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Objective: Axillary lymph node (ALN) metastasis status is important in guiding treatment

in breast cancer. The aims were to assess how deep convolutional neural network (CNN)

performed compared with radiomics analysis in predicting ALN metastasis using breast

ultrasound, and to investigate the value of both intratumoral and peritumoral regions in

ALN metastasis prediction.

Methods: We retrospectively enrolled 479 breast cancer patients with 2,395 breast

ultrasound images. Based on the intratumoral, peritumoral, and combined intra- and

peritumoral regions, three CNNs were built using DenseNet, and three radiomics models

were built using random forest, respectively. By combining the molecular subtype,

another three CNNs and three radiomics models were built. All models were built on

training cohort (343 patients 1,715 images) and evaluated on testing cohort (136 patients

680 images) with ROC analysis. Another prospective cohort of 16 patients was enrolled

to further test the models.

Results: AUCs of image-only CNNs in both training/testing cohorts were 0.957/0.912

for combined region, 0.944/0.775 for peritumoral region, and 0.937/0.748 for

intratumoral region, which were numerically higher than their corresponding radiomics

models with AUCs of 0.940/0.886, 0.920/0.724, and 0.913/0.693. The overall

performance of image-molecular CNNs in terms of AUCs on training/testing cohorts

slightly increased to 0.962/0.933, 0.951/0.813, and 0.931/0.794, respectively. AUCs of

both CNNs and radiomics models built on combined region were significantly better than

those on either intratumoral or peritumoral region on the testing cohort (p < 0.05). In the

prospective study, the CNN model built on combined region achieved the highest AUC

of 0.95 among all image-only models.
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Conclusions: CNNs showed numerically better overall performance compared with

radiomics models in predicting ALN metastasis in breast cancer. For both CNNs and

radiomics models, combining intratumoral, and peritumoral regions achieved significantly

better performance.

Keywords: breast cancer, deep learning, radiomics, axillary lymph nodemetastasis, breast ultrasound, peritumoral

region

INTRODUCTION

Breast cancer is the leading malignancy in females (1). Axillary
lymph node (ALN)metastasis status is one of the most important
factors in guiding treatment decision making in breast cancer
(2). Traditionally, the nodal status was assessed by surgical
methods such as sentinel lymph node biopsy (SLNB) and
axillary lymph node dissection (ALND) (3). According to the
guideline from American Society of Clinical Oncology, SLNB
is considered to have a high overall accuracy ranging from 93
to 97.6% with a relatively low false negative rate (FNR) ranging
from 4.6 to 16.7% in detecting axillary metastasis (4). However,
these surgical approaches have been considered controversial
due to the invasiveness, potential complications, and possible
overtreatment (3–6).

Ultrasound is a widely-used tool in breast cancer assessment
as it is non-invasive, radiation-free, real-time and well-tolerated
in women. Previous studies have shown that axillary ultrasound

(AUS) may provide useful information relevant to ALN status in
breast cancer (7). However, AUS alone has moderate sensitivity

and may not be a reliable predictor for nodal metastasis (7, 8).
Recently, imaging-based machine learning approaches have been

demonstrated promising in cancer diagnosis. There are two most

popular machine learning approaches: radiomics analysis and

convolutional neural networks (CNN). Radiomics analysis relies
on a pipeline including extraction of numerous handcrafted

imaging features, followed by feature selection and machine
learning-based classification. Handcrafted radiomics features
extracted from the breast tumor area have been demonstrated
predictive in ALN metastasis, with FNRs ranging from 13.9 to

25% (9, 10). However, handcrafted features are limited to the
current knowledge of medical imaging, which may limit the
potential of the predictive model. Deep learning improves this

handcrafted pipeline by automatically learning discriminative
features directly from images. Recent studies have shown
that deep CNN-based approaches can achieve state-of-the-art

performance in lesion detection and cancer diagnosis (11–13). To
our knowledge, no studies have assessed breast ultrasound-based
CNN in predicting ALN status for breast tumor.

Most studies have focused on mining predictive imaging
features within the tumor, while the surrounding tissues were
ignored. Previous evidence has shown that the peritumoral
region—the tumor-adjacent parenchyma immediately
surrounding the tumor mass—may offer valuable outcome-
associated information (14–16). Two recent studies have
demonstrated that handcrafted imaging features from
peritumoral region in Dynamic Contrast-Enhanced MRI

(DCE-MRI) are associated with sentinel lymph node metastasis
(9) and pathological complete response to neoadjuvant
chemotherapy (17) in breast cancer. Here, we hypothesize that
deep CNN built based on intra- and peritumoral regions in breast
ultrasound could provide relevant information in predicting
ALN status. We are interested in comparing the performance
of deep CNNs and radiomics models. Additionally, breast
cancer can be classified into different molecular subtypes with
distinct prognosis and respond differently to specific therapies
(18). Therefore, we further assessed if deep CNNs or radiomics
models combining imaging features and molecular subtypes
could offer improved accuracy.

In this hypothesis-driven study, we first developed deep CNNs
and radiomics models based on intratumoral, peritumoral, and
combined regions in breast ultrasound images for predicting
ALN metastasis. We then aimed to find out how on each region
deep CNNs performed compared with radiomics models.

MATERIALS AND METHODS

Study Population
The study was approved by the Ethics Committee of Peking
University Shenzhen Hospital (PUSH). Informed consent was
waved from all patients by the ethics committee of PUSH. From
the pathology and radiology databases in PUSH, a retrospective
search was performed to recruit female patients with breast
cancer between January 2016 and December 2018. The inclusion
criteria were patients (1) with histologically-confirmed primary
breast cancer, (2) with pretreatment breast ultrasound images,
(3) with known ALN metastasis status determined by final
histopathology, (4) with known molecular subtypes, and (5)
without neoadjuvant chemotherapy prior to SLNB or ALND. The
exclusion rules were that patients (1) with very small region of
interest in the ultrasound images (<100 pixels) and (2) without
SLNB or ALND. Finally, 479 patients with 479 breast tumors
(136 positive and 343 negative ALNs) were included in this study.
This cohort was randomly divided into a training cohort of 359
patients and a testing cohort of 120 patients at a ratio 3:1. The
patient recruitment pathway was shown in Figure S1.

The baseline clinical and histopathological data were derived
from patient medical records, including age, histological grade,
immunohistochemistry (IHC) results andALN status (positive or
negative). According to the 2017 St Gallen International Expert
Consensus, each patient was classified into one of four molecular
subtypes: human epidermal growth factor receptor-2 (HER2)
positive, triple-negative, Luminal A, and Luminal B (18). The
status of HER2, ER, progesterone receptors (PR) and Ki-67 was
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assessed by IHC. Based on the IHC results, the subtype can
be determined.

Ultrasound Image Acquisition
The breast ultrasound examinations were performed by breast
radiologists in our center using the Hitachi Ascendus ultrasound
system equipped with 13–3 MHz linear array transducers. The
examinations and assessments were conducted according to the
5th edition of Breast Imaging Reporting and Data System (BI-
RADS) presented by American College of Radiology (ACR) (19).
The parameters were set as follows: depth, 4–5 cm; brightness
gain, 10–25 dB; dynamic range, 70 dB; frame rate, 26 frame per
second. Patients were placed in supine or lateral position. The
field of view was set to have the pectoralis muscle at the deepest
aspect of the image. The focal zone was adjusted to be centered
at the lesion. Ultrasound images were acquired and documented
into the Picture Archiving and Communication Systems (PACS).
For each lesion, five images were selected from PACS by a breast
radiologist (XL with 5 years’ experience in breast radiology) and
used in our study according to the following scheme: (1) an image
along the longest axis of lesion. (2) an image orthogonal to the
first image. (3) three images at other angles where the lesion
was clearly presented. The five images together represented the
ultrasonographic features of a 3D lesion from different angels.
For all 479 patients, we finally obtained 2395 images in total,
including 1715 images (343 patients) in the training cohort and
680 images (136 patients) in the testing cohort.

ROI Delineation
The tumor region in each ultrasound image was manually
delineated using the ITK-SNAP software (http://www.itksnap.
org) by one radiologist (XL) who were blinded to the clinical and
histopathological data of patients. A second breast radiologist
(DS with 12 years’ experience in breast radiology) reviewed all
the delineations. Any disagreement between the two raters was
resolved by discussion and consensus. The peritumoral regions
were obtained by dilating the delineated tumor contour by
∼5mm based on a standard morphological dilation operation
using an inhouse program implemented in Matlab 2016b
(MathWorks, Natick, MA). For each ultrasound slice, three
region of interest (ROI) images were finally obtained: the
intratumor ROI, the peritumor ROI, and the combined ROI that
merged the intratumor and the peritumoral regions. Examples of
ultrasound slices overlapped with intratumoral and peritumoral
ROIs for two patients were shown in Figure 1.

Deep Learning With DenseNet
Deep CNN can automatically learn discriminative features from
imaging data by stacking multiple convolutional layers. Among
different CNN variants, densely connected convolutional
network (DenseNet) has shown superior classification
performance as it strengthens feature propagation while
reduces parameter number (20). This is accomplished by
connecting each layer to every other layer in a feed-forward
fashion with less computational complexity. Here, our model
was built based on the standard DenseNet-121 (20). All ROI
images were resized into 224 × 224. The resized ROI images

were used as input and transformed through the chained
convolutional layers, yielding a class probability vector as the
prediction results. The network was trained from scratch with
cross entropy loss function and Adam optimizer with a learning
rate of 0.0001, a batch size of 16, and a regularization weight of
0.0001. In the training cohort, data augmentation approaches
including random rotation, random shear and random zoom
were employed before the training procedure to avoid possible
overfitting. The network was implemented on Keras (https://
keras.io/) with the TensorFlow library as the backend (https://
www.tensorflow.org/). The architecture of the image-only CNN
network was shown in Figure 2. The details of the convolutional
network implementation can be found in Table S1.

Deep Learning-Based Predictive Model
Building
For predicting the nodal status, three image-only CNN models,
including the intratumoral CNN, the peritumoral CNN and the
combined-region CNN, were built with the DenseNet based
on the intratumor ROI images, the peritumor ROI images,
and the combined ROI images, respectively. Furthermore, three
corresponding image-molecular models were also built based on
the DenseNet by using both ROI images and molecular subtype
information as the network input. Specifically, the molecular
subtype information was incorporated as input to the fully-
connected layers of the DenseNet, as shown in Figure 2.

Radiomics Feature Extraction and
Selection
For each ultrasound slice, 104 radiomics features were extracted
from each of the three ROI areas by using an open-source
toolbox named Pyradiomics (https://pyradiomics.readthedocs.
io) (21). Three groups of features were extracted, including
shape features, intensity features, and texture features, as
summarized in Table S2. Eleven shape features describing the
geometric characteristics of the ROI were extracted. Eighteen
intensity features describing the first-order distribution of the
ROI intensities were extracted. Seventy-five texture features
were computed to describe the patterns, or the high-order
distributions of the ROI intensities with five different methods,
including the gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), gray level size zone
matrix (GLSZM), gray level dependence matrix (GLDM), and
neighborhood gray-tone difference matrix (NGTDM). The
detailed definitions of the radiomics features used can be found
in two articles (22, 23). Having high-dimensional radiomics
features, feature selection is required to reduce the dimension
and avoid overfitting. Here an efficient machine learning-based
wrapper algorithm, Boruta, was used to select a subset of
features that were relevant to the prediction outcome (24).
Boruta evaluated feature relevance iteratively by comparing the
importance of original features with that achieved by artificially
added random features, yielding an all-relevant subset of features
that was considered optimal for the classification task. Here we
used the R package Boruta for Boruta feature selection.
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FIGURE 1 | Examples of ultrasound slices overlapped with intratumoral regions (green) and peritumoral regions (red) from two patients. (Top) A patient with positive

ALN. (Bottom) A patient with negative ALN.

FIGURE 2 | The architecture of the deep CNN used in our study.

Radiomics-Based Predictive Model
Building
Based on the selected radiomics features, three image-only
radiomics models were built using random forest algorithm
(25) based on the intratumor ROI, the peritumor ROI, and
the combined ROI, respectively. Correspondingly, three image-
molecular radiomics models were also built using random forest
by integrating ROI images and molecular subtype information as
the input. After testing different settings, the tree number of all
random forest classifiers was set to 300. Gini index was used as
importance measure (26). The R package randomForest was used
for random forest classification.

Statistical Analysis
The difference in age, histological grades and molecular
subtypes between training and testing cohorts was assessed
with χ

2 test or Wilcoxon rank-sum test, where appropriate.

All 12 prediction models (3 image-only CNNs, 3 image-
only radiomics models, 3 image-molecular CNNs and 3
image-molecular radiomics models) were trained on the
training cohort and evaluated on the testing cohort. Because
each tumor had five ultrasound images, there were five
corresponding prediction outcomes in the form of class
probabilities. Among them, the median probability was chosen
as the final prediction of each tumor and was used for
statistical analysis. The prediction performance was assessed
by the area under the receiver operating characteristic (ROC)
curve (AUC), accuracy (ACC), sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), and negative predictive
value (NPV). The AUCs between two models were statistically
compared using a DeLong test (27). All statistical analyses
were performed with R software, version 3.5.1 (https://www.r-
project.org/). All statistical tests were two sided, and p < 0.05
indicated significant.
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RESULTS

Patient and tumor characteristics are summarized in Table 1.
No significant difference was found in patient age, histological
grades, molecular subtypes and ALN status between the training
and testing cohorts (p= 0.457 to 0.844).

Image-Only Deep CNNs vs. Radiomics
Models
The predictive performance of the three image-only deep CNNs
and the three image-only radiomics models in both training and
testing cohorts is summarized in Table 2. Their ROC curves
in both training and testing cohorts are shown in Figure 3,
respectively. The radiomics feature selection results can be found
in Table S3. Among all six image-only models, the combined-
region CNN achieved the best performance with a highest AUC
of 0.912 and a highest accuracy of 89.3% in the testing cohort.
In the testing cohort, the CNN built on each region performed
better than the corresponding radiomics model built on the same
region in terms of AUC and accuracy, but the differences of AUCs
between the CNNs and their corresponding radiomics models
were not statistically significant (Image-only CNN vs. Radiomics:
Intratumoral: AUC 0.748 vs. 0.693, p= 0.534; Peritumoral: AUC
0.775 vs. 0.724, p = 0.531; Combined-region: AUC 0.912 vs.
0.886, p= 0.601).

Image-Molecular Deep CNNs vs.
Radiomics Models
The performance of the three image-molecular CNNs and
the three image-molecular radiomics models is summarized in
Table 3. Their ROC curves in both training and testing cohorts
are shown in Figure 4. From Tables 2, 3, it can be found that the
overall performance of the image-molecular models was slightly
higher than those of their corresponding image-only models in
the testing cohort, but no significant AUC differences were found
between them. Among all 12 predictive models built in our study,
the image-molecular CNN model built based on the combined-
region achieved the best performance with a highest AUC of
0.933, a highest accuracy of 90.3% and a highest NPV of 0.958
in the testing cohort. All image-molecular CNNs achieved higher
AUCs and higher accuracy than their corresponding radiomics
models built based on the same tumoral region, but there were
no significant differences between their AUCs (Image-molecular
CNN vs. Radiomics: Intratumoral: AUC 0.794 vs. 0.706, p =

0.308; Peritumoral: AUC 0.813 vs. 0.743, p = 0.334; Combined-
region: AUC 0.933 vs. 0.905, p= 0.531).

Assessment of Peritumoral and
Intratumoral Regions
The predictive value of different tumoral regions were assessed
by comparing the models built with the same machine learning
methods (CNN or radiomics). It was observed that for the
image-only CNNs and image-only radiomics models, the AUCs
of the peritumoral models were slightly higher than those of
the intratumoral models in the testing cohort, and their AUC
differences were not significant (Image-only Peritumoral vs.
Intratumoral: CNN: AUC 0.775 vs. 0.748, p = 0.746; Radiomics:

AUC 0.724 vs. 0.693, p = 0.707). Similar results have been
observed for the image-molecular models (Image-molecular
Peritumoral vs. Intratumoral: CNN: AUC 0.813 vs. 0.794, p =

0.806; Radiomics: AUC 0.743 vs. 0.706, p= 0.647).
The image-only CNNs and image-only radiomics models built

based on combined-region achieved higher AUCs than their
corresponding models built based on either the intratumoral
or peritumoral region in the testing cohort, where the
AUC differences between them were significant (Image-only
Combined-region vs. [Peritumoral, Intratumoral]: CNN: AUC
0.912 vs. [0.775, 0.748], [p = 0.049, p = 0.031]; Radiomics:
AUC 0.886 vs. [0.724, 0.693], [p = 0.014, p = 0.004]). The
image-molecular CNNs and image-molecular radiomics models
built based on combined-region also achieved higher AUCs.
For image-molecular models, the difference between AUCs of
the combined-region CNN and either the intratumoral CNN or
peritumoral CNN was significant (Image-molecular Combined-
region vs. [Peritumoral, Intratumoral]: CNN: AUC 0.933 vs.
[0.813, 0.794], [p = 0.048, p = 0.046]; Radiomics: AUC 0.905 vs.
[0.743, 0.706], [p= 0.006, p= 0.003]).

Prospective Validation
To further validate the CNNs and radiomics models, we
performed a validation study using a relatively small prospective
cohort. From November 18 2019 to December 12 2019, 16 breast
cancer patients (6 node positive and 10 node negative) with
80 breast ultrasound images (each had 5 images as described
in section Ultrasound Image Acquisition) were finally enrolled
for analysis. Age, grade, and node status were obtained for the
16 patients and were summarized in Table 1. All six image-
only prediction models were tested. As we did not obtain IHC
results, the image-molecular models were not tested. The model
performance in this prospective cohort was summarized in
Table 4. The ROC curves of all tested models were shown in
Figure S2. We observed that the CNN built on the combined
region achieved the highest AUC of 0.95 and the highest accuracy
of 81.3%, where two patients with positive node and one
patient with negative node were misclassified. In general, CNNs
outperformed radiomics models; prediction models built on
combined region outperformed those built on either intratumor
region or peritumor region only. The results were consistent with
previous observation on the retrospective cohort.

DISCUSSION

The major findings of this study were that deep CNN, built
by combining intratumoral and peritumoral regions in breast
ultrasound images, outperformed radiomicsmodels in predicting
ALN metastasis. Although imaging-based machine learning
approaches have been demonstrated useful in assessing breast
cancers, few studies have been done on evaluating the value
of intra- and peritumoral regions in metastasis prediction (9),
and no studies have investigated how breast ultrasound-based
deep CNNs performed compared with radiomics models. In
this study, we first developed three types of CNN models
based on intratumoral, peritumoral, and combined regions,
respectively in ultrasound images for assessing the nodal
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TABLE 1 | A summary of patient and tumor characteristics of the study population.

Variables All retrospective

patients (n = 479)

Training

cohort (n = 359)

Testing

cohort (n = 120)

P-value Prospective

cohort (n = 16)

P-value

Age (mean ± SD) 48.7 ± 11.1 48.9 ± 10.9 47.9 ± 11.9 0.844 49.8 ± 11.3 0.680

Histological grade 0.755 0.556

I 187 (39.0%) 140 (39.0%) 47 (39.2%) 8 (50.0%)

II 249 (52.0%) 190 (52.9%) 59 (49.2%) 7 (43.7%)

III 43 (9.0%) 29 (8.1%) 14 (11.6%) 1 (6.3%)

Molecular subtype 0.457 - -

Luminal A 45 (9.4%) 33 (9.2%) 12 (10.0%) -

Luminal B 322 (67.2%) 239 (66.6%) 83 (69.2%) -

HER2 positive 57 (11.9%) 44 (12.3%) 13 (10.8%) -

Triple negative 55 (11.5%) 43 (11.9%) 12 (10.0%) -

ALN 0.829 0.418

Positive 136 (28.4%) 101 (28.1%) 35 (29.2%) 6 (37.5%)

Negative 343 (71.6%) 258 (71.9%) 85 (70.8%) 10 (62.5%)

P-values were calculated by using χ
2 test or Wilcoxon rank-sum test. P-values in the fifth column were calculated between training and testing cohorts. P-values in the seventh column

were calculated between training and prospective cohorts.

TABLE 2 | A performance summary of the image−only CNNs and image−only radiomics models in training and testing cohorts in predicting ALN metastasis of breast

cancer.

Model Dataset AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image−only CNN Intra Training 0.937

(0.908, 0.968)

84.6

−

95.7

(80.4, 98.9)

80.3

(76.6, 95.4)

65.2

(60.7, 87.8)

98.0

(92.5, 99.5)

Testing 0.748

(0.622, 0.874)

71.8 76.0

(48.0, 92.0)

70.5

(60.3, 94.9)

45.2

(39.2, 77.8)

90.2

(84.0, 96.7)

Peri Training 0.944

(0.920, 0.969)

87.0

−

95.7

(89.1, 100.0)

83.7

(78.7, 91.6)

69.3

(63.5, 81.1)

98.0

(95.3, 100.0)

Testing 0.775

(0.665, 0.886)

72.8

−

80.0

(56.0, 92.0)

70.5

(64.1, 92.3)

46.5

(40.9, 72.7)

91.7

(85.3, 96.8)

Cmb Training 0.957

(0.926, 0.989)

93.7

−

92.6

(86.2, 97.9)

94.1

(90.8, 99.6)

86.1

(80.0, 98.8)

97.0

(94.5, 99.1)

Testing 0.912

(0.834, 99.0)

89.3

−

85.7

(67.9, 96.4)

90.7

(84.0, 100.0)

77.4

(66.7, 100.0)

94.4

(89.0, 98.6)

Image−only

radiomics

Intra Training 0.913

(0.870, 0.956)

87.9

−

84.8

(75.0, 91.3)

89.1

(86.6, 95.8)

75.0

(70.9, 88.6)

93.8

(90.6, 96.4)

Testing 0.693

(0.573, 0.812)

68.9

−

56.0

(32.0, 100.0)

73.1

(28.2, 100.0)

40.0

(30.0, 100.0)

83.8

(81.0, 100.0)

Peri Training 0.920

(0.882, 0.958)

87.3

−

82.6

(72.8, 93.5)

89.1

(80.3, 96.7)

74.5

(63.6, 89.9)

93.0

(90.2, 97.0)

Testing 0.724

(0.609, 0.839)

70.9

−

64.0

(48.0, 100.0)

73.1

(38.5, 91.0)

43.2

(32.4, 66.7)

86.4

(83.5, 100.0)

Cmb Training 0.940

(0.908, 0.973)

87.1

−

92.3

(81.3, 96.7)

85.2

(82.3, 95.9)

70.0

(66.1, 88.1)

96.7

(92.8, 98.6)

Testing 0.886

(0.831, 0.942)

83.3

−

87.5

(72.5, 97.5)

81.8

(75.5, 91.8)

63.6

(55.7, 78.7)

94.7

(90.0, 98.9)

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative

prediction value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined−region model, respectively. Statistical quantifications were

demonstrated with 95% confidential interval (CI), when applicable.

metastasis, and further compared the performance of the
three CNNs with three radiomics models built based on the
same regions in nodal metastasis prediction. Moreover, we
evaluated if further benefit can be obtained by integrating

ultrasound images and molecular subtype information into
the predictive models. Note that besides a high AUC, a high
NPV is also important as accurately identifying patients with
negative nodes [∼65% in all breast cancer patients (28)]
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FIGURE 3 | The ROC curves of the three image-only deep CNNs and the three image-only radiomics models in both training and testing cohorts. (A) ROC curves

of image-only CNNs in training cohort. (B) ROC curves of image-only CNNs in testing cohort. (C) ROC curves of image-only radiomics models in training cohort.

(D) ROC curves of image-only radiomic models in testing cohort.

helps to avoid axillary overtreatment and reduce associated
serious complications.

Identification of possible association between breast
ultrasound features and ALN status has undoubtful clinical
benefit. In clinical routine, the axilla can be staged clinically
by palpation or surgically by SLNB or ALND. Although
SLNB has less severe complications compared with ALND,
it is not risk-free and SLNB- associated complications have
been reported in large prospective trials (6). As palpation is
inaccurate (29), AUS is performed to provide more relevant
information. AUS alone has a reported sensitivity of 39–60%,
specificity of 90–96%, PPV of 80–91%, and NPV of 75–83%
(6, 30, 31). This implied that despite of an acceptable specificity
above 90%, prior to surgery about 40–60% of nodal metastases
cannot be found by AUS and about 20–25% of patients with
a negative AUS have been assessed as modal metastases after
surgery. In case of suspicious ALN, AUS alone or combined
with ultrasound-guided needle biopsy is performed for axillary
staging to select patients who would benefit from ALND. A

recent meta-analysis has shown that the use of AUS in stratifying
patients directly to fast-track ALND without SLNB leads to
overtreatment in up to two-thirds of patients (32). These
data indicated that AUS alone is not sufficiently accurate for
axillary staging.

Recent studies have shown the value of radiomics features
from primary lesion in predicting the lymph node metastasis for
different cancer sites, e.g., CT radiomics features in colorectal
cancer (33), MRI/CT radiomics features in bladder cancer
(34, 35) and esophageal cancer (36). For breast cancer, two
recent studies have assessed the value of radiomics features
extracted from the primary tumor region at DCE-MRI and
diffusion-weighted MRI (DWI) in predicting sentinel lymph
node metastasis, where the reported AUC, sensitivity and
specificity ranging from 0.805 to 0.869, 0.700–0.778, and 0.747–
861 respectively (9, 10). In our study, we built three image-only
radiomics models by using both peri- and intratumoral regions
in multiple ultrasound slices per lesion. The combined-region
radiomics model achieved an AUC of 0.886, a sensitivity of 87.5%
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TABLE 3 | A performance summary of the image−molecular CNNs and image−molecular radiomics models in training and testing cohorts in predicting ALN metastasis

of breast cancer.

Model Dataset AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image−molecular

CNN

Intra Training 0.931

(0.898, 0.964)

84.9

−

93.4

(78.2, 98.9)

81.7

(76.3, 96.3)

65.9

(60.3, 88.8)

97.0

(92.0, 99.5)

Testing 0.794

(0.677, 0.911)

72.8

−

80.0

(48.0, 96.0)

70.5

(60.3, 100.0)

46.5

(40.3, 100.0)

91.7

(84.5, 98.0)

Peri Training 0.951

(0.928, 0.973)

88.5

−

95.7

(90.2, 100.0)

85.8

(79.9, 91.6)

72.1

(65.2, 81.1)

98.1

(96.1, 100.0)

Testing 0.813

(0.717, 0.909)

75.7

−

88.0

(64.0, 100.0)

71.8

(64.1, 92.3)

50.0

(43.1, 74.1)

94.9

(88.2, 100.0)

Cmb Training 0.962

(0.933, 0.990)

92.8

−

93.5

(83.9, 97.8)

92.5

(89.6, 100.0)

82.9

(77.9, 100.0)

97.4

(94.1, 99.1)

Testing 0.933

(0.864, 1.000)

90.3

−

89.3

(75.0, 100.0)

90.7

(82.7, 100.0)

78.1

(67.5, 100.0)

95.8

(91.0, 100.0)

Image−molecular

radiomics

Intra Training 0.931

(0.898, 0.964)

85.8

−

89.0

(78.0, 95.6)

84.6

(78.7, 94.6)

68.6

(61.5,84.8)

95.3

(91.7, 98.1)

Testing 0.706

(0.583, 0.828)

71.8

−

64.0

(40.0, 88.0)

74.4

(46.1, 89.7)

44.4

(32.9, 66.7)

86.6

(81.1, 93.9)

Peri Training 0.916

(0.877, 0.955)

88.2

−

84.8

(76.1, 91.3)

89.5

(85.8, 95.4)

75.7

(70.0, 87.2)

93.9

(90.9, 96.5)

Testing 0.743

(0.640, 0.847)

71.8

−

72.0

(60.0, 100.0)

71.8

(39.7, 85.9)

45.0

(33.8, 60.7)

88.9

(86.1, 100.0)

Cmb Training 0.950

(0.921, 0.980)

90.1

−

89.0

(81.3, 96.7)

90.5

(81.5, 96.7)

77.9

(65.9, 90.4)

95.7

(93.1, 98.7)

Testing 0.905

(0.855, 0.956)

84.0

−

90.0

(77.5, 97.5)

81.8

(74.5, 93.6)

64.3

(56.5, 82.9)

95.7

(91.2, 98.9)

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative

prediction value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined−region model, respectively. Statistical quantifications were

demonstrated with 95% confidential interval (CI), when applicable.

and a specificity of 81.8% on the testing cohort, which were
comparable with the previous radiomics models built with MRI.

Although promising, an efficient radiomics analysis heavily
relies on a handcrafted image processing pipeline comprising
three tightly coupled steps: feature extraction, feature selection
and machine learning model building. Small variations in each
stage may affect the prediction accuracy and stability (37). Deep
CNN improves this pipeline by automatically learning predictive
features on its own and yields a class probability vector as
output. Currently, CNN-based learning methods have achieved
diagnostic accuracy levels in skin cancer (11) and retinal diseases
(12, 13), which have been unattainable via radiomics approaches.
For breast cancer, a comparative study (38) demonstrated that
CNN was superior to radiomic analysis in terms of a significantly
higher AUC (0.88 vs. 0.81, p < 0.001) for classification of
enhancing lesions as benign or malignant at MRI. Another
comparative study in Kooi et al. (39) also demonstrated that
CNN was superior to radiomics-based software in detection of
mammographic breast lesions. In our study, all six CNNs (three
image-only and three image-molecular) achieved higher AUC
and accuracy than corresponding radiomics models built on the
same regions on both training and testing cohorts. Note that
in our results the differences between their AUCs (CNN vs.
radiomics) were not significant (DeLong p > 0.05).

Most image analysis studies on breast cancer was focused
on the intratumoral region. Evidences have demonstrated that

imaging features of peritumoral regions can offer outcome-
related information. Several studies have demonstrated that the
enhancement patterns of tumor-adjacent parenchyma in DCE-
MRI were associated with chemotherapy response (14), local
recurrence (15), and survival (16) in breast cancer. In a recent
study (40) the grade of peritumoral edema identified in breast
MRI has been independently associated with disease recurrence.
In study by Zhou et al. (41), it was demonstrated that the
peritumoral stiffness assessed by ultrasound elastography of
malignant breast lesions was higher than that of benign lesions.
A 2017 study (17) was the first attempt to extract radiomics
features from both intratumoral and peritumoral regions in
breast DCE-MRI, where the features successfully predicted the
pathological complete response to neoadjuvant chemotherapy.
A more recent 2019 study (9) for the first time demonstrated
the feasibility of predicting sentinel lymph node metastasis
by using intratumoral and peritumoral radiomics features in
DCE-MRI, achieving an AUC of 0.806 and an NPV of 82.4%
with radiomics features only. Our study has shown the value
of peritumoral ultrasonographic CNN features in predicting
nodal metastasis with an AUC of 0.775 and an NPV of 91.6%.
By combining both intra- and peritumoral regions, the CNN
achieved a significantly better AUC of 0.912 and an NPV
of 94.4%. The FNRs of the image-only CNN model built by
combining the intra- and peritumoral regions achieved 5.9, 9.3,
and 10% in the training, testing, and prospective data sets,
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FIGURE 4 | The ROC curves of the three image-molecular deep CNNs and the three image-molecular radiomics models in both training and testing cohorts. (A) ROC

curves of image-molecular CNNs in training cohort. (B) ROC curves of image-molecular CNNs in testing cohort. (C) ROC curves of image-molecular radiomics

models in training cohort. (D) ROC curves of image-molecular radiomic models in testing cohort.

TABLE 4 | A performance summary of the image-only CNNs and image-only radiomics models in the prospective cohorts in predicting ALN metastasis of breast cancer.

Model AUC ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

Image-only CNN Intra 0.767 75.6 50.0 90.0 75.0 75.0

Peri 0.850 75.0 50.0 90.0 75.0 75.0

Cmb 0.950 81.3 66.7 90.0 80.0 81.8

Image-only

radiomics

Intra 0.533 68.8 33.3 90.0 66.7 69.2

Peri 0.533 68.8 33.3 90.0 66.7 69.2

Cmb 0.833 81.3 83.3 80.0 71.4 88.9

ACC, AUC, SEN, SPE, PPT, and NPV are short for accuracy, area under the receiver operating characteristic curve, sensitivity, specificity, positive prediction value, and negative prediction

value, respectively. Intra, Peri and Cmb indicate the intratumoral model, the peritumoral model and the combined-region model, respectively.

respectively, which were superior to the image-only radiomics
model with FNRs of 14.8, 18.25, and 20% in the training,
testing, and prospective data sets, respectively. The FNRs of
the CNN model were comparable with those of SLNB [4.6
to 16.7% (4)] and were higher than the radiomics models
[13.9 to 25% (9, 10)] reported previously. By integrating the
molecular subtype information, all the obtained image-molecular

models, either CNN or radiomics, achieved slighter higher AUCs
and NPVs.

The biological mechanism underlying the peritumoral
imaging features and their association with clinical outcomes
remains unclear. Many cancer studies have shown that biological
changes in the tissue immediately surrounding the breast
tumor mass might be potential predictive or prognostic
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markers, such as peritumor lymphovascular invasion (42, 43),
peritumoral lymphocytic infiltration (44), and peritumoral
edema (45). In study by Zhao et al. (46) it was suggested
that vascular endothelial growth factor (VEGF)-C/D induced
peritumoral lymphangiogenesis may be one mechanism that
leads to metastatic spread. In study by Wu et al. (16) the
prognostic peritumoral features were associated with the
tumor necrosis factor (TNF) signaling pathway that has been
involved in oncogenic angiogenesis, invasion, and metastasis
(47). Further studies are warranted to determine how the
underlying biological changes were reflected by peritumor
imaging features.

Our study has several limitations. The first limitation was
the limited population size which may lead to bias. Larger
patient population from more centers should be involved
in future to improve the machined learning-based models.
The population size of the prospective cohort is particularly
small, where significant bias may occur. We will recruit more
prospective data in future to further evaluate our methods
in clinical practice. The second limitation was that all image
data was obtained on the same type of ultrasound machine.
In future we will evaluate our models on more heterogeneous
image data acquired with different machines. Moreover, we
built our CNNs and radiomics models using only ultrasound
images and molecular subtypes. In future we will build
more comprehensive models by incorporating more clinical
and pathological data. Our future research also includes the
exploring of biological mechanism underlying the association
between intratumoral/peritumoral imaging features and nodal
metastasis. We will also assess the possible incremental value
of the tumoral ultrasonographic features over the AUS in
axillary staging.

In conclusion, CNNs built on tumoral regions in ultrasound
images allowed accurate prediction of ALN metastasis, which
achieved higher AUC and NPV than radiomics models.
Either CNNs or radiomic models built on peritumor regions
performed slighter better than those built on intratumor
regions, while combining both intra- and peritumoral regions
achieved significantly better AUCs and higher NPVs. Further

integrating the molecular subtype information into either CNNs
or radiomics models can slightly benefit the performance.

DATA AVAILABILITY STATEMENT

To achieve repeatability, the data set of this study, including
pretrained CNN models, imaging data of the prospective
cohort, statistical analysis, and the Python implementation, was
deposited into the Mendeley data library (https://data.mendeley.
com/datasets/rc32mg38rb/draft?a=2333e5fd-e7b1-4603-b06e-
b609d79bab11).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of Peking University Shenzhen
Hospital. The ethics committee waived the requirement of
written informed consent for participation.

AUTHOR CONTRIBUTIONS

DS, Z-CL, and DL conceived and designed the study.
XL collected the clinical and image data and performed
image pre-processing. QS, YZ, LL, and KY analyzed
the image data and performed the statistical analysis.
QS wrote the manuscript. All authors approved the
final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (no. 61571432) and Shenzhen Basic
Research Program (JCYJ20170413162354654).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00053/full#supplementary-material

REFERENCES

1. Segal R, Miller K, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. (2018)

68:7–30. doi: 10.3322/caac.21442

2. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, et al.

Breast cancer—major changes in the American Joint Committee on Cancer

eighth edition cancer staging manual. Cancer J Clin. (2017) 67:290–303.

doi: 10.3322/caac.21393

3. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW,

Blumencranz PW, et al. Axillary dissection vs. no axillary dissection

in women with invasive breast cancer and sentinel node metastasis: a

randomized clinical trial. JAMA. (2011) 305:569–75. doi: 10.1001/jama.2

011.90

4. Lyman GH, Temin S, Edge SB, Newman LA, Turner RR, Weaver DL, et al.

Sentinel lymph node biopsy for patients with early-stage breast cancer:

American Society of Clinical Oncology clinical practice guideline update. J

Clin Oncol. (2014) 32:1365–83. doi: 10.1200/JCO.2013.54.1177

5. Lucci A, McCall LM, Beitsch PD, Whitworth PW, Reintgen DS, Blumencranz

PW, et al. Surgical complications associated with sentinel lymph node

dissection (SLND) plus axillary lymph node dissection compared with

SLND alone in the American College of Surgeons Oncology Group

Trial Z0011. J Clin Oncol. (2007) 25:3657–63. doi: 10.1200/JCO.2006.0

7.4062

6. Wilke LG, McCall LM, Posther KE, Whitworth PW, Reintgen DS, Leitch

AM, et al. Surgical complications associated with sentinel lymph node

biopsy: results from a prospective international cooperative group

trial. Ann Surg Oncol. (2006) 13:491–500. doi: 10.1245/ASO.2006.

05.013

7. Feng Y, Huang R, He Y, Lu A, Fan Z, Fan T, et al. Efficacy of

physical examination, ultrasound, and ultrasound combined with fine-needle

aspiration for axilla staging of primary breast cancer. Breast Cancer Res Treat.

(2015) 149:761–5. doi: 10.1007/s10549-015-3280-z

8. Ahmed M, Douek M. Is axillary ultrasound imaging necessary for all patients

with breast cancer? Br J Surg. (2018) 105:930–2. doi: 10.1002/bjs.10784

Frontiers in Oncology | www.frontiersin.org 10 January 2020 | Volume 10 | Article 53

https://data.mendeley.com/datasets/rc32mg38rb/draft?a=2333e5fd-e7b1-4603-b06e-b609d79bab11
https://data.mendeley.com/datasets/rc32mg38rb/draft?a=2333e5fd-e7b1-4603-b06e-b609d79bab11
https://data.mendeley.com/datasets/rc32mg38rb/draft?a=2333e5fd-e7b1-4603-b06e-b609d79bab11
https://www.frontiersin.org/articles/10.3389/fonc.2020.00053/full#supplementary-material
https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21393
https://doi.org/10.1001/jama.2011.90
https://doi.org/10.1200/JCO.2013.54.1177
https://doi.org/10.1200/JCO.2006.07.4062
https://doi.org/10.1245/ASO.2006.05.013
https://doi.org/10.1007/s10549-015-3280-z
https://doi.org/10.1002/bjs.10784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Ultrasound-CNN Predicted Breast Cancer Metastasis

9. Liu C, Ding J, Spuhler K, Gao Y, Serrano Sosa M, Moriarty M,

et al. Preoperative prediction of sentinel lymph node metastasis in

breast cancer by radiomic signatures from dynamic contrast-enhanced

MRI. J Magnet Reson Imaging. (2019) 49:131–40. doi: 10.1002/jmri.

26224

10. Dong Y, FengQ, YangW, Lu Z, Deng C, Zhang L, et al. Preoperative prediction

of sentinel lymph node metastasis in breast cancer based on radiomics of

T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol. (2018)

28:582–91. doi: 10.1007/s00330-017-5005-7

11. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.

Dermatologist-level classification of skin cancer with deep neural networks.

Nature. (2017) 542:115. doi: 10.1038/nature21056

12. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL,

et al. Identifying medical diagnoses and treatable diseases by image-based

deep learning. Cell. (2018) 172:1122–31. e1129. doi: 10.1016/j.cell.2018.

02.010

13. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell

S, et al. Clinically applicable deep learning for diagnosis and referral in retinal

disease. Nat Med. (2018) 24:1342. doi: 10.1038/s41591-018-0107-6

14. Hattangadi J, Park C, Rembert J, Klifa C, Hwang J, Gibbs J, et al. Breast

stromal enhancement on MRI is associated with response to neoadjuvant

chemotherapy. Am J Roentgenol. (2008) 190:1630–6. doi: 10.2214/AJR.0

7.2533

15. Kim S-A, Cho N, Ryu EB, Seo M, Bae MS, Chang JM, et al. Background

parenchymal signal enhancement ratio at preoperative MR imaging:

association with subsequent local recurrence in patients with ductal

carcinoma in situ after breast conservation surgery. Radiology. (2013)

270:699–707. doi: 10.1148/radiol.13130459

16. Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, et al. Heterogeneous

enhancement patterns of tumor-adjacent parenchyma at MR imaging

are associated with dysregulated signaling pathways and poor survival

in breast cancer. Radiology. (2017) 285:401–13. doi: 10.1148/radiol.20171

62823

17. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P,

et al. Intratumoral and peritumoral radiomics for the pretreatment prediction

of pathological complete response to neoadjuvant chemotherapy based on

breast DCE-MRI. Breast Cancer Res. (2017) 19:57. doi: 10.1186/s13058-01

7-0862-1

18. Curigliano G, Burstein HJP, Winer E, Gnant M, Dubsky P, Loibl S, et al.

De-escalating and escalating treatments for early-stage breast cancer: the

St. Gallen International Expert Consensus Conference on the Primary

Therapy of Early Breast Cancer 2017. Ann Oncol. (2017) 28:1700–12.

doi: 10.1093/annonc/mdx308

19. Sickles EA, D’Orsi CJ, Bassett LW, Appleton CM, Berg WA, Burnside ES.

ACR BI-RADS R© Atlas, Breast imaging reporting and data system. Reston, VA:

American College of Radiology (2013). P. 39–48.

20. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected

convolutional networks. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. Honolulu, HI (2017).

21. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,

et al. Computational radiomics system to decode the radiographic phenotype.

Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.CAN-17-0339

22. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,

Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:4006.

doi: 10.1038/ncomms5006

23. Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren

J, et al. Radiomics: the bridge between medical imaging and personalized

medicine. Nat Rev Clin Oncol. (2017) 14:749. doi: 10.1038/nrclinonc.20

17.141

24. Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat

Softw. (2010) 36:1–13. doi: 10.18637/jss.v036.i11

25. Breiman L. Random forests. Mach Learn. (2001) 45:5–32.

doi: 10.1023/A:1010933404324

26. Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable

importances in forests of randomized trees. Adv Neural Informat Process Syst.

(2013) 1:431–9.

27. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas

under two or more correlated receiver operating characteristic curves:

a nonparametric approach. Biometrics. (1988) 44:837–45. doi: 10.2307/25

31595

28. Kuijs V, Moossdorff M, Schipper R, Beets-Tan R, Heuts E, Keymeulen

K, et al. The role of MRI in axillary lymph node imaging in breast

cancer patients: a systematic review. Insights Into Imaging. (2015) 6:203–15.

doi: 10.1007/s13244-015-0404-2

29. Lanng C, Hoffmann J, Galatius H, Engel U. Assessment of clinical palpation

of the axilla as a criterion for performing the sentinel node procedure in

breast cancer. Eur J Surg Oncol. (2007) 33:281–4. doi: 10.1016/j.ejso.2006.

09.032

30. Bailey A, Layne G, Shahan C, Zhang J, Wen S, Radis S, et al. Comparison

between ultrasound and pathologic status of axillary lymph nodes in clinically

node-negative breast cancer patients. Am Surg. (2015) 81:865–9.

31. Helfgott R, MittlboeckM,Miesbauer M,Moinfar F, Haim S, MascherbauerM,

et al. The influence of breast cancer subtypes on axillary ultrasound accuracy:

a retrospective single center analysis of 583 women. Eur J Surg Oncol. (2018)

45:538–43. doi: 10.1016/j.ejso.2018.10.001

32. Ahmed M, Jozsa F, Baker R, Rubio I, Benson J, Douek M. Meta-analysis

of tumour burden in pre-operative axillary ultrasound positive and negative

breast cancer patients. Breast Cancer Res Treatment. (2017) 166:329–36.

doi: 10.1007/s10549-017-4405-3

33. Huang Y, Liang C, He L, Tian J, Liang C, Chen X, et al. Development

and validation of a radiomics nomogram for preoperative prediction of

lymph node metastasis in colorectal cancer. J Clin Oncol. (2016) 34:2157–64.

doi: 10.1200/JCO.2015.65.9128

34. Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, et al. A radiomics nomogram

for the preoperative prediction of lymph node metastasis in bladder

cancer. Clin Cancer Res. (2017) 23:6904–11. doi: 10.1158/1078-0432.CCR-

17-1510

35. Wu S, Zheng J, Li Y, Wu Z, Shi S, Huang M, et al. Development and validation

of an MRI-based radiomics signature for the preoperative prediction of

lymph node metastasis in bladder cancer. EBioMedicine. (2018) 34:76–84.

doi: 10.1016/j.ebiom.2018.07.029

36. Qu J, Shen C, Qin J, Wang Z, Liu Z, Guo J, et al. The MR radiomic

signature can predict preoperative lymph node metastasis in patients with

esophageal cancer. Eur Radiol. (2019) 29:906–14. doi: 10.1007/s00330-018-

5583-z

37. Li Q, Bai H, Chen Y, Sun Q, Liu L, Zhou S, et al. A fully-automatic

multiparametric radiomics model: towards reproducible and prognostic

imaging signature for prediction of overall survival in glioblastoma

multiforme. Sci Rep. (2017) 7:14331. doi: 10.1038/s41598-017-

14753-7

38. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C.

Radiomic versus convolutional neural networks analysis for classification of

contrast-enhancing lesions at multiparametric breast, MRI. Radiology. (2018)

290:290–7. doi: 10.1148/radiol.2018181352

39. Kooi T, Litjens G, Van Ginneken B, Gubern-Mérida A, Sánchez

CI, Mann R, et al. Large scale deep learning for computer aided

detection of mammographic lesions. Med Image Anal. (2017) 35:303–12.

doi: 10.1016/j.media.2016.07.007

40. Cheon H, Kim HJ, Kim TH, Ryeom H-K, Lee J, Kim GC, et al. Invasive breast

cancer: Prognostic value of peritumoral edema identified at preoperative

MR imaging. Radiology. (2018) 287:68–75. doi: 10.1148/radiol.20171

71157

41. Zhou J, Zhan W, Dong Y, Yang Z, Zhou C. Stiffness of the surrounding tissue

of breast lesions evaluated by ultrasound elastography. Eur Radiol. (2014)

24:1659–67. doi: 10.1007/s00330-014-3152-7

42. Schoppmann SF, Bayer G, Aumayr K, Taucher S, Geleff S, Rudas M,

et al. Prognostic value of lymphangiogenesis and lymphovascular

invasion in invasive breast cancer. Ann Surg. (2004) 240:306–12.

doi: 10.1097/01.sla.0000133355.48672.22

43. Ejlertsen B, Jensen M-B, Rank F, Rasmussen BB, Christiansen P, Kroman N,

et al. Population-based study of peritumoral lymphovascular invasion and

outcome among patients with operable breast cancer. J Natl Cancer Inst.

(2009) 101:729–35. doi: 10.1093/jnci/djp090

Frontiers in Oncology | www.frontiersin.org 11 January 2020 | Volume 10 | Article 53

https://doi.org/10.1002/jmri.26224
https://doi.org/10.1007/s00330-017-5005-7
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.2214/AJR.07.2533
https://doi.org/10.1148/radiol.13130459
https://doi.org/10.1148/radiol.2017162823
https://doi.org/10.1186/s13058-017-0862-1
https://doi.org/10.1093/annonc/mdx308
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/2531595
https://doi.org/10.1007/s13244-015-0404-2
https://doi.org/10.1016/j.ejso.2006.09.032
https://doi.org/10.1016/j.ejso.2018.10.001
https://doi.org/10.1007/s10549-017-4405-3
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1158/1078-0432.CCR-17-1510
https://doi.org/10.1016/j.ebiom.2018.07.029
https://doi.org/10.1007/s00330-018-5583-z
https://doi.org/10.1038/s41598-017-14753-7
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.1148/radiol.2017171157
https://doi.org/10.1007/s00330-014-3152-7
https://doi.org/10.1097/01.sla.0000133355.48672.22
https://doi.org/10.1093/jnci/djp090
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Ultrasound-CNN Predicted Breast Cancer Metastasis

44. Ocaña A, Diez-Gónzález L, Adrover E, Fernández-Aramburo A, Pandiella A,

Amir E. Tumor-infiltrating lymphocytes in breast cancer: ready for prime

time? J Clin Oncol. (2015) 33:1298–9. doi: 10.1200/JCO.2014.59.7286

45. Uematsu T. Focal breast edema associated with malignancy on T2-

weighted images of breast MRI: peritumoral edema, prepectoral

edema, and subcutaneous edema. Breast Cancer. (2015) 22:66–70.

doi: 10.1007/s12282-014-0572-9

46. Zhao Y-C, Ni X-J, Li Y, Dai M, Yuan Z-X, Zhu Y-Y, et al. Peritumoral

lymphangiogenesis induced by vascular endothelial growth factor C and D

promotes lymph nodemetastasis in breast cancer patients.World J Surg Oncol.

(2012) 10:165. doi: 10.1186/1477-7819-10-165

47. Balkwill F. TNF-α in promotion and progression of cancer. Cancer Metastasis

Rev. (2006) 25:409. doi: 10.1007/s10555-006-9005-3

Conflict of Interest: LL was employed by the company Ultimage Lab.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Sun, Lin, Zhao, Li, Yan, Liang, Sun and Li. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 12 January 2020 | Volume 10 | Article 53

https://doi.org/10.1200/JCO.2014.59.7286
https://doi.org/10.1007/s12282-014-0572-9
https://doi.org/10.1186/1477-7819-10-165
https://doi.org/10.1007/s10555-006-9005-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region
	Introduction
	Materials and Methods
	Study Population
	Ultrasound Image Acquisition
	ROI Delineation
	Deep Learning With DenseNet
	Deep Learning-Based Predictive Model Building
	Radiomics Feature Extraction and Selection
	Radiomics-Based Predictive Model Building
	Statistical Analysis

	Results
	Image-Only Deep CNNs vs. Radiomics Models
	Image-Molecular Deep CNNs vs. Radiomics Models
	Assessment of Peritumoral and Intratumoral Regions
	Prospective Validation

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


