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Riboswitches are cis-regulatory genetic elements that use an aptamer to control
gene expression. Specificity to cognate ligand and diversity of such ligands have
expanded the functional repertoire of riboswitches to mediate mounting apt responses
to sudden metabolic demands and signal changes in environmental conditions. Given
their critical role in microbial life, riboswitch characterisation remains a challenging
computational problem. Here we have addressed the issue with advanced deep
learning frameworks, namely convolutional neural networks (CNN), and bidirectional
recurrent neural networks (RNN) with Long Short-Term Memory (LSTM). Using a
comprehensive dataset of 32 ligand classes and a stratified train-validate-test approach,
we demonstrated the accurate performance of both the deep learning models (CNN and
RNN) relative to conventional hyperparameter-optimized machine learning classifiers
on all key performance metrics, including the ROC curve analysis. In particular, the
bidirectional LSTM RNN emerged as the best-performing learning method for identifying
the ligand-specificity of riboswitches with an accuracy >0.99 and macro-averaged
F-score of 0.96. An additional attraction is that the deep learning models do not require
prior feature engineering. A dynamic update functionality is built into the models to factor
for the constant discovery of new riboswitches, and extend the predictive modeling to
new classes. Our work would enable the design of genetic circuits with custom-tuned
riboswitch aptamers that would effect precise translational control in synthetic biology.
The associated software is available as an open-source Python package and standalone
resource for use in genome annotation, synthetic biology, and biotechnology workflows.

Availability:

PyPi package: riboflow @ https://pypi.org/project/riboflow

Repository with Standalone suite of tools: https://github.com/RiboswitchClassifier

Language: Python 3.6 with numpy, keras, and tensorflow libraries.

License: MIT.

Keywords: riboswitch family, synthetic biology, machine learning, convolutional neural network, recurrent neural
network, hyperparameter optimization, multiclass ROC, clustering
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INTRODUCTION

Riboswitches are ubiquitous and critical metabolite-sensing gene
expression regulators in bacteria that are capable of folding
into at least two alternative conformations of 5′UTR mRNA
secondary structure, which functionally switch gene expression
between on and off states (Mandal et al., 2003; Roth and
Breaker, 2009; Serganov and Nudler, 2013). The selection of
conformation is dictated by the binding of ligand cognate to
the aptamer domain of a given riboswitch (Gelfand et al.,
1999; Winkler et al., 2002, 2004). Cognate ligands are key
metabolites that mediate responses to metabolic or external
stimuli. Consequent to conformational changes, riboswitches
weaken transcriptional termination or occlude the ribosome
binding site thereby inhibiting translation initiation of associated
genes (Yanofsky, 1981; Mandal and Breaker, 2004). Riboswitches
provide an intriguing window into the ’RNA world’ biology
(Stormo and Ji, 2001; Brantl, 2004; Breaker et al., 2006; Strobel
and Cochrane, 2007) and there is evidence of their wider
distribution in complex genomes (Sudarsan et al., 2003; Barrick
and Breaker, 2007; Bocobza and Aharoni, 2014; McCown et al.,
2017). The modular properties of riboswitches have engendered
the possibility of synthetic control of gene expression (Tucker
and Breaker, 2005), and combined with the ability to engineer
binding to an ad hoc ligand, riboswitches have turned out
to be a valuable addition to the synthetic biologist’s toolkit
(Wieland and Hartig, 2008; Wittmann and Suess, 2012). In
addition to orthogonal gene control they are useful in a variety
of applications, notably metabolic engineering (Zhou and Zeng,
2015), biosensor design (Yang et al., 2013; Meyer et al., 2015)
and genetic electronics (Villa et al., 2018). Riboswitches have
been used as basic computing units of a complex biocomputation
network, where the concentration of the ligand of interest is
titrated into measurable gene expression (Beisel and Smolke,
2009; Domin et al., 2017). Riboswitches have also been directly
used as posttranscriptional and translational checkpoints in
genetic circuits (Chang et al., 2012). Their key functional roles
in infectious agents but absence in host genomes make them
attractive targets for the design of cognate inhibitors (Blount
and Breaker, 2006; Deigan and Ferré-D’Amaré, 2011; Wang
et al., 2017). Characterisation of riboswitches would expand
the repertoire of translational control options in synthetic
biology and bioengineering. In turn, this would facilitate the
reliable construction of precise genetic circuits. In view of
their myriad applications, robust computational methods for the
accurate characterisation of novel riboswitch sequences would
be of great value.

Since the discovery of riboswitches (Mironov et al., 2002;
Nahvi et al., 2002), many computational efforts have been
advanced for their characterisation, notably Infernal (Nawrocki
and Eddy, 2013), Riboswitch finder (Bengert and Dandekar,
2004), RibEx (Abreu-Goodger and Merino, 2005), RiboSW
(Chang et al., 2009) and DRD (Havill et al., 2014), and reviewed
in Clote (2015) and Antunes et al. (2017). These methods
used probabilistic models of known classes with or without
secondary structure information to infer or predict the riboswitch
class. Singh and Singh explored featuring mono-nucleotide

and di-nucleotide frequencies in a supervised machine learning
framework to classify different riboswitch sequences, and
concluded that the multi-layer perceptron was optimal (Singh
and Singh, 2016). Their work achieved modest performance
(F-score of 0.35 on 16 different riboswitch classes). None of
the above methods were shown to generalize effectively to
unseen riboswitches. Our remedy was to explore the use of
deep learning models for riboswitch classification. Deep networks
are relatively recent neural network-based frameworks that use
a type of learning known as representation learning (Bengio
et al., 2013). Convolutional neural networks are one type of
deep learning, known for hierarchical information extraction.
Such architectures with alternating convolutional and pooling
layers have been earlier used to extract structural and functional
information from genome sequences (Alipanahi et al., 2015;
Sønderby et al., 2015; Zhou and Troyanskaya, 2015; Kelley
et al., 2016). Recurrent neural networks are counterparts to
CNNs and specialize in extracting features from time-series
data (Che et al., 2018). RNNs with Long Short-Term Memory
(termed LSTM) incorporate recurrent connections to model
long-run dependencies in sequential information (Hochreiter
and Schmidhuber, 1997), such as in speech and video (Graves and
Schmidhuber, 2005). This feature of LSTM RNNs immediately
suggests their use in character-level modeling of biological
sequence data (Lipton, 2015; Lo Bosco and Di Gangi, 2017).
Bidirectional LSTM RNN have been shown to be especially
effective, given that they combine the outputs of two LSTM
RNNs, one processing the sequence from left to right, the
other one from right to left, together enabling the capture of
dynamic temporal or spatial behavior (Sundermeyer et al., 2014).
Bidirectional LSTM RNNs are a particularly powerful abstraction
for modeling nucleic acid sequences whose spatial secondary
structure determines function (Lee et al., 2015). Two recent
successes of deep learning methods in RNA biology have been: (i)
prediction of RNA secondary structure (Singh et al., 2019), and
(ii) dynamic range improvement in riboswitch devices (Groher
et al., 2019). Here we have evaluated the relative merits of
a spectrum of state-of-the-art learning methods for resolving
the ligand-specificity of riboswitches from sequence. It is
demonstrated that the deep learning models vastly outperformed
other machine learning models with respect to the classification
of riboswitches belonging to 32 different families.

MATERIALS AND METHODS

Dataset and Pre-processing
We searched the Rfam database of RNA families (Kalvari
et al., 2018) with the term “Riboswitch AND family” and the
corresponding hit sequences were obtained in FASTA format
from the Rfam ftp server (Rfam v13 accessed on July 6,
2019). Each riboswitch is represented by the coding strand
sequence, with uracil replaced by thymine, thereby conforming
to the nucleotide alphabet ‘ACGT.’ Each sequence was scanned
for non-standard letters (i.e., other than the alphabet) and
such occurrences were corrected using the character mapping
defined in Table 1. The feature vectors for machine learning
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TABLE 1 | Non-standard nucleotide mapping.

S. No. Original letter Mapped character #Occurrences in dataset

1 R G 6

2 Y T 8

3 K G 1

4 S G 3

5 W A 2

6 H A 2

Rare occurrences of non-standard nucleotides in the sequences were converted
using this mapping key.

were extracted from the sequences. For each sequence, 20
features were computed, comprising four mononucleotide
frequencies (A,C,G,T) and 16 dinucleotide frequencies. To
address possible skew in distribution, all the frequency features
were normalized to zero mean and unit variance. Deep models,
namely convolutional neural networks (CNNs) and bidirectional
recurrent neural networks with LSTM (hereafter simply referred
as RNNs) are capable of using the sequences directly as the
feature space, obviating any need for feature engineering. We
used the first 250 bases of the riboswitch sequence as the input,
with the proviso that shorter sequences (which is usually the
case; Table 2) were padded for the extra spaces. Python scripts
used to create the final dataset are available in the repository
for this project1. The dataset consists of the riboswitch sequence,
four 1-mer frequencies, 16 2-mer frequencies, and class, for each
instance, which could be appropriately subsetted for training the
base and deep models.

Predictive Modeling
The machine learning problem is simply stated as: given the
riboswitch sequence, predict the ligand class of the riboswitch.
Toward this, a battery of eight supervised machine learning
and deep classifiers were studied and evaluated in the present
work (Table 3). Classifiers derived from implementations in the
Python scikit-learn machine learning library (Pedregosa et al.,
2011)2 are referred to as base models and include the Decision
Tree, K-nearest Neighbors, Gaussian Naive Bayes, the ensemble
classifiers AdaBoost and Random Forest and the Multi-layer
Perceptron. The deep classifiers namely CNN and RNN derived
from implementations in the Python keras library3 on tensorflow
(Abadi et al., 2015). Three scripts in the repository, namely
baseModels.py, rnnApp.py, and cnnApp.py, implement the base
models, RNN, and CNN, respectively. For both the base and
deep classifiers, the dataset was split into 0.9:0.1 training:test
sets. Multi-class modeling is fraught with overfitting to particular
classes (especially pronounced in cases of extreme class skew). To
address this issue, two strategies were adopted: (i) the splitting
process was stratified on the class, which ensured that each
class was proportionately and sufficiently distributed in both
the training and test sets, and (ii) hyperparameter optimisation,
discussed below.

1https://github.com/RiboswitchClassifier
2www.sklearn.com
3http://keras.io

Hyperparameter Optimisation
Hyperparameter fine tuning for each classifier was effected
by discrete combinatorial grid search on the hyperparameters
associated with that classifier. The grid search was evaluated
with 10-fold cross-validation of the training set. This yielded
the optimal hyperparameters for each classifier. The scripts for
hyperparameter optimisation of the base models are available
in the repository. In the case of the deep models, we used
a train-validate-test approach to model optimisation with
keras/TensorFlow, by setting the ‘validation’ flag to 0.1.

Evaluation Metrics
The performance of each classifier was evaluated on the test
set using the receiver operating characteristic (ROC) analysis
in addition to standard metrics such as the precision, recall,
accuracy and F-score (harmonic mean of precision and recall)
(van Rijsbergen, 1975). The ROC curve was obtained by plotting
the TP rate vs. the FP rate, i.e., sensitivity vs. (1 – specificity), and
the area under the ROC curve (AUROC) could be estimated to
rate the model’s performance. AUROC represents the probability
that a given classifier would rank a randomly chosen positive
instance higher than a randomly chosen negative one. ROC
analysis is robust to class imbalance, typical of the machine
learning problem at hand, however, a multi-class adaptation of
the binary ROC is necessary. For each classifier, this is achieved
by computing classwise binary AUROC values in a one-vs.-all
manner, followed by aggregating the classwise AUROC values
into a single multi-class AUROC measure (Yang, 1999; Manning
et al., 2008). Aggregation of the classwise AUROC values could be
done in at least two ways:

1. Micro-average AUROC, where each instance is
given equal weight.

2. Macro-average AUROC, where each class is
given equal weight.

In micro-averaging, all the instances from different classes are
treated equally, to arrive at the final metrics. In particular, the
microaverage AUROC is given by the area under the overall TP
rate vs. overall FP rate curve.

On the other hand, the macro-average of a given metric for a
multi-class prediction problem is estimated by the average of the
metric for the individual classes. For example, the macro-average
AUROC is given by:

Macro− average AUROC = (AUROC1 + AUROC2 + · · ·+

AUROC32)/32

where AUROCi is the binary AUROC for the ith class.
It is clear that the micro-average AUROC would be dominated

by the larger classes, while the macro-average AUROC is a more
balanced measure. Both the micro-average and macro-average
AUROC measures were used to evaluate the performance of all
our classifiers. A python script, multiclass.py available in the
repository, generates all the performance metrics and plots.
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TABLE 2 | A summary of the riboswitch dataset used in our study.

Class no. Rfam ID Class Name Class size Avg. length

1 RF00504 Glycine riboswitch 4592 100

2 RF01786 Cyclic di-GMP-II riboswitch 661 86

3 RF01750 ZMP/ZTP riboswitch 1674 92

4 RF00059 Thiamine pyrophosphate riboswitch 12559 110

5 RF01057 SAH Riboswitch 832 92

6 RF01725 SAM -1 -4 Variant riboswitch 793 104

7 RF00162 SAM - 1 Riboswitch 6027 113

8 RF00174 Cobalamin riboswitch 14212 189

9 RF01055 Molybdenum Co-factor riboswitch 1221 134

10 RF01727 SAM-SAH Riboswitch 240 50

11 RF01482 AdoCbl riboswitch 182 137

12 RF03057 nhaA-I RNA 559 56

13 RF01734 Fluoride Riboswitch 2018 70

14 RF00167 Purine Riboswitch 2632 101

15 RF00234 Glucosamine-6-phosphate riboswitch 936 175

16 RF01739 Glutamine riboswitch 1103 64

17 RF03072 raiA RNA 736 219

18 RF03058 sul1 RNA 344 56

19 RF00380 Ykok riboswitch (Magnesium sensing) 1059 170

20 RF00168 Lysine Riboswitch 2240 180

21 RF03071 DUF1646 265 53

22 RF01689 AdoCbl variant RNA 212 125

23 RF00379 ydaO/yuaA leader 3918 164

24 RF00634 SAM - 4 Riboswitch 1245 116

25 RF01767 SAM - 3 Riboswitch 195 90

26 RF00080 yybP-ykoY manganese riboswitch 833 158

27 RF02683 NiCo riboswitch (Nickel or Cobalt sensing) 235 97

28 RF00442 Guanidine-I riboswitch 902 109

29 RF00522 Pre-queosine riboswitch -1 533 45

30 RF00050 Flavin Mononucleotide Riboswitch 4080 142

31 RF01831 THF riboswitch 663 102

32 RF00521 SAM - 2 Riboswitch 819 78

The dataset includes a mixture of metabolite/ion/cofactor/amino-acid/nucleotide/vitamin/signaling-molecule aptamer ligands. ‘Class no.’ corresponds to the response
classes to be learnt in machine learning. The average length of all sequences in a given class is also given.

TABLE 3 | Description of the base model and deep classifiers.

Classifier Features used Hyperparameters of interest ML Library

Decision Tree 1- and 2-mer frequencies Maximum features, Minimum sample split, Minimum sample leaf,
Random state, Max depth

Sklearn

Gaussian Naïve Bayes 1- and 2-mer frequencies Priors Sklearn

k-Nearest Neighbors 1- and 2-mer frequencies Number of neighbors Leaf size, Weights, Algorithm Sklearn

Adaptive Boosting 1- and 2-mer frequencies Number of estimators, Learning rate, Algorithm Sklearn

Random Forest 1- and 2-mer frequencies Number of estimators, Max depth, Impurity criterion Sklearn

Multi-layer Perceptron 1- and 2-mer frequencies Activation, Solver, Alpha (regularization term), Learning rate, epochs,
hidden layers, nodes per hidden layer

Sklearn

CNN Riboswitch sequence Number of filters, Kernel size, Activation function, Pooling method,
number of Conv1D layers, Dropout ratio, Optimiser, #Epochs

TensorFlow (Keras)

Bidirectional RNN with LSTM Riboswitch sequence Activation function, number of LSTM nodes, number of Bidirectional
layers, Dropout ratio, Optimiser, #Epochs

TensorFlow (Keras)

Hyperparameters noted for each classifier are meant to be representative. For the deep models, any long riboswitch genome sequences were truncated to 250
nucleotides, which is an adjustable parameter (max_len) set to much larger than the average length of any riboswitch class. The Python3 library used for implementation
of machine learning model is noted.
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Dynamic Extension of the Models
Genome sequencing of diverse, exotic prokaryotes is likely to
yield new regulatory surprises mediated by riboswitches (Breaker,
2011). A model that could classify a fixed set of 32 classes remains
static in the wake of exponentially growing number of known
genomes. To address the challenge of extending the model to
new classes, we have devised a strategy for dynamically updating
the model. This process is initiated by feeding the sequences
corresponding to the new class(es) to an updater script, which
revises the dataset and then trains a new model. The automation
of modeling would ensure a user-friendly pipeline for learning
any number of riboswitch classes along with the production of
performance metrics of such models. The script dynamic.py,
available in the repository, implements the dynamic functionality
of our modeling effort.

RESULTS

Our Rfam query retrieved 39 riboswitch class hits, however, seven
of these classes had a membership of less than 100 sequences
and were filtered out. Subsequently, our dataset consisted of 32
riboswitch classes with a total of 68,520 sequences. A summary
of this dataset is presented in Table 2. The largest classes include
the cobalamin and thiamine pyrophosphate classes, with >10,000
riboswitches in each, accounting for considerable diversity
within classes. Classes with >4,000 members include Flavin
mononucleotide (FMN) and glycine riboswitches. Other notable
classes with at least 1,000 members include the lysine, purine,
fluoride and glutamine switches. The riboswitch sequences were
inspected for the standard alphabet (Table 1) and the final
pre-processed comma-separated values (csv) datafile with each
instance containing the sequence, 20 features and riboswitch class
was prepared (available at4).

Table 3 recapitulates the key properties of the classifier
models used in this study. We noticed poor performance of
the base models on the test set with default model parameters,
which could be traced to persistent overfitting (dominated by
the larger classes), despite stratified sampling. Hyperparameter
optimisation of the default parameters is one solution to address
this problem and was carried out on the base models. The
exercise is summarized in Appendix I (Supplementary File S1),
which includes the final configuration of the hyperparameter
space for all the base and deep classifiers. The optimized CNN
and RNN architectures are illustrated in Figure 1. In the CNN,
two convolutional layers were used followed by a pooling layer
and dropout layer before flattening to a fully connected output
layer. The RNN employed two sophisticated bidirectional LSTM
units sandwiched by dropout layers before flattening to a fully
connected output layer. The number of training epochs necessary
for each deep model was determined based on the convergence of
the error function (shown in Figure 2).

With the optimized classifiers, the performance of the
predictive modeling was evaluated on the unseen testing set.
Figure 3 shows the resultant classifier performance by an array

4https://github.com/RiboswitchClassifier in the Datasets folder.

of metrics including accuracy, and F-score. It is abundantly clear
that the deep models vastly outperformed the base classifiers in
all metrics across all classes. Figures 4, 5 show the ROC curves
along with the micro-averaged and macro-averaged AUROC for
the base models and the deep models, respectively. The AUROC
is indicative of the quality of the overall model. It is seen that the
AUROC is 1.00 for all classes for the RNN. Table 4 summarizes
the performance of the classifiers, with the detailed classwise
F-score of each classifier available in the Supplementary Table S2
and the classwise break-up of the AUROC of all classifiers in the
Supplementary Table S3.

DISCUSSION

The RNN model marginally (but clearly) outperformed the CNN
model, and both of them significantly outperformed all the base
models on all key metrics, notably accuracy and F-score. The
best-performing among the base models was the Multi-layer
Perceptron. It is noteworthy that the AUROC approached unity
and near-perfection for both the deep models, especially the
bidirectional RNN with LSTM. This implied that the use of
k-mer features masked long-range information whereas the deep
models were able to capture such correlations directly from the
full sequence. These results affirmed that RNNs could be used to
effectively simulate the interactions in biological sequences.

The F-score (a measure of balanced accuracy) is a more
unforgiving metric than AUROC in the case of multi-class
problems (Table 4). While the CNN and RNN had macro-
averaged F-scores of 0.93 and 0.96, respectively, none of the
base models exceeded 0.70 including the multilayer perceptron.
Supplementary Table S2 provides the classwise F-scores of
all classifiers. All the base models struggled to classify the
largest riboswitch classes, namely TPP and Cobalamin. This is
a consequence of the diversity of such large riboswitch classes,
making the ‘outlier’ members harder to classify correctly. Both
the RNN and CNN are mapping the sequence input to its
corresponding riboswitch family. In such a case, the sequence
similarity within a family and sequence dissimilarity across
families represent plausible discriminating features that the
models are learning. Higher order features such as sequence
context and base dependencies dictated by RNA secondary
structure also constitute learnable information. Table 5 shows the
results of a sequence-based clustering analysis of the riboswitch
families using the cd-hit algorithm (Li and Godzik, 2006). It
is seen that there are >7000 and >10,000 singleton clusters in
the TPP and Cobalamin classes, respectively. Here we introduce
a diversity metric for riboswitch families, defined as the ratio
of the number of clusters at 90% sequence identity to the
total size of the family. Compared to the overall diversity score
of 0.7, both TPP and Cobalamin classes had above-average
diversities (0.71 and 0.82, respectively). However, these diverse
classes did not pose any problems for the deep models. On
the contrary, the AdoCbl and AdoCbl variant riboswitch classes
posed significant learning challenges to both base and deep
models. AdoCbl in particular is the smallest riboswitch family
considered here, but is also unnaturally diverse (with a score
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FIGURE 1 | Deep learning frameworks used in the study. (A), CNN architecture, optimized for two 1-dimensional convolutional layers; and (B), Bidirectional RNN
with LSTM, optimized for two bidirectional layers. Two dropout layers are used in the RNN.
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FIGURE 2 | Epoch tuning curves for the CNN (A) and RNN (B). The CNN converges faster with respect to the number of epochs, however, the RNN learns better,
as seen with the continuously decreasing loss function.

FIGURE 3 | Standard performance metrics. Clockwise from top left, Accuracy; Precision; F-score; and Recall. The overall precision, recall and F-score were
computed by macro-averaging the classwise scores. The deep models emerged as vastly superior alternatives to the base machine learning models on all
performance metrics.

of 0.83). This frustrates learning, because the limited number
of instances do not adequately represent the class diversity,
and result in class outliers. Consequently this emerged as the
most challenging for all classifiers, reflected in the classwise
F-scores (Supplementary Table S2). Four of the base classifiers
managed a zero F-score, while the CNN and RNN achieved

F-scores of 0.38 and 0.67, respectively, by far their lowest for
any class. Even here, the consistency of the RNN model is
remarkable. The other classes that were notably challenging to
the base models but not to the deep models included Cyclic di-
GMP-II, ZMP/ZTP, SAM 1–4 variant, Molybdenum co-factor,
Glucosamine-6-phosphate and Guanidine-I riboswitch classes.
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FIGURE 4 | AUROC for the base models. (A) Decision Tree, (B) Gaussian NB, (C) kNN, D: AdaBoost, (E) Random Forest, and (F) Multi-layer Perceptron. Gray lines
denote classwise AUROCs of all 32 classes, from which it is clear that not all classes are equally learnt.

Of these, the Glucosamine-6-phosphate, Cyclic di-GMP-II, and
Molybdenum co-factor riboswitch classes are among the most
diverse riboswitch families, with diversity scores ≥0.80. It is seen
that the classification problems arise either with diverse classes or
at the extremes of class sizes. Too large the class, the diversity
is challenging, whereas too small and the learning itself is
incomplete and challenged. The deep models – RNN and CNN –
consistently performed well across all classes, independent of the

size of the class. It could be inferred in this case that using direct
features (i.e., sequences) rather than engineered features (i.e.,
k-mer frequencies) led to more robust models. From Table 5, it
is also clear that most of the learnt classes (especially the large
ones) are diverse, thereby elevating the classifier performance to
robustness against adversarial attacks – that is, changing a few
nucleotides in the input sequence would be unlikely to drastically
alter the class prediction.
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FIGURE 5 | AUROC for the deep models. (A) CNN, and (B) RNN. Gray lines denote classwise AUROCs of all 32 classes. It clear that RNN achieves learning
perfection at both the macro and classwise levels.

TABLE 4 | Performance metrics for all classifiers.

Model Accuracy Precision Recall F-score Micro AUROC Macro AUROC

Decision Tree 0.54 0.49 0.39 0.42 0.88 0.81

Gaussian NaïveBayes 0.37 0.39 0.46 0.38 0.9 0.89

K-neighbors 0.67 0.75 0.55 0.61 0.94 0.88

AdaBoost 0.47 0.42 0.36 0.36 0.89 0.92

Random Forest 0.71 0.86 0.58 0.65 0.98 0.97

Multi-layer perceptron 0.74 0.75 0.67 0.70 0.99 0.98

CNN 0.97 0.98 0.91 0.93 1 1

RNN 0.99 0.97 0.96 0.96 1 1

The macro-averaged values of precision, recall and F-score are shown. Micro AUROC, micro-average AUROC; Macro AUROC, macro-average AUROC.

These results might be put in perspective by benchmarking
against the existing literature. Guillen-Ramirez and Martinez-
Perez (Guillén-Ramírez and Martínez-Pérez, 2018) extended the
k-mer features logic and arrived at an optimal combination of
5460 k-mer features. Using a limited dataset of 16 classes, they
used state-of-the-art machine learning to achieve accuracies in
the high nineties, however, their results did not generalize equally
to riboswitches with remote homology. For e.g., their best-
performing classifier (Multi-layer Perceptron) misclassified 6 out
of the 225 instances of Lysine riboswitch as cobalamin-gated. The
source code for the features and modeling used in their work is
not readily available for new applications. To make the workflow
described in our study easily reproducible and user-friendly, we
have developed a Python package riboflow5 mirroring the best
RNN model. In addition to predicting the most probable class of a
given riboswitch sequence, riboflow provides an option to predict
the complete vector of class probabilities, which could be helpful
in disambiguating any class confusion. It would also inform the
design of synthetic orthogonal riboswitches for biotechnology
applications. The implementation and usage details are provided
in Appendix II (Supplementary File S1).

5https://pypi.org/project/riboflow/

An interesting benchmark is afforded by the Riboswitch
Scanner (Mukherjee and Sengupta, 2016), which used profile
HMMs (Eddy, 2011) of riboswitch classes to detect riboswitches
in genomic sequences. While our method addresses inter-class
discrimination of riboswitch sequences, Riboswitch Scanner
is a web-server that essentially performs riboswitch vs. not-
riboswitch discrimination for user-given riboswitch classes. The
absence of F-score metrics does not allow for direct comparisons,
however, the sensitivity and specificity seemed consistently
comparable for most classes, with noticeable variations with
respect to the Glycine, THF and SAM I-IV variant riboswitch
classes. It must be indicated that their method is validated with
Rfam seed sequences, without consideration for the proliferation
of riboswitch sequences. Performance evaluation on limited
data could inflate performance estimates and complicate their
interpretation. We further note that it is possible to extend
our method to the ’riboswitch-or-not’ classification problem by
calibrating the prediction probability thresholds. In any case, our
work enables the ranking of riboswitches using the strength of the
predicted probabilities, which would aid the selection of the best
riboswitch sequence design.

It must be noted that riboswitches are precisely specific
to cognate ligands. For e.g., the AdoCbl riboswitch would
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TABLE 5 | Clustering analysis of riboswitch families at 90% sequence identity.

Rfam ID #Clusters at 90% Diversity #Singleton clusters #Redundant sequences #Clusters in the rest

RF00050 2484 0.61 1866 46 45208

RF00059 8954 0.71 7366 272 38738

RF00080 611 0.73 493 29 47081

RF00162 3736 0.62 2722 141 43956

RF00167 2122 0.81 1818 59 45570

RF00168 1905 0.85 1707 45 45787

RF00174 11620 0.82 10130 289 36077

RF00234 814 0.87 731 11 46878

RF00379 2583 0.66 2044 97 45109

RF00380 441 0.42 265 35 47251

RF00442 600 0.67 449 46 47092

RF00504 3010 0.66 2345 66 44682

RF00521 495 0.61 379 20 47197

RF00522 214 0.40 113 28 47478

RF00634 501 0.40 317 12 47191

RF01055 978 0.80 865 73 46714

RF01057 629 0.76 519 13 47063

RF01482 150 0.83 132 12 47546

RF01689 131 0.62 101 2 47562

RF01725 435 0.55 326 25 47257

RF01727 149 0.62 105 16 47543

RF01734 1616 0.80 1389 127 46076

RF01739 344 0.31 215 56 47348

RF01750 1074 0.64 821 94 46618

RF01767 122 0.63 88 12 47570

RF01786 555 0.84 480 49 47137

RF01831 450 0.68 327 57 47242

RF02683 159 0.68 122 31 47533

RF03057 359 0.64 266 70 47333

RF03058 97 0.28 57 17 47595

RF03071 86 0.33 48 29 47606

RF03072 273 0.37 141 72 47419

ALL 47686 0.70 38871 1951 N-

Singleton clusters indicate clusters with only one representative sequence. Redundant sequences are 100% identical to another member in the riboswitch family. The full
set of riboswitch sequences (ALL) and ALL minus the riboswitch family of interest were also clustered.

not tolerate a methyl-substituted cobalamin (Nahvi, 2004) nor
does the TPP riboswitch interact with thiamine or thiamine
monophosphate (Lang et al., 2007). At the same time, these two
riboswitches are very diverse in their phylogenomic distribution
and actual sequences. The key to effective learning lies in treading
a fine line between the intra-class diversity and inter-class
specificity. It is remarkable the bidirectional LSTM RNN was able
to achieve exactly this tradeoff. The roots of such performance
of the deep models in general has been explained recently to be
related to the lottery ticket hypothesis (Frankle and Carbin, 2019)
as well as learning the intrinsic dimension of the problem (Li
et al., 2018), here the classification of riboswitches.

To extend the functionality of our work, we have introduced
a dynamic component to all our models, both base and deep.
With the exponential growth in genome sequencing, the room
for riboswitch discovery is enormous (Yu and Breaker, 2020).
Our models could accommodate new riboswitch class definitions

by way of dataset augmentation, thereby making them general
and more robust. This work used the dynamic functionality to
extend a preliminary 24-class model to the present 32 classes with
sustained performance. The implementation and usage details
of the dynamic functionality and other utilities provided in the
repository are given in Appendix II (Supplementary File S1). It
is noted that the deep learning models could be adapted to new
classes and related problems by the technique of transfer learning
(Weiss et al., 2016). Addition of new data to existing models
presents data quality issues, which remain contentious (Leonelli,
2019), and could be partially addressed using the tools employed
in this study to assess the canonical Rfam dataset.

In summary, we present riboflow, a python package (see foot
note 5) as well as standalone suite of tools, that have been
validated and thoroughly tested on 32 riboswitch classes. By
using large and complete datasets, the variance of our modeling
procedure has been optimized, and this ensures the generality
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and applicability of our models on new instances/classes without
compromise of performance. riboflow is an off-the-shelf solution
that is ready for programmatic incorporation of the RNN model
into automatic annotation and design pipelines. All of our trained
models are available to the interested user as ’pickled’ models
from https://github.com/RiboswitchClassifier. Riboswitches are
a cornerstone of progress in synthetic biology, representing key
checkpoints for translation activation. Our work presents an
intuitive general-purpose extensible platform for the effortless
characterization of new riboswitch sequences and classes, which
would accelerate bacterial genome annotation, synthetic biology,
and biotechnology, including the rapid design of novel genetic
circuits with exquisite specificity. The predicted probabilities
of class membership could be used as a proxy of aptamer
binding strength with cognate signaling molecule, and this
paves the way for the design of effective riboswitches for any
stimulus or set of stimuli. In addition to being indispensable
workhorses in synthetic biology, riboswitches represent novel
and exciting targets for the development of new class of
antibiotics (Penchovsky et al., 2020), and our work would also
help toward the design of riboswitch inhibitors to combat
emerging and multi-drug resistant pathogens. In addition, our
work opens up the applications of deep learning methods,
including advanced relatives like stacked Bi-LSTM and attention
models (Vaswani et al., 2017), for addressing related and
unrelated problems in the biological realm.

CONCLUSION

We have demonstrated that CNN and RNN, without needing
prior feature extraction, are capable of robust multi-class learning
of ligand specificity from riboswitch sequence, with the RNN
posting an F-score of ∼0.96. The confidence of classification
could be obtained from an inspection of the predicted classwise
probabilities. The bidirectional LSTM RNN model has been
packaged into riboflow to enable embedding into genome
annotation pipelines, genetic circuit-design automation, and
biotechnology workflows. The CNN shows the best tradeoff
between the time-cost of training the model and overall
performance and could be applied to the task of learning
new riboswitch classes using the provided dynamic update
option that is provided. All the code used in our study

is freely available for any use and further improvement by
the scientific community as well as in the larger interest of
reproducible research. Our study has highlighted the use of
macro-averaged F-score as a disciminating objective metric of
classifier performance on multi-class data. Our work reaffirms
the competitive advantages of bidirectional LSTM RNNs over
conventional machine learning and hidden markov profiles in
modeling data sequences, and opens up their applications for
modeling other non-coding RNA elements.
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