, acute stressor impairs the induction 

of mGlu3-LTD, and that blocking mGlu3 activity in vivo prevents stress-induced 

perturbations in amygdalo-cortical function and motivated behavior. Together, these findings 

show that stress dysregulates postsynaptic synaptic plasticity in the amygdalar input to the 

PFC and that this can be prevented by administration of a selective mGlu3 NAM. These 

preclinical studies increase our understanding of the initial stress-induced physiological 

changes, and may provide mechanistic insights into changes in PFC function observed in 

patients. Furthermore, these studies raise the exciting possibility that mGlu3 modulators may 

provide therapeutic benefits for the treatment of stress-related psychiatric disorders.
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Materials and Methods

Animals

Adult (>8week), male, C57Bl6/J mice, group-housed (2–5/cage) on a 12-hour cycle (lights 

on at 06:00), were used for all experiments. Food and water were available ad libitum. All 

protocols were approved by the Vanderbilt Institutional Animal Care and Use Committee. 

VU0650786 was administered via intraperitoneal (i.p.) injections in 10% Tween-80 vehicle 

(10μL/g).

Optogenetics

Channelrhodopsin-2 (ChR2) was virally expressed in glutamatergic neurons as described28. 

Mice were anesthetized with isoflurane and 250–400nL virus (AAV5-CaMKII-ChR2-EYFP, 

UNC) was delivered to: (mm) BLA (ML:−2.9, AP:−1.4, DV:−4.7) and VH (ML:−3.6, AP:

−3.4, DV:−4.0).

Whole-cell electrophysiology

Mice were anesthetized with isoflurane and decapitated. Coronal slices (300μM) were 

prepared with NMDG-based cutting/recovery solution. Holding and recording chambers 

contained artificial cerebrospinal fluid (aCSF): (mM) 119NaCl, 2.5KCl, 2.5CaCl2, 

1.3MgCl2, 1NaH2PO4, 11glucose, and 26NaHCO3. The recording chamber was perfused 

with warm (30±1°C), oxygenated (95/5%O2/CO2) aCSF at 2ml/min. Layer 5 prelimbic PFC 

neurons were filled with potassium-based internal solution: (mM) 125K-gluconate, 4NaCl, 

10HEPES, 4MgATP, 0.3NaGTP, 10Tris-phosphocreatine. Local glutamate release was 

elicited at 0.1Hz with 0.1–0.15ms electrical stimulation from a concentric bipolar electrode 

in Layer 5. In ChR2-expressing slices, input-specific glutamate release was evoked with 

light stimulation (1–4ms, 470nm, LEDD1B, Thor labs). To preclude recording inhibitory 

currents, recordings were made at −70mV. Control recordings were interleaved with 

recordings under each experimental condition at an approximate ratio of one control cell per 

three experimental cells.

Progressive ratio task

Mice were trained on a progressive ratio schedule of reinforcement as described29. 

Assessments of drug and stress action occurred in a pseudo-random, counterbalanced, 

within-subjects design. Test day performance was normalized to the previous two sessions. 

Mice were not food-restricted and the experimenter was blind to all drug treatments.

Drugs

LY379268 and tetrodotoxin were purchased from Abcam. LY341495 and CNQX were 

purchased from Tocris. VU0650786 and MRK-8-29 were synthesized in-house. The D15 

peptide (PPPQVPSRPNRAPPG) was prepared by Bio-Synthesis.

Statistics

The number of cells in each experiment is denoted by “n” and the mice by “N”. Data are 

presented as mean±SEM. Analyses were performed using GraphPad Prism. Two-tailed 
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Student’s t-test and one-way ANOVA with Bonferonni post-tests were used as appropriate. 

Post-hoc power analyses ensured a sufficient number of cells and mice were used.

Results

Specific expression of mGlu3-LTD by excitatory transmission on PFC pyramidal cells

LTD induced by the activation of mGlu2/3 is often assumed to involve a reduction in 

presynaptic release probability. However, data from our lab and others suggest that mGlu3 

has direct effects on excitability of PFC pyramidal cells25,30 and mGlu3-LTD in the PFC 

may involve postsynaptic signaling mechanisms23,25,30,31. To test this hypothesis, we 

utilized whole-cell patch-clamp electrophysiology. Single neurons in Layer 5 of the 

prelimbic PFC were classified by their firing properties. Regular-spiking neurons were 

identified by characteristic spike-firing adaptation (Figure 1a) in contrast to the rapid 

patterns of fast-spiking interneurons (Figure 1b). As reported previously, bath application of 

the mGlu2/3 receptor agonist LY379268 induced LTD of excitatory synaptic transmission on 

putative pyramidal cells (Figure 1a & 1c). Strikingly, LY379268 did not induce LTD at 

excitatory synapses onto fast-spiking interneurons (Figure 1b & 1d). In addition, LY379268 

did not exert any effect on inhibitory postsynaptic currents (Figure S1). Together, these data 

are consistent with a postsynaptic locus of LTD specific to excitatory transmission onto 

pyramidal cells.

We previously demonstrated that this LTD is lost following genetic deletion of mGlu3 and 

not mGlu2
25. Furthermore, we found that mGlu3 activation modulates calcium signaling in 

PFC pyramidal cells25, suggesting that mGlu3 may act postsynaptically on pyramidal cells 

to induce LTD. To confirm that mGlu3 mediates LTD in whole-cell configuration, we used 

the mGlu3 NAM VU0650786, which exhibits no off target activity at any other mGlu 

receptor32 (Figure 1e). Moreover, restriction of VU0650786 to the patch pipette was also 

sufficient to block LTD (Figure 1f), consistent with a postsynaptic site of action for mGlu3 

signaling. Pretreatment with the mGlu2/3 antagonist LY341495 blocked both the initial 

depression and LTD (Figure S2), suggesting that mGlu2 mediates the transient decrease in 

EPSC amplitude. Taken together, these data suggest that mGlu3-LTD in the PFC is mediated 

by postsynaptic mGlu receptors located on pyramidal cells. We next performed studies to 

further understand the mechanism of action of mGlu3 in inducing PFC LTD.

PFC mGlu3-LTD is mediated by AMPAR internalization

In general, synaptic strength can be related to quantal size, neurotransmitter release 

probability, and/or the number of synapses33. We performed several analyses to identify 

which of these factors underlie mGlu3 LTD. The coefficient of variation of the EPSC is 

inversely proportional to both release probability and synapse number. For each control 

recording, we normalized the change in the coefficient of variation with the magnitude of 

LTD (Figure 2a). This analysis revealed a positive correlation, indicating that either a 

decrease in active synapse number and/or release probability is related to mGlu3-LTD 

expression. The paired-pulse ratio is thought to be related to release probability and not the 

number of active synapses. While we observed a trend towards a positive correlation 

between the change in paired-pulse ratio and the amount of LTD, the slope was significantly 
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less than for the coefficient of variation analysis. We also sampled several additional 

interstimulus intervals and found no change in paired-pulse ratio following mGlu3-LTD 

(Figure 2b). The discrepancy between these two analyses is consistent with a rapid decrease 

in active synapse number underlying mGlu3-LTD.

Miniature EPSC (mEPSC) amplitude and frequency are commonly evaluated to measure 

changes in quantal size, release probability, and synapse number (Figure 2c). The mEPSC 

amplitude generally reflects quantal size, whereas mEPSC frequency is related to synapse 

number and release probability. Cells that underwent mGlu3-LTD exhibited a reduction in 

both mEPSC amplitude and frequency (Figure 2d/e/f). Furthermore, we observed a time-

dependent decrease in spontaneous EPSC amplitude and frequency (Figure S3). These data 

suggest that mGlu3-LTD is mediated by rapid AMPAR internalization, culminating in a 

decrease in active synapse number. To further test this hypothesis, we isolated NMDA 

receptor (NMDAR) currents by removing Mg2+ from the aCSF to reduce the voltage-

dependent block. The contribution of AMPAR currents was prevented with the antagonist 

CNQX. LY379268 induced a transient depression of the NMDAR current, however the 

response returned to baseline (Figure 2g), demonstrating that only AMPAR-mediated 

responses undergo LTD. In many brain regions, including the hippocampus34 and nucleus 

accumbens35, mGlu-LTD requires the internalization of AMPA receptors through dynamin-

dependent endocytosis Therefore, we assessed the involvement of endocytotic machinery in 

mGlu3-LTD by using a well-characterized dominant negative peptide that blocks the 

interaction between dynamin and adapter proteins (D15)34. Inclusion of D15 in the patch 

pipette blocked mGlu3-LTD (Figure 2h), indicating that dynamin-dependent endocytosis is 

required for mGlu3-LTD. Together, these data strongly suggest that postsynaptic mGlu3 

induces LTD in the PFC through AMPAR internalization.

Synapses from amygdalar, but not ventral hippocampal, afferents express mGlu3-LTD

The PFC receives excitatory input from several limbic structures involved in stress-related 

adaptations, notably including the BLA and VH (Figure 3a). To examine whether mGlu3-

LTD is expressed at these long-range projections, we took a viral approach to exogenously 

express ChR2 in a regionally-specific manner. Monosynaptic optical EPSCs were evoked 

with light stimulation. We observed no difference in the coefficient of variation or paired-

pulse ratio between BLA-PFC and VH-PFC synapses (Figure 3b & 3c) and examined 

mGlu3-LTD at each synapse. Consistent with electrical stimulation, the optically-activated 

BLA input underwent LTD following bath application of LY379268 (Figure 3d & 3g). In 

contrast, the VH-PFC synapse resisted both the initial and long-term depressions of synaptic 

transmission induced by mGlu2/3 activation (Figure 3e& 3g). To confirm that BLA LTD is 

also mediated by mGlu3, we returned to VU0650786. As expected the mGlu3 NAM blocked 

LTD at the amygdalo-cortical pathway, whereas the mGlu2 NAM MRK-8-2925 had no effect 

(Figure 3h), corroborating the mGlu3-dependent mechanism at the BLA-PFC synapse.

Single exposure to restraint stress rapidly impairs PFC mGlu3-LTD

While many psychiatric disorders are associated with long-term and/or intense stress 

exposure, mild stressors occur on a day-to-day basis and affect motivated decision-making 

within the general population36. Moreover, acute stress can instigate relapse events in 
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individuals with remitted psychiatric disorders. Human neuroimaging and mechanistic 

rodent studies have related these effects to impairments in PFC function3,4,36,37, therefore 

we aimed to assess whether acute stress modulates the induction of mGlu3 synaptic 

plasticity in the PFC. Mice were sacrificed 30 minutes after the termination of 20-minutes 

restraint stress (Figure 4a). Restraint stress did not affect excitability or basal membrane 

properties (Figure 4b), and the acute inhibition of EPSCs induced by LY379268 remained 

intact (Figure 4c &4d). However, mice exposed to acute stress displayed a significant 

impairment of mGlu3-mediated LTD (Figure 4d &4e). This impairment persisted for one 

day, but not three days, after stress exposure (Figure S4).

Loss of synaptic plasticity can generally be attributed to an impairment in the induction 

mechanism or to occlusion (i.e. a floor effect). To address this, we measured mEPSCs in 

pyramidal cells from control slices and slices from stressed mice, and found that stress 

exposure did not affect mEPSC amplitude or frequency (Figures 4f &4g). Moreover, the 

baseline coefficient of variation and paired-pulse ratio were not affected by stress (data not 

shown). These data suggest that the stress-induced LTD impairment was not caused by 

occlusion, and that a loss of function in mGlu3 or a downstream signaling partner is likely 

responsible.

mGlu3 NAM administration prevents stress-induced deficits in BLA-PFC mGlu3-LTD and 
motivation

Having demonstrated that acute stress dysregulated mGlu3 plasticity, we hypothesized that 

blocking mGlu3 activation during exposure to stress in vivo would prevent the maladaptive 

changes in PFC physiology and function. To test this hypothesis, we administered 

VU0650786 or vehicle 15 minutes prior to the acute stress (Figure 5a). In addition to high 

selectivity against other mGlu subtypes, VU0650786 exhibited no off-target activity in a 

screen against 68 clinically-relevant drug targets32. The basal synaptic properties of 

amygdalo-cortical transmission taken from vehicle- and VU0650786-pretreated, stressed 

mice were not different from each other, or from naïve control mice (Figures 5b &5c). As 

observed with electrical stimulation, acute stress disrupted mGlu3-LTD at BLA-PFC 

synapses (Figure 5d). Pretreatment with VU0650786 prevented the stress-induced 

impairment (Figures 5e & 5f), suggesting that mGlu3 activity in vivo is necessary for this 

stress-induced change to occur. Interestingly, treatment with VU0650786 immediately after 

stress exposure also prevented the deficits in ex vivo LTD (Figure S5).

PFC function regulates motivated behaviors and stress impairs motivation in clinical 

populations and animal models2,11,38,39. We sought to examine motivation by training mice 

to respond in an operant apparatus for delivery of a liquid reinforcer. Mice were then 

switched to a progressive ratio (PR) schedule, where the number of hole pokes required to 

earn a reinforcer increases exponentially during the task. The number of reinforcers earned 

on the PR schedule is decreased by lesions of the PFC but not of other cortical structures40. 

Once performance stabilized, acute restraint sessions were administered to mice 

immediately prior to the task (Figure 5g). Same-day acute restraint stress significantly 

decreased the number of reinforcers earned and the holepokes executed, consistent with a 

decreased motivational state. To measure the effects of VU0650786 on this stress-induced 
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behavioral deficit, performance during restraint stress test sessions was normalized to the 

average of the two preceding baseline days. During control (no stress) test sessions, vehicle-

treated mice displayed identical performance relative to baseline, and increasing doses of 

VU0650786 had no effect (Figure 5h & 5i, top). In contrast, during test sessions that 

immediately followed stress exposure, vehicle-treated mice recapitulated the deficit in PR 

performance (Figure 5h & 5i, bottom). This stress-induced deficit was prevented by 

pretreatment with the mGlu3 NAM VU0650786 in a dose-dependent manner, at doses 

consistent with the pharmacodynamic/pharmacokinetic relationship of this mGlu3 NAM32. 

These data indicate that blocking mGlu3 activation in vivo is sufficient to prevent decreased 

motivation following acute stress, and suggest that intact amygdalo-cortical neuroplasticity 

may underlie this phenomenon.

Discussion

Here we report a novel mechanism by which acute stress dysregulates PFC function in 

rodents. We found that mGlu3-LTD is specific to pyramidal cells and proceeds through a 

postsynaptic site of action. Moreover, the plasticity exists at long-range inputs from the 

BLA, but not VH, and is impaired by a single stress exposure. Finally, inhibiting mGlu3 

function in vivo prevented the stress-induced deficit in BLA-PFC LTD as well as a 

motivational impairment in food-reinforced behavior. While the present studies are restricted 

to rodents, they are well-aligned with recent work describing a role for mGlu3 in regulating 

PFC function in non-human primates23,30, and with clinical studies on the impact of GRM3 
mutations21,22 and stress on PFC function3,4. The present studies provide a strong 

mechanistic basis to guide future human studies aimed at evaluating how stress affects 

amygdalo-cortical function and the potential utility of mGlu3 NAMs as treatments for stress-

related disorders.

Canonical plasticity induced by mGlu2/3 involves a decrease in presynaptic release 

probability41–45, and recent publications have shown that activation of mGlu2/3 can modify 

postsynaptic NMDAR receptor function under some circumstances46,47. However, the 

present data provide direct evidence that activation of mGlu3 induces LTD by postsynaptic 

AMPAR internalization in PFC pyramidal cells, similar to the mechanism by which mGlu5-

LTD occurs in the hippocampus and nucleus accumbens48,49. These results raise the 

possibility that mGlu3 may regulate postsynaptic glutamatergic signaling in other brain 

regions and disease states50,51.

While changes in the hippocampus and other areas take several days or weeks to occur, 

stress-induced changes in dorsolateral/prelimbic PFC physiology can be observed following 

a single stress event3,4,37. Following chronic stress, profound reductions in AMPA receptor 

function are known to occur2,10,52. Having revealed the mechanism of mGlu3-LTD to 

involve AMPAR internalization and a reduction in active synapse number, we predicted that 

stress may impair mGlu3-LTD induction by occlusion (i.e. that stress usurps similar 

signaling mechanisms and initiates an LTD-like process in vivo). Based on that hypothesis, 

we expected to observe baseline differences in mEPSC frequency and amplitude, and were 

surprised to find no differences in pyramidal cell physiology between the control and stress 

groups. In contrast to our findings, a previous study found that acute stress enhanced 
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AMPAR and NMDAR function in the PFC53. However, those experiments were performed 

in prepubertal rats and the physiological changes were measured 4-hours after the stress. 

The present data suggest that in adult animals, stress rapidly impairs glutamatergic synaptic 

plasticity in the PFC via desensitization of mGlu3 and/or its downstream signaling partners.

In general, stress-induced PFC impairments are thought to result from excessive glutamate 

signaling during stress exposure54,55. In this light, the loss of mGlu3-LTD following acute 

stress may provide a permissive initial step towards further impairments by exacerbating 

hyperactive glutamate signaling during future stress experiences. Testing whether long-term 

mGlu3 inhibition (i.e. pharmacological and/or genetic) prevents the development of chronic 

stress-related pathophysiology is an intriguing and important future experiment. Along those 

lines, mixed mGlu2/3 antagonists act as rapid-acting antidepressants in animal models of 

chronic stress exposure20,56–58. The efficacy of mGlu2/3 antagonists is thought to result from 

mechanisms like those of ketamine, involving a rapid re-potentiation of PFC glutamate 

transmission10,59,60. While neither ex vivo nor in vivo administration of VU0650786 had a 

profound effect on basal transmission in the present study, the situation may be quite 

different following chronic stress exposure. In that condition, where AMPAR function is 

impaired10,52, an mGlu3 NAM might exert fast-acting antidepressant actions by potentiating 

PFC glutamate signaling.

While evidence suggests that both amygdalar and hippocampal afferents to the PFC promote 

anxiety- and depressive-like behavior61,62, recent studies suggest that the two regions 

provide different contributions towards stress-related behavior63–65. We found that mGlu3 

activation induced synaptic plasticity only at BLA-PFC synapses, and these exciting data 

suggest that mGlu3 may regulate emotional and motivational responses to stress exposure, 

while leaving memory-related components of stress experience intact. Consistent with that 

idea, inhibition of mGlu3 function modulates escape behavior in the forced swim test32, but 

does not disrupt the acquisition of conditioned freezing25. These findings raise many 

interesting questions related to the functional roles of the distinct limbic inputs into the PFC 

and whether specific neurotransmitter receptor signaling pathways may be exploited to have 

tailored therapeutic outcomes.

In addition to the varied sources of glutamate received by the PFC, the divergent flow of 

information out of the structure may provide a means of crafting nuanced treatment 

approaches. Pyramidal cells can be readily demarcated by their anatomical projection target 

and robust differences between these populations have been reported18,66,67. Because 

mGlu3-LTD occurred in every control cell examined, we find it unlikely that basal tract-

specific differences in mGlu3 function exist. However, based on the variability observed 

following stress, mGlu3-LTD may be impaired in discrete pyramidal cell sub-populations, 

similar to reported tract-specific changes in spine morphology67. For example, it is 

conceivable that LTD could be differentially impacted in pyramidal cells projecting to stress 

or anxiety-related brain structures relative to neurons projecting to areas that promote 

motivated behavior. Additionally, PFC pyramidal neurons have been sub-classified based on 

the expression of cell surface receptors and mGlu3 function might be differentially 

dysregulated across those populations. For example, pyramidal cells expressing dopamine 

receptor subtypes D1 and D2 exert distinct effects on decision-making68–70. These and other 
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genetically-classified pyramidal cell populations warrant further examination in the context 

of stress and mGlu function.

Alongside changes in motivated behavior, stress is known to disrupt several cognitive 

functions that require intact PFC function, such as working memory71, sustained attention72, 

and executive function11. Impairments in executive function can be caused by increases in 

rigid, perseverative behaviors. PFC mGlu3-LTD may comprise one mechanism that permits 

behavioral flexibility in the face of changing response contingencies or requirements40. 

Consistent with this notion, decreased expression of cortical mGlu2/3 has been observed in 

subjects with major depressive disorder73, loss of function mutations in GRM3 are 

associated with schizophrenia and low cognition in healthy controls21,22, and mGlu3 

inhibition disrupts extinction learning in rodents25. Additionally, in a model of cocaine 

abuse, only rats that exhibited addiction-like drug-seeking displayed a loss of PFC mGlu3-

LTD74. As such, mGlu3-LTD may function as a biological substrate that underlies 

comorbidities between stress, substance use disorders, and potentially schizophrenia75. 

Impairments in mGlu3-LTD might therefore comprise one mechanism by which 

dysregulated top-down control increases the likelihood of a stress-induced relapse event or 

psychotic episode. Further research into circuit-specific changes in PFC physiology will 

enhance our understanding of the behavioral ramifications of stress experience in the context 

of specific disease states. Clearly, continued holistic efforts to understand the molecular, 

circuit-level, and behavioral mechanisms underlying PFC dysfunction will be essential in 

efforts to translate novel preclinical mechanisms into efficacious therapies for stress-related 

psychiatric disorders. The data presented here reinforce that modulating mGlu3 function 

may be one such approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Specific expression of mGlu3-LTD by PFC pyramidal cells
(a) Top left, representative input-output curve displaying characteristic spike-firing 

adaptation. Scale bars denote 250 ms and 20 mV. Top right, EPSCs recorded during baseline 

and after LTD induction. Scale bars denote 50 ms and 100 pA. Bottom, representative LTD 

time course in regular-spiking pyramidal cell. (b) Top right, representative input-output 

curve displaying fast-spiking properties characteristic of interneurons. Scale bars denote 250 

ms and 20 mV. Top right, EPSCs recorded during baseline and after LTD induction. Scale 

bars denote 50 ms and 50 pA. Bottom, representative LTD time course in fast-spiking 

interneuron. (c) Summary of control time courses. Application of LY379268 induces LTD of 

EPSCs on PFC pyramidal cells (55 ± 3 % baseline, n/N = 17/14 cells/mice). (d) Summary of 

time course experiments in fast-spiking interneurons. LY379268 transiently depresses 

EPSCs on fast-spiking interneurons but does not induce LTD (93 ± 8 % baseline, n/N = 5/5). 

Black lines denote control LTD from panel C. (e) Bath application of the mGlu3 NAM 

VU0650786 blocks LTD induced by LY379268 (90 ± 7 % baseline, n/N = 9/8). (f) 
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Restriction of VU0650786 to the patch pipette is sufficient to block mGlu3-LTD (96 ± 12 % 

baseline, n/N = 5/3). EPSC, excitatory postsynaptic current; LTD, long-term depression; 

mGlu3, metabotropic glutamate receptor subtype 3; NAM, negative allosteric modulator; 

PFC, prefrontal cortex.
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Figure 2. mGlu3-LTD is mediated by AMPAR internalization
(a) Left, significant positive correlation between the change in CV and magnitude of mGlu3-

LTD (r2 = 0.4986, p < 0.0015, n/N = 17/14 cells/mice). Dotted lines signify linear regression 

and 95% prediction limits. Right, trend towards a positive correlation between the change in 

PPR (50 ms ISI) and magnitude of mGlu3-LTD (r2 = 0.2243, p < 0.0548, n/N = 17/14). (b) 
No difference in PPR was observed across wide range of ISIs (n/N = 11/6, 9/5). (c) 
Representative traces of mEPSC currents. Scale bars denote 500 ms and 20 pA. (d) 
Expression of mGlu3-LTD is associated with a persistent decrease in mEPSC amplitude 
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(left) and frequency (right) (n/N = 6/4, 8/4, *: p < 0.05, t-test). (e) Cumulative probability 

distribution of mEPSC amplitude for control cells and cells that underwent mGlu3-LTD. (f) 
Cumulative probability distribution of mEPSC interevent interval for control cells and cells 

that underwent mGlu3-LTD. (g) Activation of mGlu3 does not induce a long-term change in 

amplitude of NMDAR EPSCs (108 ± 5 % baseline, n/N = 4/3). (h) Inclusion of a dynamin 

dominant negative peptide, D15, in the patch pipette blocks mGlu3-LTD (99 ± 11 % 

baseline, n/N = 5/3). Black lines denote control LTD from panel 1C. AMPAR, α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CV, coefficient of variation; EPSC, 

excitatory postsynaptic current; ISI, interstimulus interval; LTD, long-term depression; 

mGlu3, metabotropic glutamate receptor subtype 3; NMDAR, N-methyl-D-aspartate 

receptor; PPR, paired-pulse ratio; sEPSC, spontaneous EPSC.
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Figure 3. BLA, but not VH, afferents to PFC express mGlu3-LTD
(a) Schematic displaying region-specific approach. AAV-CaMKII-ChR2 was injected into 

the BLA or VH of young mice and slice recordings were prepared 3–5 weeks later. (b) No 

difference in the baseline CV was observed across BLA or VH inputs (n/N = 13/7, 10/4 

cells/mice). (c) No difference in PPR (50 ms ISI) was observed across inputs (n/N = 13/7, 

7/4 cells/mice). (d) Summary time course of BLA-PFC recordings. LY379286 application 

induced LTD (56 ± 6 % baseline, n/N = 10/7). (e) LY3792678 did not depress excitatory 

transmission at VH-PFC synapses (94 ± 9 % baseline, n/N = 7/4). (f) Pharmacological 

confirmation of mGlu3-LTD at BLA-PFC input. The mGlu3 NAM VU0650786 blocked 

BLA-PFC LTD (96 ± 8 % baseline, n/N = 4/3) whereas LTD remained in the presence of the 

mGlu2 NAM MRK-8-29 (43 ± 9 % baseline, n/N = 5/4). (g) Summary of last 10 minutes of 

LTD across inputs (**: p < 0.01, t-test). (h) Summary of last 10 minutes of BLA-PFC 

pharmacological experiments (**: p < 0.01). BLA, basolateral amygdala; ISI, interstimulus 

interval; CV, coefficient of variation; mGlu, metabotropic glutamate receptor; op-EPSC 

optical excitatory postsynaptic current; PFC, prefrontal cortex; PPR, paired-pulse ratio; VH, 

ventral hippocampus.
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Figure 4. Acute restraint stress rapidly impairs PFC mGlu3-LTD
(a) Schematic displaying stress exposure paradigm. Mice were sacrificed for 

electrophysiology 30 minutes after the termination of 20-minutes immobilization stress. (b) 
Acute stress did not affect the basal membrane properties of PFC pyramidal cells (n/N = 

23/12, 18/6 cells/mice). (c) Representative experiment displaying loss of LTD following 

restraint stress. Scale bars denote 100 pA, 50 ms. (d) Summary time course of long-term 

recordings following stress. While the acute depression during drug application remained 

intact, LTD did not occur following stress (93 ± 10 % baseline, n/N = 7/5). Black lines 

denote control data from figure 1C. (e) Summary of last 10 minutes of long-term recordings. 

Acute restraint stress impairs induction of LTD ex vivo (***: p < 0.001, t-test). (f) mEPSC 

amplitude does not differ between the restraint stress group and controls (n/N = 7/4, 7/3). (g) 
mEPSC frequency does not differ between the restraint stress group and controls (n/N = 7/4, 

7/3). EPSC, excitatory postsynaptic current; LTD, long-term depression; mGlu3, 

metabotropic glutamate receptor subtype 3; mEPSC, miniature excitatory postsynaptic 

current; PFC, prefrontal cortex; Rm, membrane/input resistance; sac, sacrifice; Vm, resting 

membrane potential.
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Figure 5. Blocking mGlu3 activation in vivo prevents stress-induced deficits to BLA-PFC mGlu3-
LTD and motivation
(a) Schematic displaying stress exposure paradigm. Mice were pretreated with i.p. injections 

of the mGlu3 NAM VU0650786 or vehicle 15 minutes prior to immobilization stress. Slices 

were prepared for electrophysiology 30 minutes after the stress ended. (b) Acute stress does 

not affect BLA-PFC CV. Control value taken from figure 3B. (c) Acute stress does not affect 

BLA-PFC PPR (50 ms ISI). Control value taken from figure 3C. (d) BLA-PFC LTD is 

impaired in cells from vehicle-treated mice exposed to restraint stress (89 ± 4 % baseline, 

n/N = 7/4 cells/mice). Blue lines denote control data from figure 3D. (e) Systemic 

pretreatment with the mGlu3 NAM rescues the stress-induced deficit in mGlu3-LTD (47 
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± 10 % baseline, n/N = 7/3). (f) Summary of last 10 minutes of LTD recordings. (**: p < 

0.01). (g) Top, schematic. Operant responding for liquid food was assessed on a PR schedule 

of reinforcement. Bottom, stress impaired performance on the PR schedule as assessed by 

the number of reinforcers earned and the number of holepokes elicited (N = 10, *: p < 0.05, 

Bonferonni post-tests vs. BL1, BL2, and post). (h) Effects of stress, VU0650786, and 

combination, on PR performance. The number of reinforcers earned on the test day is 

expressed as a percentage change relative to the two preceding baseline days. Top, injections 

of vehicle and VU0650786 did not alter the number of reinforcers earned on the test day in 

control mice. Bottom, vehicle-treated mice exposed to restraint stress exhibited a decrease in 

the number of reinforcers earned relative to baseline (N = 10, #: p < 0.05, one-sample t-test). 

Pretreatment with VU0650786 generated a dose-dependent reversal of the stress-induced 

impairment (N = 10, **: p < 0.01, Bonferonni post-test vs. veh). (i) PR performance in all 

conditions as measured by the number of holepokes elicited (N = 10, #: p < 0.05, $: p < 

0.10, one-sample t-test; **: p < 0.01, Bonferonni post-test vs. veh). BL, baseline; BLA, 

basolateral amygdala; CV, coefficient of variation; EPSC, excitatory postsynaptic current; 

i.p., intraperitoneal; ISI, inter-stimulus interval; LTD, long-term depression; mGlu3, 

metabotropic glutamate receptor subtype 3; mEPSC, miniature excitatory postsynaptic 

current; NAM, negative allosteric modulator; PFC, prefrontal cortex; PPR, paired-pulse 

ratio; PR, progressive ratio schedule of reinforcement; sac, sacrifice; veh, vehicle.
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