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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease and the most cause of dementia
in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control
cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for
memory enhancement. In the present study, the chemical profiling of three accession extracts of
CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance
liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA
accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA
accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated
for their acetylcholinesterase (AChE) inhibitory activity using Ellman’s spectrophotometer method.
The inhibitory activity of the triterpenes and accession extracts was compared with the standard
AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds
exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values
between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE
inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and
SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and
763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and
madecassic acid showed very good interactions with the active sites and fulfilled docking parameters
against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions
could be responsible for the AChE inhibitory action and could be used as markers to guide further
studies on CA as potential natural products for the treatment of AD.

Keywords: Centella asiatica; acetylcholinesterase; triterpenes; molecular docking; in silico; in vitro

1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease which is the common cause of dementia
and is mainly differentiated by progressive deterioration of memory and cognition [1]. It is characterized
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by low levels of the neurotransmitter acetylcholine (ACh), neuro-inflammation, and oxidative stress in
the brain region [2]. There are millions of people worldwide with AD and dementia and the World
Health Organization (WHO) estimates the number of people with AD is rising rapidly [3]. Nowadays,
about 24 million of peoples are affected by AD and it is predicted that this number will quadruple
by 2050 [4]. Previous studies performed on AD patients found an altered cholinergic activity, which
resulted in disruption cognitive and functional symptoms [5]. AD is reported to affect older people of
65 years old and above, resulting in memory and behavior impairment [6]. One of the most promising
targets for AD treatment is by suppressing the acetylcholinesterase (AChE) activity in the brain to
ameliorate the cognitive ability [7].

AChE is a key of enzyme that plays important roles in cholinergic transmission by hydrolyzing
the neurotransmitter acetylcholine (ACh) [8]. Inhibition of AChE in the cholinergic framework is
intimately linked with the therapy of neurodegenerative-related diseases [9]. Therefore, by inhibiting
AChE, the levels of this neurotransmitter can be elevated and thus improve the learning and memory
functions. AChE inhibitors can be divided into two categories: reversible and irreversible. In general,
reversible inhibitors have therapeutic applications, while irreversible AChE inhibitors are associated
with toxicity effects [10]. The major drugs currently available for the treatment of neurodegenerative
disorders are donepezil, tacrine, eserine, rivastigmine, huperzine A, and galantamine, which have a
number of side effects [11,12]. Meanwhile, natural products from medicinal plants are known for their
inherent benign safety and effects [13]. Therefore, it would be beneficial to discover other inhibitors of
AChE with more selectivity, enhance the bioavailability problems, and produce fewer adverse effects
to the AD patients. The finding of inhibitors of AChE from natural products is increasing and proving
to be a promising source of useful AChE inhibitors [14,15].

There are a number of active compounds with good cholinesterase activity that have been isolated
from medicinal plants [16]. Centella asiatica (L.) Urban (CA) is a herbal plant from the Apiaceae
family which is native to South and Southeast Asian countries including Sri Lanka, India, China,
Malaysia, and Indonesia [17]. In Malaysia, it is also known as pegaga and is one of the medicinal
plants traditionally used for brain and nerve cell revitalization [18]. The major bioactive chemical
compounds in CA are alkaloids, triterpenes, flavonoids, volatile oils, and glycosides [19]. Among the
different classes of natural products, the triterpenoids are the most diverse class of organic compounds.
The primary bioactive compounds in CA are madecassoside, asiaticoside, madecassic acid, and
asiatic acid, which belong to the class of triterpenes [20,21] (Figure 1). Previous study reported that
these compounds have been utilized as biomarker components for the quality assessment of raw
materials and herbal products of CA. However, environmental factors such as climate (temperature,
humidity, wind, and light), location, growth, and soil fertility could affect the chemical components
in natural plants [20,22]. Devkota et al., (2015) reported that the environmental conditions such as
light exposure, fertilizer, and soil type could affect the triterpenes content in CA [23]. Therefore,
a proficient qualitative and quantitative analysis is needed to ensure their efficacy, quality, and safety.
The neuropharmacological value of CA on neuroprotection and the regeneration of the peripheral
nervous system has been widely investigated [21]. Therefore, it is more likely that the presence of
triterpenes in CA may be effective against AD [11].

Molecular docking is a tool in computer aided drug designing (CADD) which is used to study the
binding interaction between the potential inhibitors, known as ligands, and targeted enzymes [24].
The X-ray crystal structures of AChE from various species can be found in the protein data bank
(PDB) [25]. The identification of residues that are responsible for inhibitory activity will lead to potential
for the synthesis of agents with a high efficacy of biological action [26].

In Malaysia, there are more than 15 accessions of CA with each having variation in their bioactive
constituents [27]. Zainol et al., (2003) observed two accessions of CA that have variation in their active
constituents in different parts of plants such as the root, petiole, and leaf of CA and showed high
antioxidant activities [28]. In a different study, 14 accessions of CA were identified and from HPLC
fingerprinting analysis. It was observed that madecassic acid was highest in one of the accessions [29].
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In other findings, five accessions of CA from India showed variations in secondary metabolites due to
the difference in altitude and geographical location of the plant [30]. In China, there were 14 accessions
of CA collected from different locations with a different latitude, longitude, and collection time,
and they observed the variation in chemical composition and genetic diversity [31]. Although many
pharmacological effects of CA have been reported, the AChE inhibitory activity among accessions of
CA in Malaysia has not been fully investigated. Therefore, the aim of this study is to perform high
performance liquid chromatography (HPLC) fingerprinting analysis and AChE inhibitory activity of
triterpenes among the CA accessions. In addition, a molecular docking study was also carried out to
investigate the binding interaction of targeted compounds against AChE.
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2. Results

2.1. Characterization of CA Accessions

The morphological character analysis carried out for the three accessions of CA, namely CA-K017,
CA-K018, and CA-K019, in relation to their leaf shape, color, and diameter size is shown in Table 1.
It was observed that leaves of both accessions, CA-K017 and CA-K019, were light green while
CA-K018 was dark green. The leaf margin of CA was divided into three different groups. These were
crenate (surface with rounded edge), crenulate (having a wavy edge), and crenate with dentate base
(tooth-shape projection) [32]. Accession CA-K017 was found to have a crenate with dentate based leaf
margin; meanwhile a crenate with a rounded edge leaf margin was detected in accession CA-K018.
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However, CA-K019 accession had a crenulate margin. The length of leaf when expressed in centimeters
(cm), showed the CA-K018 accession had the longest leaf length, followed by CA-K019 and CA-K017
as shown in Table 1.

Table 1. Characterization of CA accessions.

Accessions Characteristics

CA-K017
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Light green colour
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2.2. Percentage Yield of Extraction

In the present study, three accessions of CA were extracted with 95% denatured ethanol,
and percentage of yield was calculated. The extraction yield of the three extracts of CA accessions
designated as SECA-K017, SECA-K018, and SECA-K019 is shown in Table 2. Results showed that
SECA-K018 gave the highest extraction yield compared to SECA-K017 and SECA-K019.

Table 2. Percentage yield of CA accessions extracts.

Accessions Extracts Yield of Extraction (%)

CA-K017 SECA-K017 9.80
CA-K018 SECA-K018 56.00
CA-K019 SECA-K019 12.30

2.3. HPLC Analysis

HPLC identification and quantification of four triterpene compounds of SECA accessions were
made based on their retention time (RT) and ultraviolet-visible (UV-VIS) spectra at 206 nm (Table 3).
Figure 2A–D show a chemical profile of CA accessions and the reference standards of madecassoside,
asiaticoside, madecassic acid, and asiatic acid. Simultaneous quantification of triterpenes in CA has
also been achieved using this method. It has been reported that asiaticoside and madecassoside are
the most abundant triterpenes found in CA; however, the concentrations of these compounds may
vary depending on geographical factors such as environment, origin, harvesting time, as well as the
extraction method used [20]. In the present study, the content of madecassoside was found to be the
highest among the accessions, followed by asiaticoside. This finding is in agreement with previous
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the study on the CA extract from Thailand containing about 80% triterpenoids glycosides such as
madecassoside (53.1%), and asiaticoside (32.3%) [33]. The recent report from L. Yulianti et al., (2017) has
confirmed that concentrations of madecassoside and asiaticoside in CA were higher than madecassic
acid and asiatic acid [34].

Table 3. Triterpenes content of standardized extracts of CA accessions.

Triterpenes
Compounds Peak

Retention
Time, min

Concentration of Triterpenes in CA Accessions ± SEM (mg/g)

SECA-K017 SECA-K018 SECA-K019

Madecassoside 1 9.395 239.23 179.64 252.67
Asiaticoside 2 11.709 190.37 105.71 139.46

Madecassic acid 3 22.679 114.51 112.82 57.88
Asiatic acid 4 25.925 122.1 132.26 103.51Molecules 2020, 25, x FOR PEER REVIEW 6 of 15 
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In the present study, the detection of four triterpenes in CA was in line with Hashim et al., (2011)
where four triterpenes were also present in their CA accessions [35]. Aziz et al., (2007) observed that the
leaves contain the highest composition of triterpenes compared to roots. In addition, the phenotype of
CA with a smooth leaf had the highest level composition of madecassoside and asiaticoside compared
to those with a fringed leaf [36]. These findings concluded that different locations of plants could
affect the triterpenes composition. Therefore, there is need for continuous fingerprinting analysis
to standardize the herbal plants to promote the development of phyto-drugs or functional foods.
This may also improve the yield of active constituents of the plants that will give optimal triterpenes,
which can be used as biomarkers.

Plant-derived secondary metabolites such as triterpenoids, alkaloids, and flavonoids have proved
their medicinal properties for the treatment of neurodegenerative disorders, cancer, cardiovascular
diseases, and skin diseases [11]. Therefore, it is more likely that triterpenoid presence in CA may be
one of the promising inhibitors against AD. It has been reported that a functional moiety in lupine-type
triterpenoids has shown a potential effect against neurodegenerative disorders [37]. In addition,
literature supplies numerous reports on the enzyme that can be inhibited by pentacyclic triterpenoids,
which reveals the ability of these compounds to easily bind on multiple targets based on hydrophobic
interaction with an enzyme’s domain [38].

2.4. Acetylcholinesterase Inhibitory Activity

Four biomarker compounds of CA and three extracts of accessions of CA (SECA-K017, SECA-K018,
and SECA-K019), were tested for in vitro AChE inhibitory activity. All samples inhibited AChE activity
in a dose-dependent manner. The results expressed as half maximal inhibitory concentration (IC50)
values, are shown in Table 4. In our study, the AChE inhibitory activity exhibited by CA accessions
could be associated with the content of triterpenes as shown by the HPLC analysis. Asiatic acid and
madecassic acid showed a notable AChE inhibitory effect with IC50 values of 15.05 ± 0.06 µg/mL
and 17.83 ± 0.05 µg/mL, respectively, lower than the CA accessions and others triterpenes, which
corroborates their competitive, selective, and reversible affinity for AChE [39]. Meanwhile, SECA-K017
and SECA-K018 extracts demonstrated a moderate AChE inhibitory activity with an IC50 value of
481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively. The other accession, SECA-K019, did not show
AChE inhibitory activity. Therefore, SECA-K017 and SECA-K018 extracts demonstrated inhibitory
action against the AChE enzyme. To the best of our knowledge, there are no studies for the evaluation
of different CA accessions on AChE inhibitory activity that have been done.

Table 4. AChE inhibitory activity of standardize triterpenes and extracts of CA accessions.

Compounds/Extracts IC50 Values (µg/mL)

Madecassoside 37.14 ± 0.04
Asiaticoside 59.13 ± 0.18

Madecassic acid 17.83 ± 0.06
Asiatic acid 15.05 ± 0.05
SECA-K017 481.5 ± 0.13
SECA-K018 763.5 ± 0.16
SECA-K019 >1000

Eserine 0.05 ± 0.12

It has been reported that a glycosidic compound exhibited a potent neuroprotective activity,
improved microglial activation and behavioral dysfunction [40]. Previous studies proved that asiatic
acid could reduce the level of corticosterone in a rat’s brain, which ameliorates the content of monoamine
neurotransmitters and increases the function of hypothalamic-pituitary adrenal for its antidepressant
effects [41]. Neagu et al., (2018) reported that asiatic acid and madecassic acid inhibited the AChE
enzyme more effectively than other triterpenes as it could support the evidence for the use of CA for
cognitive function improvement. Herbal medicines have been used for the treatment of memory and



Molecules 2020, 25, 3353 7 of 14

cognitive functions [42]. According to S. Bhadra et al., (2016) asiatic acid, a triterpenoid component
of CA, was found to have an inhibitory effect against the AChE enzyme [9]. N. Omar et al., (2019)
reported that asiatic acid that was present in CA could cross the blood–brain barrier (BBB) and
maintained in the tight junction of the BBB [24]. Furthermore, it has been reported that the combination
of asiatic acid and madecassic acid could induce neuronal differentiation and neurofilament [39].
However, the comparison between triterpenes compounds and different accessions of CA are still
undetermined. In addition, methanolic extracts of CA species from India were demonstrated to
exert a potent cholinesterase inhibition activity, in vitro free radical scavenging, and the improvement
of scopolamine-induced amnesia activity [43]. The present study demonstrated that SECA-K017
and SECA-K018 containing four triterpene compounds showed AChE inhibitory activity. However,
SECA-K019 did not show AChE inhibitory activity probably due to the lack of madecassic acid content.
In an attempt to confirm the bioactivity of a CA extract, molecular docking was conducted to recognize
the binding interactions of triterpene compounds in the catalytic site of the crystal structure of AChE
(PDB: 4EY7).

2.5. Molecular Docking

Molecular docking is a tool to predict the binding interaction of ligands towards targeted proteins
as well as giving the binding affinity of small compounds [44]. In order to confirm the in vitro results
and to find out potential residues towards the active site of targeted enzyme, the ligand–enzyme
binding interactions between CA active compounds and the AChE enzyme were evaluated using
AutoDock 4.2 [45]. The results of the estimated binding interaction energies with the active site of
AChE are presented in Table 5.

Table 5. Estimated binding energy of triterpenes in the active sites of AChE.

Compounds Binding Energy (Kcal·mol−1)

Madecassoside 81.61
Asiaticoside 41.72

Madecassic acid −8.7
Asiatic acid −10.27

Eserine −9.4

The in vitro studies showed that asiatic acid and madecassic acid have the highest inhibitory
activity with the lowest binding energy of −10.27 and −8.7 Kcal/mol, respectively, compared with
other triterpenes, but lower than eserine against AChE. The docking results obtained for asiatic
acid and madecassic acid suggest that the present hydroxyl group at the C-1, C-2, and C-3 position
theoretically improves the AChE inhibition of the 4EY7 enzyme. The ligand-enzyme binding interaction
representations of the best conformation of the complexed active sites’ interaction of AChE with eserine
(a), asiatic acid (b), and madecassic acid (c) are presented in Figure 3. The molecular interactions
between triterpene compounds and active sites of the AChE protein were analyzed in terms of hydrogen
bonding and π-π stacking interactions. Tyr337 and Trp86 are the important residues of AChE as
these amino acids function to maintain the geometry of the binding gorge and provide electrostatic
balance [46]. Previous studies have also highlighted the importance of Tyr337 and Trp86 amino acids
in the binding activity of protein 4EY7 [47]. Regarding the hydrogen bonding, eserine showed the
highest stability due to conventional hydrogen bond interaction with Phe295 (2.51Å), while asiatic acid
presented three strong hydrogen bonding interactions with His447 (1.24 Å), Tyr337 (3.72 Å), and Arg296
(1.97 Å) residues. In addition, madecassic acid demonstrated strong hydrogen bonding interaction
with Tyr341 (4.31 Å), Phe295 (2.64Å), and Arg296 (2.29 Å). The bond lengths of respected interactions
between compounds and amino acids were determined (Appendix A, Figure A1). Furthermore, eserine
and asiatic acid compounds have a similar bonding interaction according to carbon–hydrogen bonding
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with Trp286 and Gly121. Meanwhile, madecassic acid showed carbon–hydrogen bonding with Ser293
(1.24 Å).

Additionally, the ligand-enzyme binding interactions are stabilized by the presence of hydrophobic
alkyl, hydrophobic π-alkyl, and hydrophobic π-sigma interactions with the compounds inside AChE
as shown in Figure 3b,c,e [48]. The theoretical results obtained by molecular docking for asiatic acid
and madecassic acid are in agreement with in vitro assay. According to the molecular interactions
shown in the docking analysis, the asiatic acid and madecassic acid that is present in CA may be
represented as a potential inhibitor based on its very good interaction due to strong hydrogen bonds
and hydrophobic interactions.Molecules 2020, 25, x FOR PEER REVIEW 9 of 15 
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3. Chemicals and Reagents

3.1. Chemicals and Reagents

All solvents were HPLC grade, purchased from Merck (Darmstadt, Germany). The pure chemical
standards of asiaticoside, madecassoside, asiatic acid, and madecassic acid were purchased from
Chemfaces (Wuhan, Hubei, China). Sodium monobasic sulfate and sodium dibasic sulfate were
purchased from Merck (Darmstadt, Germany), and acetylcholinesterase from electrophorus electricus,
5,5′-Dithiobis (2-nitrobenzoic acid), and acetylcholine iodide were obtained from Sigma–Aldrich
(St. Louis, MO, USA).

3.2. Plant Characterization and Extraction

Three accessions of CA of different characteristics were collected from different geographical
localities in Malaysia. These three accessions were denoted as CA-K017, CA-K018, and
CA-K019. Matured plants were examined and measured based on morphological characteristics.
The morphological characteristics measured were color and leaf margin. All the parameters were
recorded in triplicates. The whole plant was washed, cleaned, and oven-dried at 40 ◦C. The powdered
plant materials were extracted using 95% denatured alcohol at a room temperature for 72 h. The yields
of the extracts were calculated. These extracts were designated as standardized extracts CA (SECA) of
SECA-K017, SECA-K018, and SECA-K019. Voucher specimens were prepared and deposited in the
Faculty of Applied Sciences, UiTM Shah Alam (Selangor, Malaysia) for future reference.

3.3. HPLC Fingerprinting Analysis

An HPLC system (Agilent, Santa Clara, CA, USA) equipped with a diode-array UV-vis detector
and C18 HPLC column (15 cm× 4.6 mm i.d., 5 µm) (Supelco, Bellefonte, PA, USA) was used. The mobile
phase consists of water (A) and acetonitrile (B) using a gradient elution program for 55 min with a flow
rate of 1 mL/min and a detection wavelength at 206 nm for analysis as described by previous literature
with slight modifications (Table 6) [49]. About 10 mg samples were suspended in methanol:water
(7:3) and filtered through a 0.2 µm polyvinylidene fluoride (PVDF) membrane syringe filter, prior
to the HPLC analysis. Standard solutions were prepared in methanol at concentration 1000 µg/mL.
An appropriate volume of each standard solution was mixed and diluted with methanol to obtain
5 concentrations ranging from 10–1000 ppm to obtain calibration curves for quantitative analysis.
The relative amount of the compound was expressed as milligram per gram extract.

Table 6. Gradient condition for HPLC.

Time (min) Pump A, Water (%) Pump B, Acetonitrile (%)

0 80 20
15 65 35
30 35 65
35 20 80
40 20 80
45 80 20
55 80 20

3.4. Acetylcholinesterase Inhibitory Activities

The AChE inhibitory activity was evaluated using Ellman’s method, as reported previously [48].
Each sample (20 µL of 5 mg/mL in DMSO) was dispensed in triplicate into a 96-well microplate and
mixed with 190 µL of DTNB, 20 µL of substrate (ATCI). The control wells contained 2% of DMSO
instead of the extract. The enzymatic activity was measured at 412 nm every 30 s intervals for 3 min.
The buffer solution was used as negative control.
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The percentage inhibition (%I) of each sample and the positive control (physostigmine) was
calculated using the formula:

%I: [(Ac − As)/(Ac)] × 100 (1)

where (%I): Percentage inhibition

Ac: Absorbance of negative control
As: Absorbance of sample

3.5. Molecular Docking

The molecular docking study of triterpene compounds was performed to evaluate the binding
interaction mode in the active site of the AChE enzyme (4EY7) [50]. The 3D structures of the triterpenes
were drawn with the Chemdraw program and optimized to confirm the potential energy surfaces.
The dockings for the set of ligands with the respective enzyme were performed using Autodock 4.2.
The 3D model of the AChE enzyme was downloaded from Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Databank. Discovery studio 4.5 version (DS, Accelrys Software Inc.,
USA) was used to perform the process of the removal of water molecules and addition of the missing
hydrogen atoms of the AChE enzyme. The highest binding affinity (lowest binding energy) score was
selected to explore the binding enzyme–ligand interactions and displayed using the Discovery studio
visualization software. Autodock 4.2 was used to dock the AChE enzyme and triterpene compounds
(ligands) into the grid box with dimensions of 50 × 50 × 50 Å in the docking option. The best targeted
compounds were analyzed according to the binding interactions between ligand and enzyme, such as
hydrogen bonding, cation-π, and π-π stacking interactions.

3.6. Statistical Analysis

The experiments were expressed as the mean ± standard error of the mean (SEM) in triplicates.

4. Conclusions

The present study demonstrated the potential of two extracts of accessions of CA (SECA-K017 and
SECA-K018) as potential sources of AChE inhibitors. The results from the in vitro studies indicated the
very good interactions of asiatic acid and madecassic acid with the active sites and fulfilled the docking
parameters against AChE. Asiatic acid and madecassic acid, which are present in the accessions,
showed a favorable AChE inhibitory profile and, therefore, can be used as markers to guide further
studies on CA as a potential natural product for the treatment of AD.
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