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Rising temperatures may alter consumer diets through increased metabolic
demand and altered resource availability. However, current theories assessing
dietary shifts with warming do not account for a change in resource availability.
It is unknown whether consumers will increase consumption rates or consume
different resources to meet increased energy requirements and whether the diet-
ary change will lead to associated variation in morphology and nutrient
utilization. Here, we used populations of Gambusia affinis across parallel thermal
gradients in New Zealand (NZ) and California (CA) to understand the influence
of temperature on diets, morphology and stoichiometric phenotypes. Our
results show that with increasing temperature in NZ, mosquitofish consumed
more plant material, whereas in CAmosquitofish shifted towards increased con-
sumption of invertebrate prey. In both regions, populations with plant-based
diets had fuller guts, longer relative gut lengths, superior-orientated mouths
and reduced body elemental %C and N/P. Together, our results show multiple
pathways by which consumers may alter their feeding patterns with rising
temperatures, and they suggest that warming-induced changes to resource
availability may be the principal determinant of which pathway is taken.
1. Introduction
Higher temperature is predicted to elevate consumer metabolic demand with
important consequences for consumer feeding and food web dynamics [1]. In
warmer environments, increased metabolic demand may be met by increasing
the overall consumption rate of the same foods or shifting diets towards foods
that better satisfy the increased energy demand of metabolism [2–4]. For example,
at warmer temperatures, the aquatic omnivorous pond snail (Lymnaea stagnalis) con-
sumed greater amounts of plant material [3]. The driver of shifts in diet with
temperature change could bemetabolic and stoichiometric constraints that shift con-
sumption to foods with higher carbon : phosphorus ratios at higher temperatures
[5,6]. Alternatively, consumers may shift away from a plant-rich diet towards an
animal-rich diet due to the energetic inefficiency of digesting plant materials [7–9].

Current theories on dietary shifts with rising temperature rest on shifting
consumer demand from a physiological response to temperature, but they do
not consider other changes in food webs that also occur with warming. Impor-
tantly, the temperature rise will change resource availability as thermal limits
for some species are exceeded, and colonization by new species occurs
[10–12]. As such, the dietary response of consumers is likely to depend on
how temperature affects resource availability in addition to their physiological
demand [7–10]. If animal-based resources are maintained or increase with
warming (e.g. [13]), then consumers may increase their selectivity for animal-
based prey. Alternatively, if animal-based resources decline with increased
temperature (e.g. [14,15]), consumers may be forced to consume plant material
and increase their overall consumption.
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Table 1. Summary of the functional morphometric and stoichiometric traits measured on Gambusia affinis in this study and their functions (interpretations from
[24–26,29,32]).

trait formula function implications for resources

relative gut

length

gut length
standard body length

energy-poor resources are

associated with longer

gut lengths

longer guts are associated with algal resources

mouth

position

mouth opening
head depth

feeding position in the

water column

sub-terminal (lower) positioned mouths are associated with

feeding on the benthos (e.g. Chironomidae), whereas superior

(higher) mouths are associated with feeding on the surface or

in the pelagic zone (e.g. filamentous algae, zooplankton)

eye size
eye diameter
head depth

larger eyes for visual acuity increased eye size enhances prey detection (e.g. animal resources)

eye position
eye height
head depth

vertical position in the water

column

lower eye position should favour feeding on the benthos

% body

carbon

n/a associated with lipid storage increased temperature may lower body condition and therefore

lipid stores

% body

nitrogen

n/a associated with muscle

tissue

increased temperature may lower body condition and therefore

muscle tissue

% body

phosphorus

n/a associated with skeletal

structures

bony structures should remain the same with increased

temperature, but N : P and C : P ratios may decline
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Shifts in resource availability and diet along thermal gradi-
ents should select for morphological traits which maximize
resource use efficiency [16–20]. For example, plant-rich diets
are associated with longer gut lengths due to higher food
intake rates [21,22]. Organisms with plant-based diets may
also compensate by increasing feeding rates (compensatory
feeding) to meet their energetic demands [23]. Other traits
related to feeding, such as eye position and size and mouth
position, may also shift to optimize foraging [24]. For example,
sub-terminal positioned mouths are useful to feed on the
benthos, whereas superior orientated mouths are useful for
surface feeding (e.g. upturned mouths of Poeciliidae) [25].
Thus, if metabolic demand and resource availability
change along thermal gradients, the resulting changes in
resource use may be associated with adaptive changes to
morphological traits.

Bodymorphology and resource availability changes associ-
ated with increased temperatures may alter consumer
elemental composition [26–28]. Where food availability is
low, lipid storage (primarily C) is expected to decline while
bony structure (P) requirements remain the same, lowering
%C [29]. Alternatively, where animal resources are abundant,
muscle tissue (primarily N) and lipid storage may increase,
increasing %N and %C, respectively [30]. Variation in stoi-
chiometry may also arise through altered stoichiometric
requirements due to morphology. For example, if morphology
requires increased bony structures, consumers may increase
dietary p skeletal stores [26]. In addition to effects of resource
availability and stoichiometric requirements, increased
temperatures may influence elemental composition through
increased energetic demand, lowering body condition via a
reduction in lipids (%C) or muscle tissue (%N) if this
demand is not met [6,29,31]. Therefore, if resource use and
morphology change along temperature gradients, this may
also be reflected in consumer body stoichiometry.

Here, we use populations of western mosquitofish
(Gambusia affinis) established from repeated recent invasions
of springs that span parallel temperature gradients in New
Zealand (NZ) andCalifornia (CA).We use a space for time sub-
stitution approach to explore how shifts in diet across the
temperature gradients are associated with divergence in phe-
notypic traits (gut length, morphology) and body elemental
composition. We hypothesized that with warmer tempera-
tures, populations of Gambusia affinis would consume more
plant-based materials as invertebrate resources decline and
demand for carbon increases leading to longer guts, altered
feeding traits (e.g. benthic feeding should align with a sub-
terminal mouth position), and a body elemental composition
reflective of environmental resources and morphology
(table 1). Our aims were to (i) understand how resource avail-
ability and consumer diets shift with rising temperature, (ii)
determine whether patterns of association with temperature
are consistent across replicated introductions in NZ and CA,
and (iii) describe the relationship between dietary change,
gut morphology and body nutrient stoichiometry.
2. Methods
(a) Study organism and populations
Gambusia affinis (hereafter ‘Gambusia’) were introduced from
populations in Texas, USA to CA, USA in the 1920s and to the
North Island of NZ in the 1930s [33–35]. Gambusia are live-
bearers, reach high densities in the wild, and are found across
a wide range of environmental conditions: salinity, temperature,
pH and dissolved oxygen (DO) [36]. Gambusia have a broad



Table 2. Characteristics of study sites in NZ and CA. DO and specific conductivity measurements were taken at the time of fish collection. Temperature is
included at the time of fish collection and as an average value from seasonal point measures or temperature loggers. Pearson correlation values among site
physiochemical variables are provided in electronic supplementary material, table S1.

region site
collection
temperature (°C)

temperature
average (°C)

DO
%

specific conductivity
(mS cm−1) pH

other large
vertebrates

CA WW5 18.8 20.4 126 0.492 N/A tui chub

NE 20.9 18.9 121 0.339 8.3 none

AW 23.7 23.7 54 0.391 7.4 none

BLM 24.0 21.1 98 0.156 8.2 pupfish

WSU 27.8 27.4 82 0.461 7.8 bullfrogs

HC 29.9 N/A 69 0.391 N/A unknown

FC 33.4 N/A 131 0.962 N/A bass

LHC 36.7 33.3 36 0.452 8.2 none

K2 38.9 31.6 118 0.827 8.4 none

NZ PP 19.2 18.8 114 0.201 8.6 common bully

AL 22.7 N/A 93 0.145 8.2 none

AD 23.4 16.4 85 0.344 8.0 goldfish

PK 24.0 N/A 31 3.566 7.4 yellow-eyed mullet

MR 30.9 33.1 76 0.74 8.2 none

AA 33.0 28.8 90 0.473 7.6 guppies

WA 33.5 35.5 61 1.092 7.0 none

SP 35.0 31.7 102 0.424 7.5 none

AWK 37.7 36.4 87 0.391 9.0 goldfish
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thermal niche, tolerating temperatures from freezing to
approximately 40°C and reproduce in temperatures above
approximately 16°C [36]. These omnivorous fish feed on algae,
detritus, zooplankton, invertebrates and fish, and show a
preference for consuming invertebrate foods when available
[37–40].

We collected Gambusia from sites along parallel temperature
gradients in NZ (19.2–37.7°C) and CA (18.8–38.9°C) (table 2).
We studied 18 populations of Gambusia in soft-bottomed,
slow-flowing geothermal spring systems in NZ and CA. Temp-
erature, specific conductivity and DO were measured at each
site using YSI ProODO and YSI Professional Plus metres.
In both regions, temperature was not significantly correlated
with DO (%), specific conductivity (mS cm−1) and pH (elec-
tronic supplementary material, table S1). The springs were not
chemically extreme, with conductivity values typical of non-
geothermal waters in the regions, circumneutral pH and high
levels of DO. The sites ranged from 1 to 263 km apart within
each region and were not hydrologically connected on the sur-
face (electronic supplementary material, figure S1 and table S2).
Temperature differences among these sites were not associated
with spatial distance among sites (electronic supplementary
material, table S3). The presence of potential competitor and
predator species was noted from visual surveys and netting car-
ried out during site visits. Predator and competitor species were
present in some sites (electronic supplementary material, table
S4), but most sites lacked heterospecific fishes, and their
presence was not correlated with temperature (table 2; electro-
nic supplementary material, S1). Previous work on Gambusia
in these geothermal systems demonstrated that metabolic and
life-history traits have changed in response to temperature
since the populations were established less than 100 years ago
[41,42].
(b) Sampling
In CA, we sampled between 30 May and 1 June 2016, and in NZ,
we sampled from 8 February to 21 February 2017. At each site,
Gambusia were captured using a 5 m seine (1.6 mm mesh)
deployed at several locations. All Gambusia were immediately
euthanized with MS-222 in CA or clove oil in NZ and
transported back to the laboratory on ice and immediately frozen.

Macroinvertebrate communities were surveyed at each of the
sites via a standard protocol using a D-net (0.5 mm mesh) [43].
We sampled ten 0.5 m2 areas at each site, including different habi-
tat types in proportion to their relative abundance. The contents of
the D-net were pooled and preserved in 80% ethanol. Macroinver-
tebrates were identified to the lowest practical taxonomic unit
(typically genus or family) under 10–80×magnification and
counted to give relative abundances of each taxon and taxa rich-
ness in each sample. Invertebrates were pooled and dried at 60°
C for 48 h to measure overall invertebrate dry mass. Planorbid
snails were excluded from dry mass measurements as these are
too large to be consumed by Gambusia.

Zooplankton were collected using a 63 µm mesh Wisconsin
plankton net. At each site, this net was dragged horizontally
under the water surface for 20 m, for a total volume of 13 l. All
plankters were preserved in 80% ethanol. In the laboratory, zoo-
plankters were enumerated and identified to the lowest possible
taxonomic unit (typically genus or order) under a 10–80×
magnification microscope.

(c) Sample preparation
We randomly selected 40 (20 males and 20 females, where
possible) mature individual Gambusia from each of the 18 sites
(n = 720). Gambusia were weighed (±1 mg), and lateral photo-
graphs were taken for body morphological measurements. We
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then removed the whole intestine of each Gambusia, cutting
directly above the anus and immediately below the pharynx,
uncoiled it and photographed it for length, and preserved it in
70% ethanol until gut content analysis. No other organs (e.g.
liver, gall bladder) were removed during dissection. Gambusia
(less their guts) were dried at 60°C for 48 h before being
ground for whole-body stoichiometric analysis (see below).

We measured the functional morphological traits relative gut
length, eye size, eye height and mouth position on each Gambusia
using ImageJ [44]; these measurements are described in table 1.

(d) Gut content analysis
Using the entire gut, individual gut contents were removed and
placed onto a Petri dish with a 1 × 1 mm graticule. Contents were
identified under an 80–100× microscope to the lowest taxonomic
resolution possible. The proportion that each prey item contribu-
ted to total gut volume was visually estimated [45]. The volume
of gut contents was quantified by gently pressing a microscope
coverslip over the gut contents to a uniform depth of 1 mm2

and counting how many 1 mm2 cells on the graticule were
filled [46]. Animal material (e.g. partially digested, unidentifiable
invertebrate pieces) that could not be identified was summed
into the ‘amorphous animal’ category. Plant material pre-
digested by microbes in the environment or partially digested
by fish was categorized as ‘detritus’.

(e) Nutrient stoichiometry
Body elemental composition was measured on 20mature individ-
uals (10 males and 10 females) from each of our 18 sites (n = 360).
Elemental C and Nwere measured using a vario EL cube elemen-
tal analyser. For each individual, we used approximately 5 mg of
dried and ground tissue (Elementar, Germany). For total P analy-
sis, approximately 2–3 mg of dried and ground Gambusia tissue
was ashed in a furnace at 550°C for 4 h. Combusted samples
were digested by adding 10 ml of distilled water and 2 ml of 2
N HCl into each tube; tubes were then placed into an oven at
105°C for 2 h [47]. Following digestion, 0.5 ml of each sample
was removed for spectrophotometric analysis according to the
ascorbic acid method [48].

( f ) Statistical analysis
(i) Model comparison
We used a model comparison approach to evaluate which factors
(temperature, DO, specific conductivity, competitor species and
spatial variation) best-explained variation in traits (e.g. gut
length) among Gambusia populations in NZ and CA (electronic
supplementary material, table S5). Only one site (FC in CA) had
a known predator species (table 2). To simplify analyses, we
removed this site before model comparison. Spatial variation
was quantified using the dbmem function in ‘adespatial’ version
0.3–14 to compute distance-based Moran’s eigenvector maps
from a spatial distance matrix [49]. We constructed six models
for each trait, one for each of the five factors mentioned above
and a null model. For all models, we included a sex interaction,
as Gambusia traits frequently varied with sex. We used the
Akaike information criterion (AIC) to compare models using the
aictab function in ‘AICcmodavg’ version 2.3-1 [50]. We ranked
models by conditional Akaike information criterion (AICc)
values and considered anymodels with ΔAICc less than four com-
parable in explanatory power (see electronic supplementary
material, tables S6 and S7) [51].

(ii) Diet and morphology
Variation in diet items (i) was summarized for each population
using a relative importance index (RIi). This index accounts for
both frequencies of occurrence of a diet item (%Fi) and
percentage volume in the gut (%Vi) [52].

RIi ¼ (Ali 100)Pn
i¼1 Ali

, ð2:1Þ

where Ali was calculated as %Fi×%Vi.
We summarized variation in diet among populations using

ordination by non-metric multidimensional scaling (NMDS).
NMDS was carried out on the RIi data for each site using the Jac-
card distance metric with temperature fit as an environmental
gradient onto the ordination.

To determine if there were differences in the volume of
prey in Gambusia guts that were independent of gut length, we
calculated gut fullness (GF) as

GF ¼ V
GL

, ð2:2Þ

where V is the volume of food in the Gambusia gut (mm2) and GL
is gut length (mm).

Independent generalized linear models (GLMs) were fitted to
data from NZ and CA to analyse trends in GF, with site tempera-
ture and sex as independent factors.

We used simple linear models to determine if trends in diet
(RIi) and morphological traits (relative gut length, eye size, eye
position and mouth position) were related to site temperature.
We separated all morphological trait analyses by sex due to
sexual dimorphism in Gambusia [37].

For plots of RIi and temperature, we pooled the major dietary
categories (plant-based: algae + detritus, or animal-based: invert-
ebrates + amorphous animal material) for comparison of the
dominant trends.
(iii) Stoichiometry
We used separate GLMs by both region and sex to understand the
effects of temperature and Gambusia mass on %C, %N, %P, C/N,
C/P and N/P. Data were split by sex as there is some expectation
that stoichiometry may vary with sex [30]. We used temperature
and individual wet mass as our independent variables.

To understand if Gambusia condition changed with tempera-
ture, we calculated individual condition factor (CF) [53] as

CF ¼ W � 100
SL3 , ð2:3Þ

whereW iswetmass (g) andSL (cm) is the standard length. Five out-
lying (greater than 4 s.d. from the overall average value) CF values
were excluded from analysis. We used GLMs with data were split
by region to understand the effects of temperature and sex on CF.

Where appropriate, data were log10 transformed before
analysis to meet the models’ normality assumptions. All statisti-
cal analyses were performed using R v. 4.1.0, and NMDS
ordinations were produced using ‘Vegan’ version 2.5-6 [54,55].
All plots were created in R using ggplot2 v. 3.3-0 [56].
3. Results
(a) Macroinvertebrate and zooplankton availability
Macroinvertebratedrymassdecreased27-fold fromourcoolest to
our warmest site in NZ (r2 = 0.651, p= 0.005; figure 1a), but there
was no relationship between temperature andmacroinvertebrate
drymass inCA(p= 0.321; figure1d).Across all sites,macroinver-
tebrate dry mass was about 2 X higher in CA (av = 0.048 g m2,
max = 0.109 g m2) compared to NZ (av = 0.022 g m2, max =
0.058 g m2) and total species richness across all sites was higher
in CA (n= 13) compared to NZ (n= 9). In both regions, all but
one invertebrate was benthic (Dytiscidae in CA andMesovelia in
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Figure 1. Relationship between temperature and site invertebrate dry mass, relative importance index scores (RIi) of algae and detritus in the diet of Gambusia affinis,
and relative gut length of Gambusia affinis. Data are shown for NZ (a,b,c) and CA (d,e,f ). Relative gut length data are averages ± s.e., split by sex. Invertebrate dry mass
and RIi of algae and detritus data were fit with a linear regression model. Relative gut length data were modelled with a GLM (table 3). n = 9 per region.
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NZ). Zooplankton density showed no relationship to tempera-
ture (p= 0.787) in NZ, but declined as site temperature
increased (r2 = 0.630, p= 0.017; electronic supplementary
material, figure S2) in CA. Zooplankton density was 2.4 times
lower across NZ sites when compared to CA. In both NZ (p=
0.524) and CA (p= 0.777), there were no distinct patterns of
change in macroinvertebrate community composition with
temperature (electronic supplementary material, figure S3).
(b) Diet
In NZ and CA, there were shifts in diet at higher tempera-
tures; however, these trends were opposite to one another
and were stronger in NZ compared to CA (figure 1b,e; elec-
tronic supplementary material, figure S4). In NZ, RIi values
shifted from invertebrate dominated to algal and detritus-
dominated diet with temperature (r2 = 0.629, p = 0.011),
while we observed no significant trend in diet with



Table 3. GLM results describing the factors which explain relative gut length of Gambusia affinis in NZ and CA. Italics represent significance at p < 0.05.

region trait coefficients estimate std. error t p

NZ relative gut length intercept 0.425 0.072 5.884 <0.0001

temp 0.009 0.002 3.787 0.002

sex −0.180 0.030 −6.065 <0.0001

CA relative gut length intercept 1.197 0.069 17.381 <0.0001

temp −0.019 0.002 −7.947 <0.0001

sex −0.384 0.097 −3.941 0.002

temp × sex 0.008 0.003 2.246 0.041
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temperature CA ( p = 0.126). Similarly, in NZ, NMDS ordina-
tion showed an increasing dominance of detritus, algae and
terrestrial invertebrates in Gambusia diets with temperature
(r2 = 0.762; p = 0.018; electronic supplementary material,
figure S2). In CA, NMDS trends were less clear, and
differences were not related to temperature ( p = 0.576).

(c) Morphological traits and body chemistry
Modelling indicated that temperature was the best predictor of
relative gut length and stoichiometric trends in CA and NZ
(electronic supplementary material, table S5). Temperature
was the best predictor of mouth position and one of the best pre-
dictors of eye size in CA. By contrast, in NZ, body
morphological traits were most frequently explained by compe-
titor presence. Specific conductivity best explainedGFandCF in
CA, whereas in NZ spatial distance best explained GF and DO,
and specific conductivity best explained CF.

Females had longer relative gut lengths compared tomales
in NZ ( p < 0.0001) and CA ( p = 0.002), and within each region,
both sexes showed similar patterns of gut length change with
temperature. However, the direction of gut length changewith
temperature differed between regions (figure 1c,f ). In NZ,
where diet composition shifted to plant-based diets, relative
gut length increased with temperature (p = 0.002; figure 1c;
table 3). By contrast, in CA, where diet composition shifted
towards animals, relative gut length decreased with tempera-
ture ( p < 0.0001; figure 1f ), with the degree of change being
slightly stronger for females thanmales (temp × sex, p = 0.041).

While temperature and gut length trends were divergent,
both regions showed similar relationships between gut
length and plant material in Gambusia diet. In NZ, population
average gut length increased with the relative importance of
algae and detritus in Gambusia guts (r2 = 0.498, p = 0.034; elec-
tronic supplementarymaterial, figure S5a). Therewas a similar
tendency for relative gut length to increasewith algae and det-
ritus in Gambusia diets in CA, although this trend was not
statistically significant ( p = 0.235; electronic supplementary
material, figure S5b).

Body morphology measurements showed a divergence in
mouth position with temperature between NZ and CA,
whereas the presence of competitor species at our study sites
did not significantly explain these measurements (electronic
supplementary material, table S9). In CA, mouth position
was lower at higher temperatures in males (t =−5.73, p <
0.0001) and females (t =−5.54, p < 0.0001; electronic sup-
plementary material, table S8). Whereas in NZ, mouth
position was higher with temperature, but this trend was sig-
nificant for males (t = 2.50, p = 0.013) but not females (t = 0.25,
p = 0.804). In both regions, eye size increasedwith temperature.
In CA, the increase in eye sizewith temperaturewas significant
for males (t = 3.72, p = 0.0003) and females (t = 3.79, p = 0.0002).
In NZ, this trend was significant for males (t = 3.27, p = 0.001)
but not females (t = 0.88, p = 0.381). There were no significant
trends in eye position in NZ or CA for either sex (p > 0.05,
electronic supplementary material, table S8).

Gambusia exhibited a wide range of elemental variability
with %C values ranging from 21.6 to 52.1, %N values ranging
from 5.4 to 11.2 and %P values varying from 0.5 to 8.2 (elec-
tronic supplementary material, figure S6). Temperature
was the key determinant of %C, %P, C/P and N/P in NZ,
and %N and C/N in CA. In NZ and CA, temperature
affected Gambusia elemental composition, where populations
with plant-based diets had reduced body elemental %C
and N/P. In NZ, %C (males: t =−2.61, p = 0.011; females:
t =−2.12 p = 0.037) decreased with increasing site tempera-
ture (table 4). We found weaker trends for C/N (males:
t =−1.988, p = 0.050; females: t =−1.728, p = 0.088) and %N
(males: t = 1.764, p = 0.081), which decreased with increasing
temperature in NZ. In NZ, male N/P decreased with increas-
ing temperature (t =−3.063, p = 0.003), and there was a
significant interaction between temperature and mass (t =
2.194, p = 0.031). For females, there was no relationship
between N/P and temperature (t =−1.521, p = 0.132) or
mass (t =−0.725, p = 0.471). There was no significant change
in %P across the temperature gradient and dry mass was
unrelated to elemental nutrient percentages (p > 0.05) in
NZ. Whereas, in CA %C (t = 1.979, p = 0.051) and N/P
increased (t = 2.742, p = 0.007) with increasing site tempera-
ture, but these patterns were only evident for males. In CA,
%N increased with mass for females but not for males
(females: t = 2.067, p = 0.042; males: t =−0.837, p = 0.405).
For females in CA, there was an interaction between tempera-
ture and mass with %N (t =−2.401, p = 0.019), and there was
a weak interaction between temperature and mass with N/P
(t = 1.971, p = 0.052).
4. Discussion
Increased temperature is predicted to increase consumer energy
demand and shift the composition of available resources,
thereby altering consumer diets and potentially consumer
trophic traits [10,12,20,57,58]. Our results suggest that increased
temperature is associated with different changes in resource
availability between regions. These resource changes, in turn,
influence consumer diet,morphologyand bodyelemental com-
position. However, thermal gradients in NZ and CA had



Table 4. GLM results describing which factors explain the nutrient percentages and ratios in fish body tissue of Gambusia affinis in NZ and CA. Mass is dry
mass. Models with p−values < 0.10 are italics, and significance is noted as: ‘**’ < 0.01, ‘*’ < 0.05.

region sex source d.f. %C %N %P C/N N/P C/P

NZ M temp 90 −2.609* −1.764 1.419 −1.988 −3.063** 1.419

mass −1.128 −0.967 1.454 −1.586 −1.458 1.454

temp × mass 1.279 1.927 −1.286 1.498 2.194* −1.286
F temp 90 −2.115* 0.153 1.185 −1.728 −1.521 1.185

mass −0.158 1.040 0.550 −0.594 −0.725 0.550

temp × mass −0.015 −1.102 −0.604 0.597 0.645 −0.604
CA M temp 88 1.979 −1.577 −0.808 1.255 2.742** −0.808

mass 1.648 −0.837 −1.119 1.451 1.940 −1.119
temp × mass −1.214 0.455 0.854 −1.095 −1.312 0.854

F temp 88 −0.139 0.465 0.716 −0.780 −0.267 0.716

mass −0.306 2.067* 1.272 −1.351 −1.396 1.272

temp × mass 0.846 −2.401* −1.068 1.261 1.971 −1.068
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opposing trends in resource availability. Accordingly, resource
usedependsoncommunity responses to increased temperature,
leading to consistent changes in morphological divergence and
body elemental composition among populations.

(a) Temperature, resources and diets
Change in prey community composition and biomass is likely
to occur with temperature change, as thermal limits for species
are exceeded, and colonization by new species occurs [10–12].
Such change in prey resource availability across temperature
gradients was crucial to interpreting Gambusia resource use
differences in this study. In NZ, macroinvertebrate food
resources were scarcer than in CA at cool temperatures and
further decreased with increased temperature, probably neces-
sitating a switch to a diet dominated by algal and detrital
matter. Further, warm populations in NZ had a greater
volume of food in their guts in comparison to cool populations,
suggesting compensatory feeding with temperature rise to
meet the higher metabolic energy demands associated with
warmer temperatures [23]. Trends in CA were reversed,
where invertebrate food resources remained abundant at the
warmest sites, permitting diets dominated by macroinverte-
brates and lower GF with higher temperature [9,59]. The
stability of macroinvertebrate availability in CA may exist
because of greater regional species pools in North America
compared with the more isolated North Island of NZ. While
it has been proposed that warming may lead to increased her-
bivory [3], and this is a common feeding strategy in many
tropical fish species [60], our data and data from other studies
indicate that this response may not be universal [9,61]. Overall,
our data showmultiple pathways bywhichGambusiamayalter
their feeding patterns with rising temperatures, as Gambusia
either forage for invertebrate prey or consume greater volumes
of plant material to meet energy demands.

(b) Morphological traits
Like other studies, our data showan increase in gut lengthwith
a shift toward plant-based diets [21,22,25,62–65]. While we
found a significant relationship between relative gut length
and algae and detritus inGambusia diet in NZ, this relationship
was not significant in CA. Invertebrate resources were not as
limited in CA, soGambusiamay bemore reliant on invertebrate
materials at all temperatures when compared to Gambusia in
NZ, where animal resources were scarce at warm sites. The
change in gut length with food resources suggests that Gambu-
sia can adjust their phenotype tomeet their energetic demands.
Plasticity in gut morphology is common and may occur with
diet changes or with fasting [22,62,65–67]. However, evolution-
ary change may occur concomitantly with plastic changes,
particularly in spatially separated populations where there is
potential for local adaptation. For example, Herrel et al. [68]
found evolutionary divergence in lizard gut morphologies 36
years after introduction to novel environments. Similarly, diet
manipulation experiments in Trinidadian guppies (Poecilia reti-
culata) did not alter the development of gut length, and gut
length remained longest in populations with a plant-based
diet, suggesting local adaptation [21]. The mechanism (i.e.
evolution or plasticity) driving the trends in gut length inGam-
busia here is unknown; however, the presence of parallel
patterns of gut length with dietary shifts in NZ and CA high-
lights the functional significance of morphological changes
in Gambusia.

The morphological traits, mouth position and eye size
also responded to temperature. Mouth position responded
in the same way to dietary shifts in NZ and CA, where
mouth position became more superior (e.g. higher on the
head) as diets became more plant-based, and mouth position
became more sub-terminal (e.g. lower on the head) where
diets were predominately animal-based. Many of the
animal resources identified in our field sites were benthic;
thus, our data suggest feeding on the benthos is a common
feeding strategy for Gambusia where animal prey are abun-
dant. When benthic animal prey were less available, mouth
position was more superior. Long filamentous algae were
common in warmer sites in NZ (E.R.M. 2017, pers. obs.), so
fish may be feeding in the water column rather than on
algae attached to the benthos. Alternatively, a superior
mouth position may enhance surface feeding on terrestrial
prey, which is typical of Poeciliidae [25].

In both regions, an increase in temperature was associated
with larger eye size. In CA, increasing eye size with rising
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temperature may enhance visual acuity for finding prey
[24,69]. However, it is less clear why eye size increased
with temperature in NZ, given that increasing temperature
was associated with a reduction in invertebrate feeding. As
such, other factors (e.g. flow, avoiding predators) may play
a role in dictating morphological traits in NZ. Nevertheless,
that eye size shifted consistently with temperature in both
regions suggests that temperature may be a more important
factor than resources for altering some morphological traits.

(c) Elemental tissue composition
Gambusia elemental composition was influenced by both site
temperature and sex. We found no other studies which have
reported Gambusia elemental composition values; however,
those found here were within the range of values found in
other species in response to different biotic and abiotic factors
[29,30,70,71]. Fish elemental composition shifted in response to
temperature, but these trends were stronger for males com-
pared to females. Differences may have been difficult to
detect in females because of their greater trait variation. For
example, female Gambusia have a longer lifespan than males,
and Gambusia are sexually dimorphic (males grow very little
after maturity, whereas females continue growing past matur-
ity) [72–74]. Consequently, there is a greater range in body size
in females which may alter lipid demand or bone formation
through ontogeny. In addition, differences in stoichiometry
may occur via difference in reproductive state and stage of
embryo development [75]. Regardless of the mechanism, our
data provide evidence that fish elemental composition varies
with temperature and sex.

Dietary shifts towards plant and detrital material were
consistently associated with increased N and reduced C in
Gambusia elemental composition. While diet shifted in the
opposite direction with temperature in NZ and CA, elemen-
tal composition tracked diet shift in the same manner. In NZ,
%C, C/N and N/P decreased as temperature increased, and
in CA, %C and N/P increased with temperature. Reduced
%C and N/P with a plant-based diet in both regions indi-
cates a reduction in lipid stores and muscle tissue, and thus
an overall decrease in fish condition [21].

Despite the different patterns in stoichiometric proxies for
condition between regions, our other condition metric—the
CF—showed decreases with temperature in both regions.
Although this pattern is typical of many fish species, including
Gambusia [76], it should be noted that CF may serve as a poor
proxy for overall condition. CF may not represent fat storage
but may be more reflective of population differences in other
traits like body shape. Together, these data suggest plant-based
diets may lead to a reduction in overall fish condition via a
reduction in body %C andN/P, and they suggest that changing
resources may be a stronger determinant of stoichiometric
changes along thermal gradients than temperature per se.
5. Conclusion
Using a space for time substitution approach, we observed that
increased temperature was associated with altered resource
availability. This was reflected in the diet of fish, with predict-
able changes in morphology and body elemental composition.
Metabolic rates of mosquitofish are higher in the warmer sys-
tems [39], and there are alternative strategies for dealing with
this increased energy demand: (i) eat increased quantities of
plant material (eat more) or (ii) shift consumption towards
increased proportions of invertebrate prey (eat better). Which
of these strategies was employed depended on the response
of the invertebrate prey community to increased temperature.
As the temperature increased in NZ, invertebrate prey
became less common, and Gambusia ate more algae. As the
temperature increased in CA, invertebrate prey remained
stable and Gambusia ate more animals. A plant-based diet
was associated with comparatively longer and fuller guts, a
more superior mouth position, and decreased elemental C
and N/P in body tissue in both regions. Thus, to understand
how consumer diet, elemental composition andmorphological
traits change with increased temperature, we need to under-
stand how temperature influences resource availability and
that may not play out the same in different places.
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