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Abstract: This paper presents a technique, based on the matrix pencil method (MPM), for the
compression of underwater acoustic signals produced by boat engines. The compressed signal,
represented by its complex resonance expansion, is intended to be sent over a low-bit-rate wireless
communication channel. We demonstrate that the method can provide data compression greater
than 60%, ensuring a correlation greater than 93% between the reconstructed and the original signal,
at a sampling frequency of 2.2 kHz. Once the signal was reconstituted, a localization process was
carried out with the time reversal method (TR) using information from four different sensors in a
simulation environment. This process sought to achieve the identification of the position of the ship
using only passive sensors, considering two different sensor arrangements.

Keywords: matrix pencil method; reconstruction; complex natural resonances; poles; data compression;
location of boats; time reversal; backpropagation

1. Introduction

The singularity expansion method (SEM), a technique developed by Baum in 1996,
processes a signal to seek its singularities by analyzing its behavior and principal character-
istics, in the time and frequency domain, to finally represent the signal as a function [1].
One of the most studied and proven methods to implement SEM in the time domain is
MPM, which calculates the main poles and residuals after a mathematical process using
singular value decomposition [2].

MPM has been considered in applications in which, using signals of electromagnetic
radiation, it is possible to evaluate the geological formations [3] and to characterize and
locate multiple targets according to their shape [4,5]. Correspondingly, it has been re-
cently used in the field of underwater target detection using the information of principal
singularities of sonar signals [6], for which an active source is needed.

Considering that the main goal of our project is to calculate the location of a ship
in a controlled environment using information from acoustic signals, we opted for using
MPM to reduce data. Similarly, we sought to carry out the localization process through
TR, a method developed by Fink [7] in 1989. TR calculates the position of a target in an
inhomogeneous medium, using information from many sensors validating mathematical
properties in the solution of the wave equation. The use of TR ranges from the location of
electromagnetic phenomena, such as lighting discharges [8], to the monitoring of structural
health problems [9], going by linear networks analysis [10] and in aperture radar imag-
ing [11]. Specifically, on underwater acoustic applications, it is used in the detection of
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multidimensional signals in aquatic environments [12] and in processing information for
UWA communication processes [13,14].

Previous works related to underwater acoustic signals were developed to locate
marine fauna, and have also addressed the problem of boats. We found that many of
these works have focused on geometric approaches and intelligent passive sensor arrays
configuration to efficiently cover large and neuralgic areas [15,16]. Likewise, localization
processes have been developed using pattern recognition methods such as game theory
and artificial neural networks [17–19]. However, this type of approach requires constant
feedback from implementation experiences to provide better results. In addition, it is
necessary to mention that in our work, we also seek a reduction in information to carry out
communication processes through wireless channels. Thus, the processes mentioned in the
previous works could compromise the size of the data packages.

Current ship detection methods include a real-time location using GPS and RFID
readers [20]. These methods do not detect the vessels without the required components
of the system, including irregular ships. This problem has been addressed with meth-
ods such as sonar, radar and arrays of passive sensors that receive information from
reflected waves coming from an active source [21–23]. In recent years, passive location
methods include: time of arrival (TOA), direction of arrival (DOA), and Matched field
processing (MFP) [24], which in some cases, may have problems due to the presence
of non-homogeneous media [25]. We estimate the target’s location using TR on acoustic
signals from the ship noise. The process uses passive sensors without resorting to electro-
magnetic or acoustic radiation in the medium. This reduces the amount of required energy
without affecting the environment. In addition, by implementing TR, we can avoid the
problems related to the non-homogeneities of the medium.

The method presented here is part of a project for the detection and location of boats
using underwater acoustic signals captured by hydrophones. The project intends to record
boat signals from buoys located in strategic positions and process this information in a
central node positioned on land. The signal on each buoy needs to be sent through a low-
speed wireless communication channel. Therefore, the reduction in data is a critical step
in this approach. In [26], we introduced this process applied to real signals; however, the
considerations to define the optimal number of poles in the reconstruction mean were not
taken into account. In this paper, we extend the process by emphasizing the definition of a
fixed number of singularities. We discovered that this value depends on the characteristics
and nature of the signals to be treated. This way, we state a greater reduction in the data by
eliminating the redundant information coming from the complex conjugates.

This paper is composed as follows. Section 2 is about the mathematical process to
make MPM and TR, taking into account its principal algorithm and equations. Section 3
talks about the method proposed, including the test of MPM and TR using constructed and
natural signals. Section 4 validates the method by the simulation of the location process on
signals previously treated with MPM. This, considering different scenarios of the target,
sensor array, and others. Finally, Section 5 presents some conclusions and discussion about
our process.

2. Background

The basic and mathematical theory about the methods of MPM and TR for the appli-
cation of signals in the time domain is presented below. The purpose of these methods is to
define the technical information for their implementation in specific circumstances that are
developed in this paper.

2.1. Matrix Pencil Method

Matrix pencil method (MPM) is a specific implementation of SEM in the signals
collected in the time domain. Through this process, it is possible to create an approximation
of the signal based on its principal M singularities related to poles (s1, s2,. . . , sM) and
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residues (R1, R2,. . . , RM). These singularities are the complex natural resonances (CNRs)
and can define the p− th term of a signal gp of N elements as a function to the form:

gp = f (p∆t) = fp (1)

fp =
M

∑
i=1

Riesi p∆t, p = 1, 2, 3, . . . , N (2)

Here, (∆t) is the inverse of the sampling frequency and represents the time between
two data of gp. Once the CNRs have been found, it is possible to perform a reconstruction
of the original signal, the accuracy of which will depend on the value of M (M < N) [2].

Now, (2) can be expressed using the poles (γi), considering that (γi = esi∆t):

fp =
M

∑
i=1

Riγ
p
i , p = 1, 2, 3, . . . , N (3)

Once fp is defined, we can start the MPM process. Firstly, it is necessary to describe
the pencil parameter (L). This value defines the relation between the accuracy of CNRs and
the computational load. Its denotation is recommended to be a number in the range of
( N

3 < L ≤ N
2 ). Now, we can introduce a Hankel matrix (Y) as [27]:

Y =


f0 f1 . . fL
f1 f2 . . fL+1
. . . . .
. . . . .

fN−L−1 fN−L . . fN−1

 (4)

By deleting the first and the last row to Y, the matrices Y2 and Y1 are generated. Thus,
taking into account H as the hermitian conjugate, it is possible to determine that the poles
γi are the values of λ, hence, the expression (5) represents a singular matrix:

[Y2]
H − λ[Y1]

H (5)

The process in Equation (5) implies a considerable computational charge, which
does not allow ut to be solved using traditional methods. Therefore, the problem can be
addressed using the singular value decomposition (SVD) in the Y matrix:

Y = USVH (6)

At this point, it is necessary to define the M value. Remember from Equation (2) that
this number is related to the fundamental frequencies of the signal. Thus, the accuracy
and the computational charge in the reconstruction step are directly proportional to this
quantity. Considering the above information, the choice of M is a very important step in
the process. Sarkar in [2] defines M based on the significant digits of the division:

σc

σmax
≈ 10d (7)

where σc represents the c-th singular value in the diagonal of the S matrix in Equation (6),
and σmax is the largest singular value (located in position 1.1). Here, d is the number of
significant decimals that you should to use in the process [28].

Let us define the V′ matrix as the first M rows of V. Now, it is possible to remove
the last and the first columns of V′ to create the V1 and V2 matrices, respectively. Now,
the problem in Equation (5) is reduced to finding the values of λ such that Equation (8) is
singular [27]:

[V2]
H − λ[V1]

H (8)
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The problem to find λ values in Equation (8) can be addressed with the equivalence
defined by the eigenvalues of the [VH

1 ]+[VH
2 ] matrix (where “+” represents the Moore–

Penrose pseudo-inverse). These eigenvalues are equivalents to λi because of the matrix in
Equation (8) is singular. In order to find this information, it is necessary to apply the SVD
again. Then, by decomposing V1, we have:

V1 = UvSvVH
v (9)

Thanks to SVD, it is possible to replace [VH
1 ]+ with the approximation presented in

Equation (10), where S′v is a square diagonal matrix defined as 1/(Sv), of the size MXM:

[V1]
+[VH

2 ] = VvS′vUH
v [VH

2 ] (10)

The eigenvalues in the problem of Equation (10) can be solved using traditional
mathematical methods, so it is possible to calculate the poles γi and its coefficients si as
follows [4]:

si =
1

∆t
log(γi), i = 1, 2, 3, . . . , M (11)

After calculating the poles of the function, it is necessary to find the values of the
residuals Ri. For this purpose, a Vandermonde matrix was generated in order to solve the
next system of equations:

1 1 . . 1
γ1 γ2 . . γM
. . . . .
. . . . .

γN−1
1 γN−1

2 . . γN−1
M




R1
R2
.
.

RM

 =


f1
f2
.
.

fN−1

 (12)

With the information of Ri and si, it is possible to generate the summary in Equation (2),
thus making a reliable reconstruction of the original signal [27].

2.2. Time Reversal Method

Time reversal method (TR) is an effective tool to solve problems related to the charac-
terization of signals in processes of the location of targets in an inhomogeneous medium.
Consider a wave propagating with an average velocity c(r) through a determined non-
linear medium, with a characteristic Equation (p(r, t)) which satisfies [7]:

∆p =
1

c2(r)
δ2

δt2 p = 0 (13)

where t is the time and r is related to the space coordinated inside the medium. Consider
that Equation (13) has a second-order time derived, implying the time-reversal invariant
property if the medium has lossless propagation. Thus, once p(r, t) is defined as a solution
for the equation, it is possible to determine that p(r,−t) also represents a solution [7]. If we
consider the propagation of a plane wave through two different media M1 and M2, it is not
possible to assure the time-reversal property in the solution of the wave equation. Now, if
the incident wave travels from M1 to M2, we can detect a reflected wave R in M1 and a
transmitted wave T in M2.

We can now define the reflection coefficient R′ and the transmission coefficient T′

related to the wave coming from the waves. Now, considering the superposition principle
in M1 with R2 + TT′ and in M2 with RT + TR2, it is possible to verify that [29]:

R2 + TT′ = 1 (14)

R + R′ = 0 (15)



Sensors 2021, 21, 5065 5 of 15

Relations in Equations (14) and (15) allow us to extrapolate the time-reversal property,
previously mentioned in the propagation of planar waves through two different media.
Thus, it is possible to implement TR in non-homogeneous media.

Consider the case of Figure 1, where we have a set of a certain number (ideally infinite)
of sensors around a determined source (S). S produces a signal s(t), which is propagated
through an inhomogeneous medium. Our principal goal is to determine the location of
S, estimating a solution p(r,−t) for the wave equation. When the spherical wavefront is
propagated, it is deformed by the non-homogeneities that are in the medium. After that,
the signal hn(t) arrives at the n-th sensor and is composed by

hn(t) = f (t− tn)− u(t) + noise(t) (16)

Here, tn is the elapsed time between the start of the signal and the moment when it
arrives at the sensor. u(t) are deformations produced by inhomogeneities, and noise(t)
is the noise present in the medium. The location process and the estimation of u(t) and
noise(t) are impossible with the information of a single sensor. Nevertheless, we can forget
this problem if we use all hn(t) signals. Thus, if we have more sensors, we can obtain a
better estimate of the position.

Figure 1. Transmission of the incident wave from source to sensors.

Let us define hn(T − t) as the signal at the n-th sensor, with a start in t = 0 and a
duration of T seconds. T must be a value that ensures that all sensors can record, at least,
the beginning of the S signal. Now, we can define hn(T − t) = hn(−t) as the time-inverted
signal at the n-th sensor. If we backpropagate hn(−t) from each sensor through the medium,
we can find the position of S. Remember that it is possible because we defined that p(r,−t)
is also a solution to the wave equation.

Figure 2 shows the second step in the TR process. Here, we take hn(−t) and send
it through the medium until it arrives at the S position. Now, u(−t) is included in the
backpropagation process of hn(−t). Its effect is canceled as the signal spreads through the
inhomogeneities. Thus, when hn(−t) arrives at S, we can estimate the position. Note that
if we have a greater number of sensors, we can better estimate the position because this
reduces the deformations from all angles.

Figure 2. Backpropagation of hn(t) signals.
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3. Proposed Method

The general purpose of our work is the treatment of underwater acoustic signals
coming from ship engines to calculate an accurate location of the vehicle. This process
is carried out using only passive sensors, and it is considering a previous data reduction
process that optimizes the bandwidth of a wireless communication channel.

For the latter, we have the final purpose of installing four buoys with hydrophones
that collect the signal in the middle of the water. Each buoy will send a reduced data set
using a wireless communication channel. MPM is the technique used to reduce the amount
of information from the signals in the sensors. After that, the signals will be placed in a
central node, and the localization process will be carried out using the TR method.

The general idea is to carry out the backpropagation of the signals in a simulated way
to reach an accurate identification without using active sensors. However, in this work, the
initial propagation is also presented in a simulated way to demonstrate that the signals
previously treated with MPM can be correctly located.

3.1. Matrix Pencil Method
3.1.1. Signal Test

To perform the first tests concerning MPM, we digitally created signals. The purpose
of this process was to test the operation and efficiency of the method in signals with
known singularities. Capitalizing on the information above and considering the theory
described by Equations (2) and (3), we proceeded to the digital generation of a signal with
24 pre-established singularities. After that, we processed it with MPM and contrasted the
information with the expected poles. Figure 3 shows the comparison between the poles
previously established in the signal generation and those calculated after applying MPM.

Figure 3. Comparison between expected poles and obtained poles in the signal test.

Figure 3 shows that after the MPM process, it is possible to find the poles related to a
signal with known singularities. However, the comparison between the original and the
rebuilt signals should not be made graphically, but using more precise mathematical meth-
ods. For this purpose, we used the “coefficient of determination R2”, defined considering
the linear regression model as [30]

yi = Xiβ + εi, i = 1, 2, . . . , n (17)

where yi represents the i-th element of the Y signal with a size of n, Xi is the i-th row of
the design matrix Xnxp, and β represents a column vector of p positions related to the
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unknown regression coefficients, and εi is defined as the Gaussian normal distribution
(N(0, σ2)). Thus, R2 is defined as

R2 = 1− SSE(X)

SSE(1n)
(18)

where:

SSE(X) =
n

∑
i=1

(yi − Xi β̂)
2 (19)

SSE(1n) =
n

∑
i=1

(yi − ȳ)2 (20)

In our specific case, correlation R2 between the original and the rebuild signal can be
expressed as a percentage derived to 0 ≤ R2 ≤ 1. Thus, the comparison in Figure 3, where
all the original poles were rebuilt, indicates a R2 of 100%.

3.1.2. Definition of M

Mckenna (2012) in [31] states that the principal components of the signal of motors of
vessels are below 1 kHz. Then, according to the Nyquist theory, the minimum sampling
rate should be 2 kHz [32]. In our case, we used a bulk carrier signal with a sampling rate of
2.2 kHz. Mckenna (2012) also indicates that the fundamental components of the ships used
in their work are predominantly above 40 Hz [31]. Thus, a signal with a duration of one
second contains the general information related to the ship, time that we use for our test.
This signal is part of a private database belonging to the Colombian army.

In order to define the most appropriate value of M, we used the process proposed
in Equation (7). We discovered that for the signal mentioned above, with p = 2, the M
value could be above 1600. Likewise, we found that in general, this value depends on the
characteristics and nature of the treated signals. Therefore, we decided to evaluate R2 and
the processing time as functions of M, and we obtained the information shown in Figure 4.
Computational load corresponds to the processing time in an AMD Ryzen 7 3700U with
Radeon Vega Mobile Gfx of 64 bits.

Figure 4. Processing time and correlation coefficient as a function of M, in a bulk carrier ship signal
with a sample rate of 2.2 kHz.

In order to define how the relation of the parameters treated in Figure 4 changes as a
function of the number of points, we proceeded to perform the comparisons using the same
signal, but with a different sample rate (4.4 kHz). Figure 5 shows how these parameters
vary as a function of M for this particular case.

It is possible to mention that in the case of Figure 5, to achieve a correlation above 90%,
at least 1600 poles are required, with an estimated processing time of 67.10 s. In contrast,
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in the signal of Figure 4, to obtain these same reconstruction parameters, 860 singularities
are required, with a processing time of 8.8 s. This information indicates that M and time
processing are directly proportional to the number of points corresponding to the signal of
interest and thus could affect the method efficiency.

Figure 5. Processing time and correlation coefficient as a function of M, in a bulk carrier ship signal
with a sample rate of 4.4 kHz.

Similarly, we found that the relationship between M and R2 depends on the parameters
of the medium and the measurement instruments. For this reason, we recommend that an
analysis such as those presented in Figures 4 and 5 could be useful to define the propitious
value of M. Moreover, this definition could help with the characterization of the medium,
which can be carried out with recordings without boats. This process could eliminate the
poles calculated with MPM belonging to the background noise to leave only the signal of
interest. Furthermore, this could broaden the scope of the recording.

Considering the information mentioned above, it is clear that the definition of M can
become a complicated process for the implementation of the method in natural signals. Is it
necessary to perform a correlation and processing analysis, as shown in Figures 4 and 5.
Consequently, this information must be collected by the final instruments and in the
required environment. For our case, we opted for a minimum correlation of 90%, which
means a value of M of at least 860.

3.2. Time Reversal Method

For the TR implementation, based on the information in Section 2.2, the simulation
of the propagation and backpropagation was carried out. As a working grid, we defined
a 100 × 100 matrix for a delimited area of 1 km2, with a distance between the rows and
columns of 10 m. The precision of the method and the computational load are directly
proportional to the number of points in the grid. Capitalizing on the size of the targets we
want to track, we estimated that the distance in the grid, every 10 m is sufficient to give a
good approach to the location.

Our proposed localization process calculates the estimated points with the highest
amount of energy throughout the work area after the backpropagation process. The error
in this estimation depends on the distance between the points of the grid (10 m in our case).
Then, TR estimates the position of the target within a delimited area to around a point in
the grid, not in an exact location. The same occurs with the sensors, whose position can be
within the established area between two grid points. In our case, this position can vary by
more or less than 5 m on the X and Y axes.

Its location may change as a function of time due to environmental effects. Because of
this, the GPS monitoring of hydrophones can adjust the changes well to perform TR with
the pertinent positional considerations. Wang (2021) addresses some methods adjusting
the changes of position on the buoys [33].
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Once the work area was defined, we focused on the specifications of the parameters.
We determined the location and number of sensors, such as the initial location of the source.
Specifically for our project, we carried out the process using a maximum of four sensors.
Thus, in our preliminary simulation, we used an array of hydrophones with a symmetrical
rhombus shape.

Once the simulation parameters were determined, we proceeded to propagate the
signal generated by the source. For this, we proliferated a real signal from a landing boat
vehicle, of 3 s of duration and a sample rate of 4.4 khz, along the grid until it reached each
of the sensors. For the propagation of the signal, we must take into account the inherent
delay in the speed of sound (for seawater, approximately 1500 m/s) and the attenuation
as a function of the distance of the wave. For this fact, we used the solution to the plane
wave equation:

p(r, t) = Ae−j(ωt−kr) (21)

where A is defined by the magnitude in f (t) and its attenuation as a function of distance,
ω is the angular frequency, k the wavenumber and r distance.

At this point, we are simulating the propagation of the landing boat signal, collecting
information in each sensor. In practice, this process would be experimental, not like
backpropagation, which must be simulated to guarantee the calculation of the location
without using active sensors. Once the signal information is available in each of the sensors,
regardless of whether the signal collection is simulated or experimental, fn(−t) is defined
and the signals are backpropagated, as a summation in each of the grid points following
Equation (21).

To estimate the location of the source, we calculate the total power at each of the grid
points (P(n,m)), following the Equation (22). Where m and n are in point position, T, the
total time of f (t) and gn,m is the sum of the backpropagated signals at point n, m:

P(n,m) =
∫ T

0
( fn,m(t))2dt (22)

We decided to verify the method’s effectiveness in simulation by varying the source’s
location throughout all points in the grid and estimating the difference between the location
proposed and the location calculated using TR. Figure 6 shows the contour plot in a case
where sensors have a rhombus-shaped distribution. The location of sensors is represented
as the shaded triangles and the difference between S and the calculated position is shown
as the contour distribution, where the function of the distance between those points in
meters is represented with a color scale: yellow represents the lowest error calculation
(0 m) and dark blue is the highest value in the simulation process (500 m).

The average distance between the position of the source and the simulated value is
0 m inside the rhombus shadow generated by the sensors array. Thus, inside this area,
the position calculation of a target is carried out correctly using the TR method. On the
other hand, we note that outside of the rhombus mentioned above, the accuracy decreases.
The error value increases as a function of the distance. The highest error values are presented
in the corners of the grid (above 485 m). Likewise, we should consider that the range and
the maximum distance between the sensors will depend on environmental factors such as
propagation speed, the attenuation coefficient, and ambient noise. Then, it indicates that
the characterization of the medium is a fundamental axis for the implementation of the
method in real environments.
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Figure 6. Contour plot of TR calculation accuracy in a rhombus-shaped array in an area of 1 km2

for a landing ship signal. Red triangles are sensor positions and the color scale is a function of the
difference between the expected and calculated location.

4. Method Validation
4.1. Data Reduction Produced by MPM

Our final objective will be recording the signals of boats in the middle of the ocean,
which is why a wireless communication channel is needed. This requirement implies
the highest possible reduction in information in the communication process. Fortunately,
MPM facilitates this procedure. Taking as an example the signal of a bulk carrier related
to Figure 4, we have a 2200 positions vector, corresponding to 1 s with a sampling rate
of 2.2 kHz. Each position matches a double number (8 bytes), and the array has a size of
141 Kbits [34].

After using the MPM, we have M complex double numbers (16 bytes). Therefore, it
implies that the total number of bits (Tnb) is:

Tnb = 128M (23)

We notice that, considering Fourier theory, in Figure 3, each singularity with an
imaginary positive part has a corresponding complex conjugate. This information is
redundant and could be omitted to reduce the number described by Equation (23) on the
communication process. Therefore, the Tnb value is reduced to:

Tnb = 64M (24)

Data reduction is inversely proportional to the correlation coefficient, so these param-
eters need to be defined depending on the application and the medium restrictions. In the
case of our bulk carrier signal, we can talk about the percentages described in Table 1. Thus,
to ensure a minimum reconstruction of 90%, a value of M = 680 is necessary, obtaining a
data reduction of 69.13%.

4.2. Location Simulation Process
4.2.1. Simulation Analysis Derived by the Change in the Distribution of the Sensors

Considering the distribution observed in the simulation of Figure 6, related to a
landing boat, we opted for the simulation of a time reversal mirror (TRM), which consists
of a linear arrangement of sensors that allows the TR calculation in an orthogonal direction
from the array [29], using the same signal from Figure 6. The purpose of this simulation
was to compare its efficiency, obtained using the rhombus arrangement.

Figure 7 shows the contour plot of the TRM arrangement on a 720 × 1000 m grid
with a point spacing of 10 m. In addition, the formatting guidelines (color and marking)
are consistent with the simulation of Figure 6. Here, it is possible to identify an ellipse
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related to the points where the calculation error is equal to 0 m. The ellipse center is in
the midpoint of the four sensors and the maximum distance, which is orthogonal to the
arrangement, is approximately 450 m.

Table 1. Information about the compression of a bulk carrier signal with rate sampling of 2.2 kHz.

M Compression Percentage (%) Correlation Coefficient (R2)

10 99.09 0.25
50 97.72 0.39
80 96.36 0.441

100 95.45 0.4715
200 90.909 0.5638
300 86.363 0.6318
400 81.81 0.6922
500 77.305 0.756
600 72.727 0.803
700 68.182 0.842
800 63.687 0.8812
900 59.14 0.9312
1000 54.54 0.955

Figure 7. Contour plot of the accuracy in TRM array in an area of 0.72 km2 for a landing ship signal.
Red triangles are sensor positions and the color scale is a function of the difference between expected
and calculated location.

Note that the shadow of the ellipse is around the sensors, which indicates that the
array can calculate the target location symmetrically to the right and left. Similarly, the
simulation with this arrangement allows calculating the maximum range of the sensors
(approximately 450 m). This value is specific for this case, and it depends on specific
environmental conditions. We find that under the same signal and environment parameters,
the rhombus-shaped arrangement has a total number of points with zero error of 6020,
while in the case of the TRM, it is 4007. These values will also depend on the distance
between the sensors and the quality of the signal.

Note that the changes of frequency in the observer, produced by the Doppler effect,
are not taken into account in our simulations. The latter is because the presented cases
refer to a controlled environment with a fixed and immobile objective. However, this
phenomenon must be considered in future steps of the work to determine how changes in
the frequency and magnitude in the observer signal affect the total power levels in the grid
and the subsequent localization process.
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4.2.2. Simulation Analysis Derived by the Change in Signal of Interest

Similar to the previous process, a TRM simulation was performed using the bulk
carrier signal related to Figures 4 and 5. The differences between this signal and the one
from the landing boat, in Figures 6 and 7, are the sampling rate, time, signal-to-noise ratio,
and its total power. In the case of the landing boat, we have a signal of 3 s of duration, with
a sampling rate of 4.4 kHz, total noise of −6.1381 dB, and a harmonic distortion power
of −8.2218 dB. On the other hand, the bulk carrier signal has 1 s with a sampling rate of
2.2 kHz, the noise of −9.6888 dB, and harmonic distortion power of −51.2480 dB. This
is a good indicator to evaluate the difference in the performance of the method with the
signal variations caused by the ships and measurement conditions. Figure 8 shows the
efficiency analysis in the case of the bulk carrier signal in a grid under the same conditions
as Figure 6.

Figure 8. Contour plot of TR calculation accuracy in a TRM in an area of 1 km2 to the Bulk carrier
signal. Red triangles are sensor positions and the color scale is a function of the difference between
expected and calculated location.

Note that the area delimited by the yellow color, which determines the positions with
zero error, is smaller than that presented in Figure 8. The total range orthogonal to the
sensors also drops considerably, from approximately 500 to 350 m. Thus, the total amounts
of energy and noise of the signal have a key role in the precision of the method. This must
be carefully considered in real implementations.

4.2.3. Simulation Analysis of the Signals Treated with MPM

Once the MPM process is implemented in the acoustic signals for the compression
process and their information is sent through wireless channels, we can begin with the
location process using TR. Our goal is to prove that it is possible to estimate the location of
a target using only passive sensors in an inhomogeneous medium. Nevertheless, due to
logistical difficulties, real experimentation is a task for the future.

For determining the difference between the efficiency of TR in pure signals and
signals previously treated with MPM, we decided to implement the simulation of Figure 9
following the same parameters of the simulation of Figure 8 (size, environmental conditions,
position of sensors). This simulation was performed by using the information provided by
MPM after the reconstruction of the signal, with the parameters described in Section 3.1.2
(M = 860 and R2 = 90%).

Note that in comparison to the original simulation; the number of points with an
error equal to 0 is slightly smaller. Specifically, for the case of the pure signal, there are
2016 points in which the error is null, while in the case of the reconstructed signal, there
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are 1552 points. This represents a change in the efficiency of 23%, which can be considered
low according to the reduction in information in the communication process.

Figure 9. Contour plot of the accuracy in the TRM array in an area of 1 km2 to a bulk carrier signal
previously treated with MPM (M = 860). Red triangles are the positions of the sensor and the color
scale is a function of the difference between the expected and calculated location.

4.2.4. Simulation Analysis of Signals Treated with MPM, Including Noise Levels

We need information about how the noise presented in the environment can also
affect the localization process. For this reason, after adding random noise of −48 dB in the
propagation and backpropagation threads, we obtained the simulation of Figure 10.

In this simulation, we obtained 732 points of null error, in contrast to the points of
the signal without noise (1552). This difference confirms that the method efficiency is
inversely proportional to the background noise and the signal-to-noise ratio. One way to
improve this problem is to estimate the fundamental components related to the noise of
the environment, using MPM. This characterization could reduce the noise levels in the
reconstructed signal and improve the effectiveness and scope of the method. Although this
can compromise the correlation between the original signal and the reconstructed one, as
only ambient noise would be eliminated, so the information from the ship signal would
be cleaner.

Figure 10. Contour plot of TR calculation accuracy in a TRM in an area of 1 km2 to a bulk carrier
signal previously treated with MPM (M = 860), and adding random noise in the propagation of the
waves. Red triangles are the positions of the sensor and the color scale is a function of the difference
between the expected and calculated location.
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5. Conclusions

We demonstrated a method based on MP for the compression of acoustic signals
captured by hydrophones. Simulated results show data compression percentages above
60%, with a correlation coefficient of 90%. The subtraction of the estimated noise lev-
els of the environment helps to improve the calculation of specific singularities in the
acquired signal.

The main problem in MPM implementation is the definition of the M parameter,
which strictly depends on the nature of the signal, the bandwidth and computational load
requirements. We found that the processing time is proportional to the signal size, which
could affect the final application. Therefore, a requirement analysis must be performed on
the signal to use a vector that is as small as possible.

We showed the implementation of TR in signals compressed by MPM in two different
types of ships using two arrays. Furthermore, we also analyzed how ambient noise and
quality in the reconstruction interfere with the localization process. Specifically, we find
that the scope of the location depends on the power of the signal of interest and the signal-
to-noise relation. Likewise, we found that the implementation of TR in signals treated with
MPM (correlation of 90%) provides a difference in the performance of 23% with respect
to the original signals. The accuracy of the localization process could be improved by
characterizing the representative poles of the noise in the environment so as not to include
them in the calculations.

The principal difficulty of our method is the identification of the characteristics of the
medium and the signal. For the identification process, the signals must be backpropagated
in a simulated environment. Due to this fact, it is necessary to experimentally estimate
the average propagation speed and the average attenuation. Likewise, we recommend
carrying out a previous analysis related to the noise present on the medium and the relation
of the signal with the correlation considering the M value.
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