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Matrix completion problems arise in many applications including recommendation
systems, computer vision, and genomics. Increasingly larger neural networks have
been successful in many of these applications but at considerable computational costs.
Remarkably, taking the width of a neural network to infinity allows for improved
computational performance. In this work, we develop an infinite width neural network
framework for matrix completion that is simple, fast, and flexible. Simplicity and speed
come from the connection between the infinite width limit of neural networks and
kernels known as neural tangent kernels (NTK). In particular, we derive the NTK
for fully connected and convolutional neural networks for matrix completion. The
flexibility stems from a feature prior, which allows encoding relationships between
coordinates of the target matrix, akin to semisupervised learning. The effectiveness of
our framework is demonstrated through competitive results for virtual drug screening
and image inpainting/reconstruction. We also provide an implementation in Python to
make our framework accessible on standard hardware to a broad audience.

matrix completion | infinite width neural networks | neural tangent kernel | drug response imputation |
image inpainting

Matrix completion is a fundamental problem in machine learning, arising in a variety
of applications from collaborative filtering to virtual drug screening and image inpaint-
ing/reconstruction. Given a matrix Y with only a subset of coordinates observed, the
goal of matrix completion is to impute the unobserved entries in Y. For example, in
collaborative filtering (Fig. 1A), matrix completion is used to infer the interests of a
user from the interests of other users. A prominent example is the Netflix challenge of
inferring movie preferences from sparsely populated matrices of user ratings (1). For virtual
drug screening (Fig. 1B), matrix completion is used to predict the effect of a drug on a
cell type/state given other drug and cell type/state combinations. For image inpainting
(Fig. 1C ) and image reconstruction (Fig. 1D), matrix completion is used to restore missing
pixels in a corrupted image.

Standard approaches to matrix completion such as nuclear norm minimization
(2–4) or deep matrix factorization (5) aim for a completion that yields a low-rank matrix.
While such methods can be effective in applications like collaborative filtering, where
low rank can capture user similarity, such an objective function can lead to ineffective
solutions for applications including drug response imputation, image inpainting, or image
reconstruction. For example, in the case of drug response imputation, imputing a new
drug would involve predicting the values of an entirely missing vector of gene responses
(in contrast to the aforementioned Netflix problem, which involves imputing single scalar
entries of the matrix). In this case, a low-rank reconstruction would replace all missing
entries with a fixed constant, thereby leading to poor predictive performance. Similarly,
for image inpainting and reconstruction, a low-rank completion is generally ineffective
since it does not take into account local image structure (6, 7). Thus, there is a need for
a more general approach to matrix completion that can easily adapt to the structures in
different applications.

In this work, we provide a simple, fast, and flexible framework for matrix completion.
To accomplish this, we view matrix completion as an inverse problem; given a matrix
Y ∈ R

m×n such that a subset of coordinates S = {(i , j )} ⊂ [m]× [n] are observed and
the other entries are missing, we aim to construct Ŷ ∈ R

m×n such that Ŷi,j ≈ Yi,j for
all observed coordinates (i , j ) ∈ S . We use neural networks to model the observations in
Y and use gradient descent to minimize

L(W)=
∑

(i,j )∈S

(Yi,j−[Wdφ(Wd−1φ(. . .W2φ(W1Z ) . . .))]i,j )
2
, [1]

where W = {W�}d�=1 are the weights of a neural network with each W� ∈ R
k�+1×k� and

kd+1 =m , k1 = p; φ : R→ R is a fixed element-wise nonlinearity; and Z ∈ R
p×n is a

Significance

Matrix completion is a
fundamental problem in machine
learning that arises in various
applications. We envision that our
infinite width neural network
framework for matrix completion
will be easily deployable and
produce strong baselines for a
wide range of applications at
limited computational costs. We
demonstrate the flexibility of our
framework through competitive
results on virtual drug screening
and image
inpainting/reconstruction.
Simplicity and speed are
showcased by the fact that most
results in this work require only a
central processing unit and
commodity hardware. Through its
connection to semisupervised
learning, our framework provides
a principled approach for matrix
completion that can be easily
applied to problems well beyond
those of image completion and
virtual drug screening considered
in this paper.

Author contributions: A.R., M.B., and C.U. designed
research; A.R., G.S., M.B., and C.U. performed research;
A.R., G.S., M.B., and C.U. analyzed data; and A.R., M.B.,
and C.U. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
cuhler@mit.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2115064119/-/DCSupplemental.

Published April 11, 2022.

PNAS 2022 Vol. 119 No. 16 e2115064119 https://doi.org/10.1073/pnas.2115064119 1 of 9

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2115064119&domain=pdf&date_stamp=2022-04-09
http://orcid.org/0000-0002-7008-0216
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cuhler@mit.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115064119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115064119/-/DCSupplemental
https://doi.org/10.1073/pnas.2115064119


A B

C D

E

Fig. 1. An overview of matrix completion applications. (A) Collaborative filtering example (the Netflix problem), where the goal is to predict how a user would
rate (on a scale of 1 to 5) an unseen movie. (B) Virtual drug screening, where the problem is to predict the gene expression profile for an unobserved drug/cell
type combination. In this application, entire columns are unobserved. (C and D) Image inpainting and reconstruction involves reconstructing a corrupted region
of an image (shown as black pixels). Question marks in A and B and zero (black) pixels in C and D represent unobserved entries. (E) Our NTK matrix completion
framework is easily adapted to solve all of the above problems by selecting a feature prior that represents an embedding of application specific metadata.

fixed application-dependent matrix, which we call the feature
prior (described in detail in the section Flexibility through
Feature Prior). The completed matrix Ŷ is then obtained
using the forward model with the trained weights, i.e., Ŷ =
Wdφ(Wd−1(. . .W2φ(W1Z ) . . .)). The main contribution of
this work is showing that minimizing the loss in Eq. 1 when the
width {k�}d�=2 of the neural network tends to infinity gives rise
to a simple, fast, and flexible framework for matrix completion
suitable for a range of applications.

Superficially, the formulation in Eq. 1 appears similar to that of
traditional supervised learning, where a neural network is trained
to map data (which would correspond to Z in our formulation)
to corresponding labels Y. However, it is important to note that in
our formulation, Z can be independent of the observations Y (Z
could, for example, be the identity matrix or a random matrix).
Thus, Z should be interpreted as a prior that can be chosen in an
application-dependent manner. We will discuss the effect of this
prior as well as how to choose it for very different applications like
virtual drug screening and image inpainting.

Simple and Fast Algorithm for Matrix
Completion through Infinite Width Networks

A trend for improving neural network performance is to make
models larger (in multiple respects) (8–11). Underscoring this
trend, several recent works have empirically demonstrated the
advantage of larger (in particular, wider) networks with respect to
generalization and performance for classification and representa-
tion learning tasks (12–15). There is also an emerging theoretical
understanding of the benefit of larger models (16–18). The ex-
treme case where network width approaches infinity is what we
consider in this paper in the setting of matrix completion.

While generally larger neural networks require more com-
putational resources for training, quite unintuitively, the limit
as network width approaches infinity may yield computational
savings. Namely, it was recently shown that training infinite
width networks is equivalent to solving kernel regression with
a particular kernel known as the neural tangent kernel (NTK)
(19). For fully connected networks, the NTK can be computed
efficiently in closed form (19), and thus, training an infinite width
network reduces to solving a linear system. While this may still be
computationally expensive when the number of examples is large,

we will use recent preconditioner methods (20–22) to overcome
this limitation.

For convolutional networks, no efficient computation of the
NTK (the so-called CNTK) has been known (23–25). A major
contribution of this work is to provide a memory and runtime
efficient algorithm for computing the exact CNTK for matrix
completion for a class of practical neural network architectures.
As a consequence, our framework can be used to inpaint or
reconstruct high-resolution images with hundreds of thousands
of pixels. We also provide software for constructing the CNTK
as well as precomputed kernels. The simplicity and speed of our
framework is exhibited by the fact that most of the results in this
work require only a central processing unit (CPU) and can be run
efficiently on a laptop.

Flexibility through Feature Prior

The matrix Z in Eq. 1 is key to making our framework easily
adaptable to different applications. Unlike traditional supervised
learning where the goal is to learn a mapping from data X to
labels Y, the matrix Z in our framework can be independent of
the observations in Y. We refer to Z as a feature prior since, as we
will see, by minimizing the loss in Eq. 1, the entries of Z encode
structure between the coordinates of Y (Fig. 1E).

We will demonstrate the flexibility of our framework by us-
ing it in two very different applications, namely, for drug re-
sponse imputation and image inpainting/reconstruction. For drug
response imputation, we will select feature priors that encode
information about cell and drug type combinations. For image
inpainting and reconstruction, we will select feature priors that
encode information about image coordinates. In addition to
being flexible, we will show that our approach is competitive
in terms of speed and accuracy with prior approaches that were
specifically developed for drug response imputation (26, 27) or
image inpainting/reconstruction (28–30).

Matrix Completion with the NTK

In this section, we derive the NTK for matrix completion when
using fully connected networks. Our derivation provides a prin-
cipled method for selecting the feature prior, Z ; namely, we show
that Z should be an embedding of coordinate metadata, i.e.,
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information describing the coordinates of Y. For example, in drug
response imputation, each column of Z could correspond to a
different drug, and two columns of Z should be similar if the drug
metadata is similar (e.g., the molecular structures are similar). The
resulting method is then equivalent to performing semisupervised
learning to map from the columns of Z to observed entries in each
row of Y. In Virtual Drug Screening with the NTK, we utilize this
theoretical result to select an effective feature prior for virtual drug
screening.

Since the NTK forms the backbone of our framework, we
start with the definition of the NTK (19) and briefly review
how solving kernel regression with the NTK connects to training
infinitely wide neural networks.

Definition (NTK): Let f (w ; x ) : Rp × R
d → R denote a neural

network with parameters w. The corresponding NTK, K : Rd ×
R

d → R, is a symmetric, continuous, positive definite function
given by

K (x , x ′) = 〈∇w f (w
(0); x ),∇w f (w

(0); x ′)〉,

where w (0) ∈ R
p are the network parameters at initialization.

For a review of kernel regression and kernel functions, see ref.
31. Given training data (x (i), y(i)) ∈ R

d × R for i = 1, . . . ,n ,
solving kernel regression with the NTK involves minimizing the
loss:

L(α) = ‖y − αK̂‖22, [2]

where α ∈ R
1×n , y = [y(1), . . . , y(n)]T , and K̂ ∈ R

n×n with
K̂i,j =K (x (i), x (j )). The work of ref. 19 established that using
kernel regression with the NTK is equivalent (under mild assump-
tions) to training a neural network to map x (i) to y(i) using the
mean squared error, in the limit as the network width tends to
infinity. Throughout this work, we assume that w (0)

i
i.i.d∼ N (0, 1)

and that the nonlinearity φ in Eq. 1 is homogeneous (which
includes, for example, the rectified linear unit [ReLU], a widely
used nonlinearity) so that the NTK corresponding to a fully
connected network can be computed efficiently in closed form
(19, 32, 33); see SI Appendix, Appendix A, for a short review of
the relevant literature and notation.

Feature Prior Provides a Flexible Approach for Matrix Com-
pletion through Connection with Semisupervised Learning. A
natural approach for imputing missing entries in a matrix, Y, is
to first obtain an embedding of the coordinates of Y [e.g., a map
from coordinates (i , j ) to R

p] and then learn a map from the
coordinate embedding to the observed entries in Y (e.g., a map
from R

p to Yi,j ∈ R) (see also ref. 34, chap. 1). For example,
for virtual drug screening, one could first embed the drugs based
on their molecular properties and then learn a map from this
embedding to the measured output, such as gene expression. Such
an approach in which a map is learned from an embedding to the
observed samples is referred to as semisupervised learning (ref. 35,
chap. 15). In this section, we prove that minimizing the loss in
Eq. 1 is equivalent to using a semisupervised learning approach
for matrix completion. Namely, we show that the columns of Z
represent an embedding of the coordinates of Y and that the NTK
is used to map from the columns of Z to the entries in Y.

It is a priori unclear how to compute the NTK for matrix
completion since this requires training examples and labels. For
this, we note the following equivalent formulation of Eq. 1:

L(W) =
∑

(i,j )∈S

(Yi,j − 〈fZ (W),M{(i,j )}〉)2,

fZ (W) =W (d)Cdφ(W
(d−1)

Cd−1φ(. . .W
(2)C2φ(W

(1)Z )) . . .), [3]

where C� = c/
√
k� for a constant c; 〈A,B〉= tr(ATB) denotes

the trace inner product; and M{(i,j )} is an indicator matrix,
i.e., it has a 1 in the (i , j ) entry and zeros everywhere else. To
ease notation, we will use Mij to denote the indicator matrix
M{(i,j )}. The formulation in Eq. 3 shows that we can view matrix
completion as a problem where the training examples are indicator
matrices Mij and the labels are the corresponding entries Yi,j .
This reformulation yields the following closed form for the NTK
for matrix completion, where φ̌ : [−1, 1]→ R denotes the dual
activation function (36) to φ. To keep notation simple, we here
provide the theorem when φ is the ReLU activation function,
but this result holds generally for homogeneous nonlinearities
(SI Appendix, Appendix B).

Theorem 1. Assume Z = {z (i)}ni=1 ∈ R
p×n , where each column

is normalized with ‖z (i)‖2 = 1. Let fZ (W) be a d layer fully
connected network with nonlinearity φ(x ) = max(x , 0) and c =√
2 in Eq. 3. Then, as widths k2, k3, . . . , kd →∞, the NTK for

matrix completion with fZ (W) is given by

K (Mij ,Mi′j ′) =

{
κd(z

(j )T z (j
′)) if i = i ′

0 if i 
= i ′
,

where κd(ξ) = φ̌(d)(ξ) + κd−1(ξ)
dφ̌
dξ (φ̌

(d−1)(ξ)), and φ̌(h)(ξ)

= φ̌(φ̌(h−1)(ξ)) for h ≥ 1 and φ̌(0)(ξ) = ξ.
The proof as well as an example showing how Theorem 1 can

be used in practice to compute the NTK for matrix completion
is presented in SI Appendix, Appendix B. Since the kernel value
between Mij and Mi′j ′ is a function of columns j and j ′ of Z,
Theorem 1 implies that the NTK for matrix completion maps
columns of Z to entries Yi,j , and thus, the columns of Z encode
structure between the coordinates of Y.

By varying the nonlinearity φ, depth d, and feature prior Z,
our framework encapsulates a variety of semisupervised learn-
ing approaches. To provide a nontrivial example, we prove in
SI Appendix, Appendix B, that our framework for matrix com-
pletion generalizes Laplacian-based semisupervised learning (37).
This insight regarding the connection between our framework
for matrix completion and semisupervised learning represents the
backbone for a simple and competitive approach to virtual drug
screening described in Virtual Drug Screening with the NTK.

Virtual Drug Screening with the NTK

The Connectivity Map (CMAP) is a prominent, large-scale, pub-
licly available drug screen that considers 20,413 different com-
pounds and 72 different cell lines (38). Experiments in CMAP
were performed on a subset of 201,484 drug/cell line pairs; for
each of these pairs the gene expression profile of 978 landmark
genes was measured. CMAP has been an important resource for
computational approaches to drug discovery and drug repurpos-
ing (38–40). In these applications, the goal is to use a subset of
observed drug/cell type pairs to predict the gene expression profile
of new drug/cell type pairs. These profiles are then used to identify
drug candidates of interest that can be tested experimentally
(41, 42).

The CMAP dataset can be viewed as a three-dimensional tensor
(drugs, cell lines, and genes), where many of the entries are
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Fig. 2. Our infinite width neural network framework outperforms DNPP (26), FaLRTC (27), and mean over cell types for drug response imputation on CMAP.
(A) We visualize the availability of cell type and drug combinations of the subset from ref. 26. (B) Our method corresponds to first providing an embedding of
cell type and drug combinations as the feature prior and then applying the NTK. We show that 1) using a feature prior consisting of one-hot vectors for drugs
corresponds to imputation by performing mean across observations for each cell type and 2) using a feature prior that captures similarity between drugs and
cell types is effective for imputation. (C and D) Our infinite width neural network framework (denoted NTK) outperforms DNPP and mean over cell type across
three evaluation metrics. We use five rounds of 10-fold cross-validation to determine that the difference between our method and the next best method, DNPP,
is statistically significant (P < 10−20).

missing. In the following, we use the same preprocessing of the
data as in ref. 26 to filter out drug/cell line combinations with very
few or inconsistent samples; a description and a link to the dataset
is provided in SI Appendix, Appendix C. The resulting drug/cell
line combinations are shown in Fig. 2A. The three-dimensional
tensor can be flattened into a matrix, where the columns cor-
respond to drug/cell line combinations and the rows represent
genes (Fig. 2B); i.e., following the notation from Virtual Drug
Screening with the NTK, entryYij of the resulting flattened matrix
is a real-valued number quantifying the gene expression of gene i
in drug and cell type combination j. This matrix has a missing
column for every missing drug/cell line combination. Classical
low-rank matrix factorization methods would prove ineffective
in this setting since they would replace each missing column
by the same constant column. On the other hand, Theorem 1
suggests the NTK as an effective way for imputing the missing
gene expression profiles by selecting the feature prior Z such
that two columns of Z are similar if they correspond to similar
drug/cell line pairs. In the following, we discuss three different
feature priors for this application; for a full description of these
priors, see SI Appendix, Appendix D.

Feature Prior Corresponding to the Mean over Cell Type Base-
line. A simple baseline is to impute the gene expression profiles
for each missing drug for a given cell line by the mean over all
observed drugs for this cell line. Quite surprisingly, this simple
approach gives rise to a strong baseline (26, 43) since cell type
is the dominant factor, while drugs have subtle effects on gene
expression.

While it is generally nontrivial to improve upon this simple
baseline without constructing a specialized algorithm (26, 44–
46), our NTK framework provides an easy way for doing so.
In particular, our framework makes it evident that the feature
prior corresponding to the mean over cell type baseline is trivial
since it corresponds to an embedding in which drugs are encoded
via one-hot vectors (SI Appendix, Appendix E). Thus, to improve
upon this baseline, we select any feature prior that can capture
similarities between drugs.

Feature Prior Corresponding to Previous Algorithms. We now
demonstrate that our framework provides a direct approach to
improve on previous methods for virtual drug screening by using
the output of previous methods as a feature prior in our frame-
work. Namely, if a method is used to produce an imputation,
Ŷ , then the columns in Ŷ should represent an embedding of

drug and cell type combinations that captures their similarity.
Hence, we can use Z = Ŷ as the feature prior in our method.
For illustration, we apply this approach to two state-of-the-art
methods for virtual drug screening: 1) drug neighbor profile
prediction (DNPP) (26), which is a weighted nearest neighbor
scheme, and 2) fast low-rank tensor completion (FaLRTC) (27),
which involves low-rank matrix completion along each slice of
the CMAP tensor. We show that our framework using these
feature priors yields an improvement over the individual methods
(SI Appendix, Appendix F).

Proposed Feature Prior for Drug Response Imputation. Ob-
serving the pattern of data availability in Fig. 2A, it is apparent
that a subset of cell lines have observations for many (>150)
drugs (dense regime), while many cell lines have observations
for only a few (≤150) drugs (sparse regime). While previous
methods such as DNPP are quite effective in the dense regime,
they are not as effective in the sparse regime (Fig. 2C and
SI Appendix, Appendix G). This can be explained by the fact that
in the sparse regime, DNPP roughly imputes using the simple
mean over cell type baseline.

For effective drug response imputation in the sparse regime,
our framework can be used to construct a simple feature prior by
concatenating embeddings for cell types and drugs. In particular,
we can use the gene expression values for a reference cell type
for which there are a lot of drug observations (e.g., MCF7 in
CMAP) as the embedding of drugs and the mean gene expression
across all observations for a given cell type as the embedding of
cell type. Fig. 2C shows that the NTK with this simple feature
prior outperforms mean over cell type, FaLRTC, and DNPP in the
sparse regime. We compare across Pearson’s r value, mean R2, and
mean cosine similarity. A description of all evaluation metrics is
provided in SI Appendix, Appendix H. By combining our feature
prior for the sparse regime with the FaLRTC-based feature prior
for the dense regime, we obtain a drug imputation method that
significantly outperforms DNPP, FaLRTC, and mean over cell
type on the full dataset (Fig. 2D) (P < 10−20 based on five rounds
of 10-fold cross validation, with an improvement on every fold of
every round across all metrics; SI Appendix, Appendix I).

Matrix Completion with the Convolutional NTK

While we have thus far derived and applied the NTK for matrix
completion using fully connected networks, these architectures
are not nearly as effective as convolutional networks for matrix
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completion tasks in which the target matrix is an image. Similar
to the case of fully connected networks, a closed form for the NTK
corresponding to convolutional networks (the so-called CNTK) is
known in the regression setting (23), but it has not been consid-
ered in the setting of matrix completion. Moreover, the runtime
for computing the CNTK for regression scales quadratically with
each image dimension. In this section, we derive the CNTK
for matrix completion and provide a computationally efficient
method for computing the CNTK for matrix completion for a
class of feature priors that are effective for image inpainting and
reconstruction.

We begin by deriving the CNTK for matrix completion for
a simple class of convolutional networks, when there are no
downsampling or upsampling layers. We show that in this setting,
the CNTK for matrix completion can be computed using terms
from the CNTK for classification. In the following proposition
(proof in SI Appendix, Appendix J),Θ(d) ∈ R

m×n×m×n denotes
the tensor corresponding to the CNTK of a d layer convolutional
network in the classification setting (ref. 23, section 4).

Proposition 1. Let fZ (W) be a d layer convolutional network
used to map from feature prior, Z ∈ R

c×m×n , to the target matrix,
Y ∈ R

m×n . Then as the number of convolutional filters per layer
approaches infinity, the CNTK of fZ (W) is given by

K (Mij ,Mi′j ′) = [Θ(d)(Z ,Z )]i,j ,i′,j ′ , [4]

where Mij ,Mi′j ′ ∈ R
m×n denote indicator matrices.

CNTK Performs Semisupervised Learning Using Image Coordi-
nate Features. In Matrix Completion with the NTK, we estab-
lished a connection between semisupervised learning and matrix
completion using the NTK. We now establish a similar connec-
tion between semisupervised learning and matrix completion with
the CNTK for a class of feature priors defined in Theorem 2.
This class includes feature priors that are heavily used in image
inpainting applications, namely, where the channels of Z are
drawn independently and identically distributed (i.i.d.) from a
stationary distribution (24, 30). The following theorem (proof in
SI Appendix, Appendix K), which is analogous to Theorem 1 for
the NTK, implies that using the CNTK for matrix completion
is equivalent to mapping from coordinate features to observed
entries in the target matrix Y.

Theorem 2. Consider a convolutional network of depth d with
homogeneous activation and in which all filters have size q and
circular padding. Let Z ∈ R

c×m×n satisfy

c∑
�=1

∑
−α≤a,b≤α

Z�,i+a,j+bZ�,i′+a,j ′+b = ψ(|i − i ′|, |j − j ′|)

for some ψ : R2 → R with maximum at (0, 0) and α= q−1
2 (odd

q). Then as the number of convolutional filters per layer goes to
infinity, the CNTK simplifies to

K (Mij ,Mi′j ′) = ψ̃(|i − i ′|, |j − j ′|),

where ψ̃ : R2 → R is a function that can be computed from ψ (a
recursive formula is provided in SI Appendix, Appendix K ).

Since the function ψ̃ depends only on the positions of the coor-
dinates, Theorem 2 shows that the CNTK for matrix completion
is equivalent to semisupervised learning using kernels on features
corresponding to coordinates.

Closed Form for the CNTK of Modern Architectures for Matrix
Completion. Unlike the convolutional networks considered thus
far, state-of-the-art architectures for unsupervised image inpaint-
ing such as refs. 24, 30 incorporate a variety of layer structures
including strided convolution, nearest neighbor and bilinear up-
sampling, skip connections, and batch normalization. We derive
(in SI Appendix, Appendix L) the CNTK for matrix completion
using convolutional networks with the following layer structures:
1) downsampling through strided convolution, 2) nearest neigh-
bor upsampling, and 3) bilinear upsampling.*

Efficient Computation of the CNTK of Modern Architectures for
Matrix Completion. A key insight that we use to speed up the
computation of the CNTK is that the kernel in Eq. 4 depends
only on the feature prior and not on the values of the observed
pixels in an image. Hence, the CNTK need only be computed
once for all images of a given resolution. This enables a drastic
speedup over recomputing the kernel for every new image, as is
currently required in classification.

However, using such a direct approach to compute the CNTK
is still computationally prohibitive for high-resolution images.
In particular, computing the CNTK for a network with d con-
volutional layers to complete an image of size 2p × 2q requires
O(p2q2d) runtime and O(22p+2q) space. In order to overcome
these limitations, prior work (25) used the Nyström method
(47) to approximate the kernel. Instead of relying on such ap-
proximations, we here present an algorithm for computing the
exact CNTK in a memory and runtime efficient manner for
any convolutional neural network with circular padding, strided
convolution, and nearest neighbor upsampling layers, when using
a feature prior with i.i.d. random entries. Such networks and
feature priors are heavily used for image completion tasks (30).

Our main insight that enables such an algorithm is that for
convolutional networks with strided convolution and nearest
neighbor upsampling layers, the CNTK for low-resolution images
can be expanded to high-resolution images for any feature prior
with i.i.d. random entries. In particular, if a neural network with s
downsampling and upsampling layers is used to inpaint images
of resolution 2p × 2q , our algorithm requires only an array of
size 22s+p+q , while storing the full CNTK requires an array of
size 22p+2q . In practice, s is exponentially smaller than p, q , and
so our method is significantly more memory efficient; see the
following specific example. In addition, since our method only
requires computing the CNTK for images of size 2s+1 × 2s+1,
the runtime of our method is O(24s) instead of O(22p+2q), and
thus, our method is significantly faster than a direct computation.
A detailed description and proof of our expansion algorithm is
presented in SI Appendix, Appendix M.
Example. Let fZ (W) represent a convolutional neural network
with circular padding, three layers of strided convolution with
a stride size of 2 in each direction, and three nearest neighbor
upsampling layers with a feature prior Z ∈ R

c×512×512 satisfying

c∑
p=1

Zp,i,jZp,i′,j ′ =

{
C1 i = i ′ , j = j ′

C2 otherwise
,

where C1,C2 > 0 are constants. Suppose fZ (W) is used to
inpaint images of size 512× 512. Then, by computing the CNTK
for 16× 16 resolution images, K� ∈ R

162×162 , we can expand
up to the exact CNTK for 512× 512 images. Computing K�

*The impact of linear downsampling and upsampling on the CNTK is briefly described in
appendix F of ref. 25, but the explicit forms are not computed nor used in the experiments.
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A B

Fig. 3. Large hole inpainting using 1) the CNTK, 2) neural networks with sigmoid last layer and batch normalization layers that are trained with Adam, and
3) biharmonic functions. (A) Qualitative comparison of inpainting results across the three methods. Results for all images are provided in SI Appendix, Fig. S5.
(B) Comparison of PSNR across three methods with the CNTK providing the highest average PSNR. Runtime and SSIM for the three methods are provided in
SI Appendix, Fig. S4.

takes roughly 11 s when using a CPU with 1 thread, and K̃
uses less than 100 MB of memory with floating point precision.
On the other hand, even storing the true kernel K ∈ R

5122×5122

would require roughly 256 GB memory when using floating point
precision. This is twice the amount of random-access memory
(RAM) available on our server and 16 times the amount of RAM
available on most laptops.

Image Inpainting and Reconstruction with the
CNTK

We now utilize the results of Matrix Completion with the Convo-
lutional NTK to perform large hole image inpainting and recon-
struction. As illustrated in Fig. 1 C and D, large hole inpainting
involves imputing a large contiguous region in an image, while
image reconstruction involves imputing random missing pixels in
an image. Recent work (30) demonstrated that using convolu-
tional neural networks with downsampling and upsampling layers
to impute the missing pixels in images leads to competitive results
for these applications.

The methods from ref. 30 are a special case of our framework in
Eq. 1, namely, using convolutional layers and letting the feature
prior, Z, be a tensor with i.i.d. uniform random entries. Thus,
we can use our framework for performing image completion
tasks, and instead of training deep networks, we can simply solve
kernel regression with the CNTK. We will demonstrate that this
gives rise to a simple, fast, flexible, and competitive alternative
to training deep networks for high-resolution image completion
problems. Moreover, we will demonstrate that our framework
can be used to identify the role of architecture and feature prior
on image completion problems and aid in identifying effective
architectures and feature priors.

Application 1: Large Hole Inpainting with the CNTK. We utilize
the CNTK for large hole inpainting tasks from refs. 24, 30. We
compute the CNTK for the architecture used in ref. 24 with
six downsampling and nearest neighbor upsampling layers for
the feature prior Z with i.i.d. entries Z�,i,j ∼ U [0, .1], where
� ∈ Z+ and i , j ∈ [m]× [n]. We compute the CNTK on 128×
128 resolution images and then expand it to the CNTK for
high-resolution images via our expansion technique in Matrix
Completion with the Convolutional NTK. We compare our method
against neural networks of the same architecture using the training
procedures from refs. 24, 30 (see SI Appendix, Appendix N, for

details). We also compare our method against inpainting with bi-
harmonic functions (28), which is currently the default inpainting
method in scikit-image (29).

Fig. 3A shows examples of the resulting reconstructions, and
Fig. 3B shows the peak signal-to-noise ratio (PSNR) across all
methods. Our method on average outperforms both inpainting
with finite width neural networks and inpainting with biharmonic
functions.† In SI Appendix, Fig. S4, we show that our method
also outperforms the other methods in terms of structural simi-
larity index measure (SSIM) and that the runtime is comparable
(within 2 min on average) across all methods in this setting. The
reconstructions across all images and methods are provided in
SI Appendix, Fig. S5.

Application 2: Image Reconstruction with the CNTK. We next
analyze the performance of the CNTK on the image reconstruc-
tion tasks considered in (30). While the networks considered in
refs. 24, 30 make use of skip connections for image reconstruction,
we only consider architectures without skip connections for which
we can derive the CNTK exactly (see SI Appendix, Appendix N,
for details). We again compare the CNTK to neural networks
of the same architecture and to biharmonic inpainting. For this
comparison, we use networks with 128 filters per layer, as is done
in refs. 24, 30. In SI Appendix, Fig. S6, we show that our model
performs comparably to inpainting with biharmonic functions
and outperforms neural networks of the same architecture. In
SI Appendix, Fig. S6, we additionally show that our method per-
forms comparably to biharmonic inpainting in terms of SSIM
and that our method is up to 10 times faster than using small
width neural networks on the same hardware. While our method
performs comparably to inpainting with biharmonic functions in
this application, our framework is more flexible since we can ad-
just architecture and feature prior, and it outperforms inpainting
with biharmonic functions for the problem of large hole inpaint-
ing (see Application 1: Large Hole Inpainting with the CNTK ).
Since methods such as Adam with Langevin dynamics (24) have
enabled performance boosts for neural networks (SI Appendix,
Figs. S4 and S5), an interesting direction for future work could be
to incorporate such techniques for image completion applications
using the CNTK.

†While the PSNR values for these images are also presented in ref. 24, they appear to be
computed without replacement of the observed pixel values. We reran these experiments
with replacement for fair comparison with biharmonic inpainting.
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Fig. 4. We use the CNTK to understand the impact of architecture and input on image inpainting. (A) Heat map visualizations of the CNTK when varying
the number of downsampling/upsampling layers and input. The visualization makes clear that the uniform random feature prior, unlike other feature priors,
results in kernels that use the region surrounding a missing pixel value for imputation regardless of the number of downsampling layers. (B) The heat map
visualizations of the CNTK make transparent which observed pixels are being used to inpaint a given missing pixel when using the identity feature prior. (C) A
comparison between inpainting a 128 × 128 resolution image of a rabbit with a finite width neural network and with the CNTK when the feature prior is the
identity. The CNTK is able to accurately predict the unexpected behavior of the neural network.

Using Our Framework to Select Feature Prior and Architecture
for Image Completion. In the following, we demonstrate that our
framework provides a theoretical underpinning for understanding
how a given architecture and feature prior influence image com-
pletion. In particular, we use our framework to explain why the
uniform random feature prior and architectures with downsam-
pling and upsampling layers are effective for image completion
while other feature priors such as the identity feature prior are
ineffective for this application.

The key observation enabling such interpretability is that for
kernel methods, every prediction (a missing pixel value) is a linear
combination of training examples (observed pixel values). Hence,
for each imputed pixel, the CNTK can be used to provide a
heat map describing which observed pixels were most heavily
weighted in the linear combination. In order to generate such
heat maps, we reshape the CNTK into a four-dimensional tensor.
Namely, given a CNTK K ∈ R

mn×mn , we reshape K to a tensor
KT ∈ R

m×n×m×n where K (Mij ,Mi′j ′) =KT (i , j , i ′, j ′). To
generate a heat map for a given a coordinate (i , j ), we visualize
the matrix KT (i , j , :, :) ∈ R

m×n . This visualization allows us to
decipher how architecture and feature prior change the resulting
imputation from a neural network.
The Uniform Random Feature Prior and Modern Architectures Are
Effective for Image Completion. In Fig. 4A, we visualize the kernel
values K (104, 14, :, :) computed for a 128× 128 image when
varying the number of down and upsampling layers and as well
as the feature prior Z. Namely, we consider the cases where Z is
the identity, the mesh grid from ref. 30, or the uniform random
tensor used in large hole inpainting experiments of ref. 30. A
key observation is that the kernel values for the uniform random
feature prior are highest around the coordinate of interest regard-
less of the amount of down and upsampling, which is in stark
contrast to other feature priors.‡ This implies that neighboring
pixels are most heavily used when imputing using the uniform
random feature prior (see SI Appendix, Fig. S7, for additional
visualizations). Moreover, when using the uniform random feature
prior, the amount of downsampling and upsampling increase (by
powers of 2) the size of the region considered for imputation (see

‡When there are no downsampling and upsampling layers, this follows immediately from
Theorem 2.

the first row of Fig. 4A). These heat maps identify the minimum
amount of downsampling necessary for large hole inpainting: if
there is an m ×m region of missing pixels (m ≥ 1), we need least
�log2(m + 1)� layers of downsampling to ensure that no pixel
is filled in as an average of all other pixels. This result explains
the observation from ref. 30, which showed that using neural
networks with four or fewer downsampling and upsampling layers
led to worse large hole inpainting performance on images with
large missing regions.
The Identity Feature Prior Is Ineffective for Image Completion. The
standard feature prior for matrix completion is given by choosing
Z to be the identity matrix (3, 5, 48). As shown in Fig. 4A, unlike
the uniform random feature prior, the identity feature prior uses
pixel observations from nonlocal regions for completion. Thus,
we expect this feature prior to be ineffective for image completion
tasks.

Fig. 4B shows the result of using the CNTK for a network
with six downsampling and upsampling layers and the identity
feature prior to impute a 128× 128 rabbit image. The identity
feature prior visually appears to translate observed pixels from
a nonlocal region to perform imputation. The regions that are
being translated are precisely those given by the corresponding
heat maps; e.g., the upper right quadrant is imputed using the
lower left quadrant in Fig. 4B.

We note that our framework accurately predicts the behavior
of finite width neural networks used for image inpainting. In
Fig. 4C, we show the result of using a neural network with six
downsampling and upsampling layers, sigmoid activation on the
last layer, and identity feature prior. We observe that the neural
network completes the image by translating observed pixels sim-
ilarly to the imputation provided by the corresponding CNTK.
This example highlights the power of using our framework for
rapidly prototyping feature priors and architectures for image
inpainting tasks.

Discussion

In this work, we presented a simple, fast, and flexible framework
for matrix completion using the infinite width limit of neural
networks, i.e., the NTK. Below, we highlight the aspects of our
framework that enable such simplicity, speed, and flexibility.
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• Our framework is conceptually simple since we are using
kernels to learn a map from features of coordinates, (i , j ), to
entries in the target matrix, Yi,j . Our framework is computa-
tionally simple since solving kernel regression involves solving
a linear system of equations.

• Our framework is naturally fast when using the NTK of fully
connected networks for matrix completion due to the simple
closed form of the kernel (Theorem 1). We develop a memory
and runtime efficient algorithm to compute and use the NTK
of convolutional networks (the CNTK) for matrix completion
(Matrix Completion with the Convolutional NTK ).

• Our framework is easily adapted to various applications by
the choice of the feature prior, thereby making our framework
flexible. Moreover, we provided a principled approach for
selecting the feature prior by establishing a connection with
semisupervised learning (Theorems 1 and 2) and providing a
visualization of the effect of the feature prior (Image Inpainting
and Reconstruction with the CNTK ).

The simplicity and speed of our framework is illustrated by
the fact that many of our results (including inpainting high-
resolution images) can be run on a CPU and even on a laptop (see
Materials and Methods for a link to our code). We demonstrated
that our framework is flexible by using it to achieve competitive
results for virtual drug screening (Virtual Drug Screening with
the NTK ) and image inpainting/reconstruction (Image Inpainting
and Reconstruction with the CNTK ). We envision that our work
provides a simple and accessible framework for producing strong
baselines for several matrix completion applications. We conclude
with a discussion of possible future extensions and applications.

Future Applications of Our Framework. In this work, we
demonstrated the flexibility of our framework by constructing
feature priors for two different applications, namely, virtual drug
screening and image completion. An interesting future direction
is the extension of our framework to other modalities such as
tensors, video, or audio data. For example, by using a feature prior
that captures the structure of coordinates in three-dimensional
images, we could apply our framework to impute missing regions
in three-dimensional data.

Efficient Computation of the CNTK. In classification and regres-
sion settings, a major hindrance for using the CNTK in practice is
the computational complexity in computing the kernel for a large
image dataset. In this work, we presented an expansion technique
to efficiently compute and store the exact CNTK for inpainting
high-resolution images, which was previously considered infeasi-
ble (24, 25). By understanding the properties of the CNTK that
make it effective for image problems, we envision that similar
techniques could be applied to produce efficient kernel machines
for image classification.

Developing Techniques to Improve the Performance of the
NTK. While a large number of techniques such as skip connec-
tions, batch normalization, etc., have been developed to augment
the performance of neural networks, such techniques have yet to

be adapted to improve the performance of kernels. The simplic-
ity and effectiveness of the NTK and CNTK based on simple
architectures considered in this work motivates the development
of techniques to further boost the performance of the NTK and
kernel methods in general.

Materials and Methods

For solving kernel regression with the NTK, we use the direct linear system solver
from ref. 49 when the number of equations is fewer than 30,000, and we use
EigenPro (20, 22) otherwise. For training neural networks, we use the PyTorch
library (50). All methods requiring a graphics processing unit (GPU) are run on a
single NVIDIA Titan RTX GPU. Our experiments are run on a shared server with 4
Titan RTX GPUs, 128 GB CPU RAM, and 64 threads.

For the virtual drug screening experiments, we use the subset of the CMAP
dataset (38) provided in ref. 26. A detailed description of all the methods
(including random seeds and hyperparameters for DNPP and FaLRTC) and
evaluation metrics for the virtual drug screening experiments is provided in
SI Appendix, Appendixes C–H. A description of the t test used for determin-
ing the significance of our results for virtual drug screening is presented in
SI Appendix, Appendix I. We provide code to replicate our results for the virtual
drug screening experiments with the NTK, DNPP, FaLRTC, and mean over cell
type at https://github.com/uhlerlab/ntk matrix completion. We use the code-
base from ref. 26 for performing imputation with FaLRTC.

For the image completion applications, we use the datasets from refs. 24,
30. The rabbit image used in Fig. 4 is from ref. 51 and is provided in our
codebase (linked above). For the neural network and NTK methods used in our
image inpainting and reconstruction experiments, we provide a description of
all architectures and training hyperparameters in SI Appendix, Appendix N.

We provide a library for computing and using the CNTK for image inpainting
and reconstruction applications in the codebase linked above. Our library lets the
user define a custom neural network (similarly to network definitions in PyTorch)
and then provides a function to compute the CNTK from the given architecture.
Our method for computing the CNTK runs entirely on the CPU, and we enable
parallelization across CPU threads. Our library includes functions for computing
the CNTK for networks with nearest neighbor and bilinear upsampling layers,
which are not readily available in the Neural Tangents library (52). We additionally
provide functions to solve kernel regression using the CNTK via a linear system
solver or EigenPro. A full description of the library and an example of how to use
our library for image inpainting is provided in Jupyter notebooks in our linked
code. We additionally release several precomputed kernels that can be used for
high-resolution inpainting and reconstruction.

Data Availability. Code data have been deposited in GitHub (https://
github.com/uhlerlab/ntk matrix completion). All other study data are included
in the article and/or SI Appendix.
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