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Abstract

Accumulating evidence has shown that astrocytes do not just support the

function of neurons, but play key roles in maintaining the brain environ-

ment in health and disease. Contrary to the traditional understanding of

astrocytes as static cells, reactive astrocytes possess more diverse functions

and phenotypes than previously predicted. In the present focused review,

we summarize the evidence showing that astrocytes are playing profound

roles in the disease process of amyotrophic lateral sclerosis. Aberrantly acti-

vated astrocytes in amyotrophic lateral sclerosis rodents express microglial

molecular markers and provoke toxicities to accelerate disease progression.

In addition, TIR domain–containing adapter protein–inducing interferon-b-
dependent innate immune pathway in astrocytes also has a novel function

in terminating glial activation and neuroinflammation. Furthermore, hetero-

geneity in phenotypes and functions of astrocytes are also observed in vari-

ous disease conditions, such as other neurodegenerative diseases, ischemia,

aging and acute lesions in the central nervous system. Through accumulat-

ing knowledge of the phenotypic and functional diversity of astrocytes,

these cells will become more attractive therapeutic targets for neurological

diseases.

Introduction

Neurodegenerative diseases are characterized by the

selective death of certain types of neurons. In addi-

tion, activation of glial cells surrounding the degen-

erating neurons is also a common pathological

finding in almost all neurodegenerative diseases. For

a long time, glial activation has been regarded just

as a consequence of neurodegeneration; however,

accumulating evidence has shown the active roles of

glial cells in neurodegenerative diseases, and the

term “neuroinflammation” has been used to describe

the key phenomenon involving the glia-mediated

pathology of these diseases.1

Among the glial cell types, such as astrocytes,

oligodendrocytes, microglia and NG2 cells, astrocytes

are a key component in maintaining the brain envi-

ronment. Astrocytes used to be regarded as static

cells, simply supporting neurons, and participating in

wound healing by forming glial scars. However,

recent research results have shown that astrocytes

actively control synaptic functions and formation,

regulate the concentration of neurotransmitters at

synapses, control the vasculature to increase the

blood flow, and are involved in a wide range of

homeostatic functions, including sleep.2

In the lesions of neurodegenerative diseases, astro-

cytes robustly change their morphology and the

expression of molecules, and are referred to as reac-

tive or activated astrocytes.3–6 Furthermore, several

lines of evidence show that the activation pheno-

types of astrocytes are more complex and heteroge-

nous than previously predicted. The present focused

review summarizes the accumulating evidence

showing that astrocytes are playing critical roles in

the disease process of amyotrophic lateral sclerosis
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(ALS). Furthermore, we discuss the phenotypic

heterogeneity of activated astrocytes mainly in ALS,

and also in other neurological diseases based on

studies using rodent models.

Non-cell autonomous neurodegeneration in ALS

Patients with ALS develop progressive paralysis of

skeletal muscles and respiratory failure within 2–
5 years of disease onset as a result of selective degen-

eration of both the upper and lower motor neurons.

Most ALS cases develop disease sporadically; how-

ever, approximately 10% of them are familial cases,

and >20 causative genes have been identified to date.

Dominant mutations in the gene for copper/zinc

superoxide dismutase 1 (SOD1) are the second most

frequent cause of inherited ALS after the C9orf72

gene.7 Ubiquitous overexpression of the mutant

human SOD1 gene in mice leads to progressive motor

neuron degeneration accompanied by extensive glio-

sis. It is now generally recognized that all SOD1

mutant proteins uniformly provoke unidentified toxi-

cities in degenerating neurons, and that toxicities are

not mediated by changes in the enzymatic activity.7,8

To date, many hypotheses have been proposed to

explain the mutant SOD1-mediated toxicity in SOD1-

linked ALS, including damage to mitochondria, endo-

plasmic reticulum stress, defects in protein degrada-

tion machinery, axonal transport dysfunction,

excitotoxicity from excess glutamate at synapse and

overproduction of neurotoxicmolecules through neu-

roinflammation.9–11 It is likely that the combination of

the aforementioned mechanisms, rather than a single

one,contributes toneurodegeneration inALS.

Although pathologies within motor neurons are a

key determinant of triggering disease, several studies

including ours showed that a non-cell autonomous

mechanism also plays an important role in motor

neuron degeneration.12,13 Studies using chimeric

mice derived from wild-type and mutant SOD1

mice,12 as well as those derived from mutant SOD1

and Olig�/� mice,13 showed that wild-type non-neu-

ronal cells are capable of protecting mutant SOD1-

expressing motor neurons, supporting the concept of

non-cell autonomous neurodegeneration in ALS.

Astrocytes in ALS

To identify the non-neuronal cell types crucial for

non-cell autonomous neurodegeneration in ALS, we

and others have created mouse models of ALS in

which the mutant SOD1 transgene can be elimi-

nated in a cell type-specific manner using the

Cre-loxP system.14,15 Ablation of the mutant SOD1

transgene in either astrocytes, microglia, or oligo-

dendrocytes from floxed SOD1G37R or SOD1G85R

mice using Cre recombinase significantly slowed the

disease progression and extended survival times of

mice.14–18 Mutant SOD1-ablated astrocytes delayed

the degree of microglial activation and conferred

neuroprotection, suggesting that an interaction

between astrocytes and microglia modifies neuroin-

flammation and disease progression in ALS. An

interplay between astrocytes and motor neurons has

also been examined using in vitro co-culture experi-

ments. Co-culture studies using embryonic stem cell-

or induced pluripotent stem cells-derived motor neu-

rons and mutant SOD1-expressing astrocytes have

shown that mutant SOD1 astrocytes selectively pro-

voke toxicity to motor neurons, providing additional

support for the role of astrocytes in non-cell autono-

mous neurodegeneration in ALS.19–22 The adverse

role of ALS astrocytes has also been shown in spo-

radic and non-SOD1 inherited ALS. Astrocytes

derived from post-mortem ALS spinal cord or differ-

entiated directly from the fibroblasts of sporadic and

C9orf72-linked ALS patients appear to be harmful to

motor neurons in vitro.23–25

Astrocyte-mediated toxicity to motor neurons is

associated with profound changes of astrocytic

phenotype

A noteworthy question in ALS pathogenesis is, why

the degenerating spinal cord in both sporadic and

familial ALS cases does generate glial cells capable of

killing motor neurons. Astrocytes and microglia in

ALS do not seem to be constitutively toxic for motor

neurons, as the entire motor system develops nor-

mally in ALS rodents and patients carrying ALS

genes until adulthood. However, it appears that glial

cells in ALS show a predisposition to become neuro-

toxic when subjected to cellular stress, such as the

expression of mutant ALS-linked genes or the cell

culture condition. Such glial vulnerability might be

associated with permanent epigenetic changes,

prompting an activated glial phenotype. After activa-

tion, the neurotoxic astrocyte phenotype seems to

be maintained by mitochondria dysfunction, oxida-

tive stress, disrupted inflammatory signaling, endo-

plasmic reticulum stress and so on.26–29 In addition,

activation of astrocytes in ALS is associated with

increased proliferation and their inability to reach

final differentiation,30,31 a condition involving

decrease in the expression of glutamate trans-

porters,32–34 elevated levels of nicotinamide adenine
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dinucleotide phosphate oxidase, reactive oxygen spe-

cies and inducible nitric oxide synthase,22,26 and

increased productions of pro-inflammatory cytoki-

nes/mediators, such as interferon-c,35 prostaglandin

D2,
21 and transforming growth factor-b.36 Even

wild-type cultured rat neonatal astrocytes can be

induced to develop a permanent neurotoxic pheno-

type when subjected to different acute and sublethal

stressful conditions, such as exposure to lipopolysac-

charide or peroxynitrite.37–39 A strikingly similar

switch to a neurotoxic phenotype has been reported

in cultured microglia obtained from murine models

of ALS or when activated by means of inflammatory

or toxic stimuli.40–43 This evidence further shows

that glial cells are prone to switch to a neurotoxic

phenotype in response to sublethal cytotoxic dam-

age, and that this phenotype can be perpetuated by

autocrine or epigenetic mechanisms.

Long-lasting activation of glial cells in the ventral

horn is likely triggered by factors released by dam-

aged motor neurons. After peripheral nerve lesions

or spinal cord injury, as well as ALS, motor neurons

upregulate several inflammatory mediators and

growth factors that induce microglia activation

including CSF1,44,45 CX3CL1 (fractalkine),46 fibrob-

last growth factors,47,48 HBMG149 and major histo-

compatibility complex encoded antigens.50,51

From activated glial cells to the emergence of

aberrant phenotypes

Aberrant glial cells drive neurodegeneration in ALS

Motor neuron death in the spinal cord of symp-

tomatic ALS rodents is closely associated with local

microglia activation, immune cell infiltration and

astrocytosis, the latter involving major changes in

cell morphology and proliferation rate. This observa-

tion led to the prediction that motor neuron pathol-

ogy in ALS could be initiated by the emergence of

phenotypically “aberrant” astrocytes playing an

active pathogenic role during disease progres-

sion.47,48 Subsequent reports have established that

astrocytes and microglia cells expressing mutant

SOD1 are directly toxic to motor neurons in rodent

models, as well as in ALS patients.19,20,23,26,52,53

Furthermore, the discovery by Diaz-Amarilla et al.

of a cell type different from reactive astrocytes or

microglia and directly associated with rapid disease

progression in SOD1G93A rats provided a new avenue

to study and understand ALS pathogenesis.54

In the degenerating spinal cord of SOD1G93A rats,

aberrant glial cells are characterized by the simulta-

neous expression of microglia and astrocytic

markers.54,55 These cells can typically be localized in

areas surrounding the dying motor neurons in the

ventral horn of the spinal cord, and can be identified

by immunostaining for astrocytic markers, such as

GFAP, S100b and Cx43, as well as microglia markers,

such as Iba1 and CD163.55 These aberrant features

have not been previously described in other neurode-

generative diseases, but are commonly observed in

glioblastoma multiforme, an aggressive type of

human astroglial tumor undergoing intense inflam-

mation.56,57 Notably, the emergence of aberrant glia

directly correlates with disease onset and progression,

suggesting that they might mediate the rapid course

of disease characteristics of the SOD1G93A rat model.54

Aberrant glia seem to actively proliferate, as estimated

by the high proportion of cells labeled with BrdU or

the proliferation marker Ki67.40 Thus, the potential

pathogenic role of aberrant glia in mediating motor

neuron damage and neuroinflammation is evidenced

not only by observational analysis in ALS rats, but

also by cell transplant23,58,59 and pharmacological

experiments.60

As described below, aberrant glia likely originate

from overactivated and inflammatory microglia

undergoing a phenotypic transition to astrocyte-like

cells. Microglia in ALS rats show exceptional overac-

tivation and atypical behaviors, such as microglia

clusters32,61 and multinucleated giant cells,62 further

indicating major phenotypic instability. Aberrant fea-

tures would denote chronic inflammatory overacti-

vation, dedifferentiation and epigenetic changes,

resulting in a loss or gain of function, finally leading

to neuronal toxicity.

One feature of aberrant glia cells is that they can be

easily cultured and expanded from the spinal cord of

symptomatic adult transgenic SOD1G93A rats, as com-

pared with cultures from non-transgenic rat cords

yielding only a few or no cells.54,55 When first estab-

lished, cell morphology is that of hypertrophic and

rapidly dividing phagocytic microglia. After a few days

in culture, the cells transition to clusters of proliferat-

ing flat cells resembling astrocytic monolayers, which

can be further propagated for months. Such cells were

named AbAs (aberrant astrocytes), and are character-

ized by the simultaneous expression of astrocyte and

microglial markers (GFAP, S100b, vimentin, con-

nexin 43, Glutamine synthase, Iba1, CD11b, CD206;

Fig. 1a).54,55 These atypical features define the “aber-

rant” immunophenotype. Aberrant glia show a robust

proliferating capacity and a lack of replicative senes-

cence after several passages in cell culture.

Cultured aberrant glia appear to be the most toxic

cells yet identified for embryonic motor neurons, as
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compared with mutant SOD1-bearing astrocytes or

microglia.54 When seeded on confluent monolayers

of aberrant glia, motor neuron survival was <10%,

suggesting a non-permissive environment for motor

neuron growth and differentiation. The conditioned

medium from aberrant glia also showed a potent

toxicity, producing significant motor neuron loss at

1:1000-fold dilutions, more than 10-fold higher than

that of SOD1G93A-expressing neonatal astrocytes.54

Thus, AbAs potentially play an important role in

mediating motor neuron damage through various

complex molecular mechanisms.

Although it remains unknown whether aberrant glial

cells emerge in patients with sporadic or familial ALS,

few studies have reported increased levels of aberrant

cell markers. A subset of hypertrophic astrocytes

expressing S100b were identified close or in indirect

contact to motor neurons in the spinal cord of ALS

patients,63 such proximity being strongly evocative of

aberrant glial cells found in the ALS rat model.54 Also,

the motor cortex and spinal cord from ALS patients

showed increased levels of connexin 43, a protein

highly expressed in aberrant glial cells.64 Connexin 43

was also increased in astrocytes obtained from human-

induced pluripotent stem cells, further suggesting an

association of this protein with ALS pathology.64

Pro-inflammatory effects of aberrant glia after

transplantation into the spinal cord

While aberrant glia appear as a distinct but relevant

glial cell type associated with rapid disease

progression in ALS rats, Ibarburu et al. analyzed the

neurotoxic and inflammatory potential of aberrant

glia isolated from SOD1G93A rats at 7 days after the

focal transplantation into the spinal cord of wild-

type syngeneic rats.59 Although transplanted glia

survived and proliferated within the site of injection,

they strongly activated endogenous astrocytes and

microglia that appeared to isolate the exogenous

cells, restricting the migration and neurotoxicity on

host motor neurons. Neuroinflammation induced by

transplanted aberrant glia propagated well beyond

the lumbar injection site, extending to the cervical

spinal cord, and was associated with incipient motor

neuron damage assessed by ubiquitin aggregation.

These results suggest that the emergence of aberrant

glial cells could be sufficient to initiate ALS-like

pathology, even in wild-type rats. Results are also in

agreement with a previous study showing neuroin-

flammation and motor neuron death induced by

transplantation of glial-restricted precursors bearing

SOD1G93A into the wild-type rat spinal cord.58 Aber-

rant glia could release colony-stimulating factor 1 or

interleukin-34 to potently induce microgliosis and

inflammation in the neuroaxis. Astrocytes are a

major source of colony-stimulating factor 1 and

interleukin-34, both factors being potent agonists of

the colony-stimulating factor 1 receptor promoting

proliferation and activation of microglia and aberrant

glia.45,60 Interestingly, transplanted aberrant cells

expressed misfolded SOD1G93A species, which might

have a relevant pathogenic role in ALS pathology,

both in familial and sporadic cases.65,66

Figure 1 Features of aberrantly activated

astrocytes. (a) Representative confocal images

of spinal cord astrocytes from wild-type and

symptomatic superoxide dismutase 1

(SOD1)G93A rats stained for GFAP (green) and

CD206 (red). (b) Representative confocal

images of spinal cord astrocytes from wild-type

and end-stage SOD1G93A mice stained for GFAP

(green), Mac-2 (red) and DAPI (blue). Note that

aberrantly activated astrocytes show a large

round cell body with shorter processes. Scale

bars, 10 lm.
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Ultrastructural features of aberrant glial cells

Further evidence for the aberrant nature of cultured

aberrant glial cells isolated from SOD1G93A symp-

tomatic rats has been obtained from ultrastructural

analysis.67 Cells show an absence of intermediate fil-

aments, an abundance of microtubules together with

an important production of extracellular matrix

components, suggesting a pro-fibrotic activity. In

addition, cells showed exacerbated endoplasmic

reticulum stress together with a significant abun-

dance of lipid droplets, autophagy images and many

heterogeneous formations including vesicles, sug-

gesting a role in secretion. Cells express markers of

secretory granules, such as chromogranin A and

secretogranin II (chromogranin C),68,69 which might

interact with mutant SOD1 to promote inflammation

and neuronal death.70 Thus, considering that aber-

rant glia proliferate and migrate actively, the ultra-

structural features are indicative of a profound

cellular pathology only comparable with tumor cells.

Phenotypic changes and elimination of activated

astrocytes

A previous study reported that astrocytes of symp-

tomatic SOD1G85R mice were immunopositive for

ubiquitinated-SOD1 aggregates, suggesting that they

are defective in proteostasis.71 A subsequent study

showed that activated astrocytes in SOD1 mice had

an atypical shape, and were co-labeled with ubiqui-

tin and cleaved caspase-3, concluding that they were

degenerating astrocytes.72 This phenotype is similar

to that of aberrant astrocytes isolated from SOD1G93A

rats, discussed previously.54 A recent study also

showed that aberrantly activated astrocytes are accu-

mulated in the spinal cord of several lines of SOD1-

ALS mice, and are immunopositive for GFAP,

ALDH1L1 and S100b, and surprisingly expressing

Mac-2 (galectin-3), an activation marker for micro-

glia. However, they are negative for CD68 and Iba-1,

typical microglial markers, concluding that these

cells are aberrantly activated astrocytes (Fig. 1b).73

As these cells do not express typical microglial mark-

ers, CD68 and Iba-1, the origin and identity of these

cells might be different from aberrant glia discussed

in the prior section.

Although the phenotypic changes of reactive

astrocytes and their characteristics were described,

the fate of those activated astrocytes has not been

shown. The authors recently uncovered the mecha-

nism for eliminating overactivated astrocytes in

SOD1-ALS models.73 When TIR domain–containing

adapter protein–inducing interferon-b (TRIF), an

innate immune adaptor protein essential for the

Toll-like receptor (TLR) 3/4 was deleted, disease pro-

gression was substantially accelerated, thereby short-

ening the survival time of SOD1 mice. In contrast,

gene ablation of MyD88, which is crucial for all TLR

signaling except TLR3, had a marginal impact on the

survival time of SOD1 mice. Aberrantly activated

Mac-2+ astrocytes often express cleaved caspase-3,

showing that they undergo apoptosis. In TRIF-defi-

cient ALS mice, the number of Mac-2+ astrocytes

increased through insufficient apoptosis of those

cells. The TRIF-dependent TLR pathway is known to

induce apoptosis in multiple cell types, such as

microglia and macrophages, for eliminating those

cells after infection by pathogens. The cited study

uncovers the novel role of TRIF signaling in elimi-

nating aberrantly activated astrocytes.

In Mac-2+ astrocytes, accumulation of p62 and

ubiquitin, as well as elevated expression of nicoti-

namide adenine dinucleotide phosphate oxidase,

suggests that they are neurotoxic by overproducing

reactive oxygen species. Correlation analysis in

SOD1-ALS mice showed that greater numbers of

Mac-2+ astrocytes predicted shorter survival times of

ALS mice, suggesting that they are harmful to motor

neurons.73 It is possible that the pathways other

than TRIF signaling might participate in eliminating

abnormal reactive astrocytes. Therefore, further

studies are required to provide a complete picture of

the mechanisms for eliminating activated glial cells

and terminating neuroinflammation.

Phenotypic heterogeneity of astrocytes in ALS and

other neurological diseases

Phenotypic heterogeneity of astrocytes is not

restricted to the context of ALS. A study showed

that toxic reactive astrocytes, referred to as A1 astro-

cytes, were induced by three cytokines released from

activated microglia in vitro. These astrocytes were

also observed in the lesions of neurodegenerative

diseases, including sporadic ALS, Alzheimer’s dis-

ease, Parkinson’s disease and Huntington’s disease.74

A1 astrocytes lose their ability to support neuronal

survival and phagocytosis, and induce cell death in

cultured neurons. Questions remain about the

detailed molecular basis of astrocyte-mediated toxici-

ties of A1 astrocytes, and whether the mechanism of

A1 astrocytes-mediated toxicities is common to the

above-mentioned neurodegenerative diseases.

Table 1 shows some features of aberrant glial cells,

including astrocytes or microglia, abnormally-
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expressing markers from different cell lineages have

been also reported in Alzheimer’s disease,75 Hunt-

ington’s disease,76 central nervous system acute

lesions77–79 and aging,74,80 as well as glioma,56,57,81

brain ischemia and trauma,78,79,82 further suggesting

the phenotypic switch is strongly associated with

inflammation and tissue remodeling after damage.

Compared with microglia/macrophages, astrocytes

have been regarded to retain fewer phagocytic

abilities. However, recent studies uncovered the

phagocytic function of astrocytes under the various

settings; synaptic elimination,83 clearance of dead

cells,84 brain ischemia82 and glaucoma.85 For

example, Mac2+ astrocytes are also observed in the

specific subpopulation in the myelination transition

zone of the optic nerve head, indicating that those

astrocytes are phagocytic and contribute to neu-

rodegeneration in glaucoma.85 In a brain ischemia

lesion, Mac2+ reactive astrocytes can function as

phagocytes through inducing ABCA1, a molecule

required for the engulfment and phagocytosis of

debris and dead cells.82 An apolipoprotein E4 vari-

ant is known as the most prominent genetic risk

factor in Alzheimer’s disease. In apolipoprotein E4

knock-in mice, apolipoprotein E-4-producing astro-

cytes are defective in phagocytic activity and failed

to eliminate synapses in a complement-dependent

manner.86 Phagocytosis of astrocytes is also pro-

moted by sleep deprivation.87 In this context,

enhanced phagocytic activity of astrocytes seems to

be protective to the brain by cleaning worn com-

ponents of heavily used synapses on prolonged

wakefulness.

Conclusion

In the present review, we provided evidence

supporting that the activation phenotypes of astro-

cytes are more heterogeneous mainly from the

research for ALS. Contrary to the traditional under-

standing of astrocytes as static cells, reactive astro-

cytes possess more diverse functions than previously

thought. Through achieving more knowledge of the

phenotypic and functional diversity of astrocytes,

astrocytes will become more attractive therapeutic

targets for neurodegenerative diseases.
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