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Vegetation restoration has been widely used in karst rocky desertification (KRD) areas
of southwestern China, but the response of microbial community to revegetation has
not been well characterized. We investigated the diversity, structure, and co-occurrence
patterns of bacterial communities in soils of five vegetation types (grassland, shrubbery,
secondary forest, pure plantation and mixed plantation) in KRD area using high-
throughput sequencing of the 16S rRNA gene. Bray-Curtis dissimilarity analysis revealed
that 15 bacterial community samples were clustered into five groups that corresponded
very well to the five vegetation types. Shannon diversity was positively correlated with
pH and Ca2+ content but negatively correlated with organic carbon, total nitrogen,
and soil moisture. Redundancy analysis indicated that soil pH, Ca2+ content, organic
carbon, total nitrogen, and soil moisture jointly influenced bacterial community structure.
Co-occurrence network analysis revealed non-random assembly patterns of bacterial
composition in the soils. Bryobacter, GR-WP33-30, and Rhizomicrobium were identified
as keystone genera in co-occurrence network. These results indicate that diverse soil
physicochemical properties and potential interactions among taxa during vegetation
restoration may jointly affect the bacterial community structure in KRD regions.

Keywords: bacterial communities, co-occurrence, vegetation restoration, karst, rocky desertification

INTRODUCTION

Southwestern China is one of the three distribution centers of Karst in the world. From the
1950s to the 1980s, Karst regions in China experienced severe soil erosion, vegetation loss, and
desertification caused by intensive anthropogenic activity, referred to as karst rocky desertification
(KRD; Wang et al., 2004; Jiang et al., 2014). Revegetation has been widely implemented in
ecological conservation and restoration efforts because it improves soil nutrient conditions and
other environmental factors (Crouzeilles et al., 2016; Feng et al., 2016). In recent decades,
vegetation restoration has been used to overcome the ecological degradation in these regions (Qi
et al., 2013). For example, a number of ecological projects have been implemented in southwestern
China, such as the Yangtze River Shelter-Forest Project, the Pearl River Shelter-Forest Project
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and diversified water and soil conservation projects, all of which
have been based on vegetation restoration (Wang et al., 2004;
Jiang et al., 2014).

Soil microbial communities play an essential role in shaping
the aboveground biodiversity and functioning of terrestrial
ecosystems by driving biogeochemical processes and mediating
nutrient turnover (Doran and Zeiss, 2000; Bardgett and van
der Putten, 2014). Thus, microbial community structure is an
essential indicator of the health and sustainability of an ecosystem
(Harris, 2003; Zak et al., 2003; Lewis et al., 2010). Co-occurrence
network analysis provides insight into the structure of microbial
communities and the interactions among microorganisms
(Barberán et al., 2012). However, soil microbial communities
and co-occurrence patterns to vegetation restoration are largely
unknown. This information provides invaluable reference to the
appropriate management and conservation of the degraded karst
ecosystem.

Previous studies showed that microbial community structure
can be affected by soil properties such as pH, C, N and
moisture (Yergeau et al., 2007; Lauber et al., 2009; Chong et al.,
2010; Chu et al., 2011; Yu et al., 2012; Bakker et al., 2013;
Schlatter et al., 2015), and plant factor such as vegetation type
(Oh et al., 2012; Shi et al., 2015). In this study, we elucidate
the relationships among vegetation type, soil physicochemical
properties, and microbial community structure in the KRD
area using high-throughput sequencing of the 16S rRNA gene.
The main objectives of this study are to test the following
hypotheses: (i) the bacterial communities differ among the
principal vegetation types of the KRD areas, and (ii) vegetation-
associated soil properties play significant impacts on bacterial
community structure. Considering the critical role of microbial
interactions in determining the soil microbial communities, co-
occurrence patterns among bacterial communities were also
explored in the KRD soils.

MATERIALS AND METHODS

Study Area and Sampling
A field experiment was carried out in five types of vegetation
at the San-do-qing Forestry Station (25◦02′30′′–25◦58′22′′N,
E103◦58′37′′–104◦49′48′′), located in Fuyuan County, Yunnan
Province. Fuyuan County is on the eastern Yunnan Karst plateau.
This area has a northern subtropical monsoon climate. The
mean annual temperature is 13.8◦C, with a mean minimum
temperature of 5.7◦C in January and a mean maximum
temperature of 19.8◦C in July (Li et al., 2014). The main type
of soil is red limestone. The KRD area covers 601.018 km2,
accounting for 29.33% of the Karst region (Li et al., 2016). The five
typical types of vegetation in the area are grassland, shrubbery,
secondary forest, pure plantation, and mixed plantation. The
grassland, shrubbery, and secondary forest are representative of
three successional stages, having been abandoned as farmland
3, 12, and 45 years prior, respectively. The pure plantation
and mixed plantation were afforested from grassland 25 years
before sampling. The grassland is covered mainly by Chrysopogon
orientalis, Fragaria vesca, and Dicranopteris dichotoma. The

shrubbery is dominated by Pyracantha fortuneana, Corylus
yunnanensis, and Myrica nana. The secondary forest is
dominated by Quercus aquifolioides and Lithocarpus dealbatus.
The pure plantation consists of Pinus armandi, whereas the
mixed plantation is dominated by Pinus yunnanensis and
Alnus ferdinandi-coburgii. The understory of all three types
of forest is dominated by Hypericum monogynum and Myrica
nana.

Three 20 × 20 m plots were established at each site in
August 2015. The minimum distance between plots was 500 m
to avoid pseudoreplication. Soil samples were collected from the
surface soil (0–10 cm) with a stainless steel cutting ring (5 cm
in diameter). Six soil cores were selected in an S-shaped pattern
from each plot and mixed to form one replicate. All soils were
transported to the laboratory immediately after collection in
sterile plastic bags on dry ice and divided into two portions. One
subset was stored at −80◦C for DNA analysis, and the other
subset was air dried for physicochemical analysis.

Soil Physicochemical and Biological
Parameters
Soil organic carbon (SOC) content was determined using
potassium dichromate oxidation (Nelson and Sommers, 1982).
Total nitrogen (TN) content was estimated with a TOC analyzer
(Multi N/C 3100 TOC, Analytik, Jena, Germany). Soil moisture
(SM) was analyzed by weighing the soil and calculating the
mass lost after oven drying at 105◦C until weight was stable
(24 h). Soil pH was determined with a soil-to-water ratio of
1:2.5 (w/v) using a pH meter (FE20, Mettler-Toledo Instruments,
China). Ca2+ content was measured using an atomic absorption
spectrophotometer (ICE 3500, Thermo Scientific, United States).

DNA Extraction and Purification
DNA was extracted directly from the soil samples using the
Power Soil Extraction Kit (Mo Bio Laboratories, San Diego, CA,
United States) according to the manufacturer’s instructions. The
concentration and purity of the extracted DNA were measured
using a Nanodrop 2000 spectrometer (Thermo Fisher Scientific,
Wilmington, DE, United States). The soil DNA was stored at
−20◦C until use.

The V4–V5 variable regions of the bacterial 16S ribosomal
RNA gene were amplified via polymerase chain reaction
(PCR) using two universal eubacterial primer pairs, 515F
(5′-GTGCCAGCMGCCGCGG-3′) and 907R (5′-CCGT
CAATTCMTTTRAGTTT-3′; Xiong et al., 2012). The forward
and reverse primers were tagged with adapter, pad, and
linker sequences. Barcode sequences (10-mer) were added
to the reverse primer to pool multiple samples into one run
for sequencing. All primers were synthesized by Invitrogen
Life Technologies (Shanghai, China). PCR amplification was
conducted using TransGen AP221-02: TransStart Fastpfu
DNA Polymerase (TransGen Biotech, Beijing, China) and
performed in a GeneAmp 9700 thermal cycler (Applied
Biosystems, Foster City, CA, United States). The reaction
mixture included 4 µL 5× FastPfu buffer, 2 µL 2.5 mM dNTPs,
0.2 µL BSA, 0.8 µL each primer (5 µM), 10 ng template
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TABLE 1 | Soil physicochemical properties of five vegetation types.

Physicochemical factor Vegetation type

Grassland Shrubbery Secondary forest Mixed plantation Pure plantation

pH 5.60 ± 0.19a 5.60 ± 0.13a 5.27 ± 0.12b 4.80 ± 0.16c 4.69 ± 0.10c

Ca (g kg−1) 0.53 ± 0.02a 0.57 ± 0.04a 0.52 ± 0.03a 0.51 ± 0.04a 0.37 ± 0.03b

SM (%) 25.47 ± 1.61a 29.03 ± 1.30b 33.67 ± 1.38c 34.53 ± 0.59c 34.57 ± 0.55c

SOC (g kg−1) 24.91 ± 2.47a 25.03 ± 0.5a 28.27 ± 1.44b 32.8 ± 1.82c 31.07 ± 1.80bc

TN (g kg−1) 1.83 ± 0.03a 1.93 ± 0.04ab 1.94 ± 0.05b 2.05 ± 0.09c 2.09 ± 0.06c

C/N 13.63 ± 1.22a 12.99 ± 0.03ab 14.61 ± 1.12abc 15.97 ± 0.21c 14.90 ± 1.03bc

Statistical significance was assessed by one-way ANOVA followed by DMRT, P < 0.05. Different lowercase letters showed statistically significant differences.

DNA, and H2O to a final volume of 20 µL. Thermal cycling
conditions were as follows: 95◦C for 3 min followed by 27
cycles of 95◦C for 30 s, 55◦C for 30 s, and 72◦C for 45 s,
with a final extension at 72◦C for 10 min. All samples were
amplified in triplicate. PCR amplification was detected using
2% agarose gel electrophoresis. The triplicate amplification
products were pooled and purified using the AxyPrep DNA
Gel Extraction Kit (AXYGEN, Union City, CA, United States)
and then quantified using QuantiFluorTM-ST (Promega,
United States).

Bacterial 16S rRNA Gene Sequencing
and Processing
The V4–V5 region (515F–907R) of the bacterial 16S rRNA
gene was sequenced on the Illumina Miseq PE 250 platform.
Bacterial raw reads were deposited in NCBI Sequence Read
Archive (SRA) under the submission ID SUB2918840 and
BioProject ID PRJNA397824. Processing of the 16S rRNA–
derived sequence inventories was performed using QIIME
(quantitative insights into microbial ecology; Caporaso et al.,
2010). Briefly, partial 16S rRNA bacterial sequences were
filtered using Mothur version 1.22.2 (Schloss et al., 2009)
with the inclusion criteria of mean quality score ≥20 and
length ≥ 250bp. Sequences were assigned to samples by exact
matches of 10 bp barcodes. Then the Uchime algorithm was
used to detect chimeric sequences from a chimera-free reference
database (Edgar et al., 2011) via the Usearch tool. All chimeras
were removed prior to further analysis. Operational taxonomic
units (OTUs) were clustered at the 97% similarity level using
UPARSE version 7.1 (Edgar, 2010)1. Final OTUs were generated
based on the clustering results, and taxonomic assignment
was performed with the RDP 16S Classifier2 (Wang et al.,
2007).

Statistical Analyses
Statistical analysis of OTU richness via Good’s coverage, Chao1,
and Shannon’s index was performed with Mothur (version
1.22.2; Schloss et al., 2009). One-way analysis of variance
(ANOVA) followed by Duncan’s multiple range test (DMRT)
was performed to assess the significance of the effects of

1http://drive5.com/uparse/
2http://rdp.cme.msu.edu

vegetation type on soil properties and microbial community
composition and diversity using SPSS version 17.0 (SPSS Inc.,
Chicago, IL, United States). Bray-Curtis dissimilarity values
were calculated to reveal the relationships among samples
based on bacterial community composition. Shared and unique
OTUs among the five vegetation types were used to generate
a Venn diagram. The 50 most abundant OTUs among the
five vegetation types were analyzed using the hierarchical
clustering software Cluster version 3.03 and visualized using
Java TreeView version 1.1.6.4 Redundancy analysis (RDA) was
performed with Canoco (version 4.5 for Windows; Ithaca, NY,
United States) to determine which environmental variables best
explained the assemblage’s variability. Forward selection was
based on Monte Carlo permutation tests (permutations = 999).
The ordination in the x- and y-axes and the length of
the corresponding arrows indicated the importance of each
physicochemical factor in explaining the taxon distribution
across communities. The co-occurrence of OTUs in microbial
communities across the five vegetation types was analyzed. To
reduce network complexity and facilitate the identification of
the core soil community, we selected OTUs with more than
five sequences for further analysis (Barberán et al., 2012).
Significant Spearman correlations (p < 0.01) were noted, and
visualization of the co-occurrence network was conducted using
the Fruchtermann-Feingold layout of the interactive platform
Gephi version 0.9.0. Possible keystone genera were those
that demonstrated high betweenness centrality values (Vick-
Majors et al., 2014). The modular structure of the community
was evaluated via the modularity index (Lambiotte et al.,
2015).

RESULTS

Soil Physicochemical Properties
Associated with the Five Vegetation
Types
Soil pH decreased as the vegetation developed from grassland
(5.6) and shrubbery (5.6) to secondary forest (5.27), with pure
plantation (4.69) exhibiting the lowest value (Table 1). In

3http://bonsai.hgc.jp/~mdehoon/software/cluster/index.html
4http://sourceforge.net/projects/jtreeview.htm
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TABLE 2 | Characteristics of soil bacteria richness and diversity indices under different vegetation types.

Sample ID Vegetation type Number of OTUs Coverage (%) Chao 1 Shannon’s index

A1 Grassland 2074 98.90 2447 6.16

A2 Grassland 2215 98.88 2589 6.24

A3 Grassland 2210 98.86 2573 6.24

Average 2166a 98.88a 2536a 6.21a

B1 Shrubbery 2057 98.94 2436 6.2

B2 Shrubbery 2065 99.01 2364 6.12

B3 Shrubbery 2106 99.94 2479 6.22

Average 2076a 99.30a 2426a 6.18a

C1 Secondary forest 1935 98.92 2345 5.92

C2 Secondary forest 1777 98.88 2233 5.48

C3 Secondary forest 1513 99.06 1876 5.48

Average 1741b 98.95a 2151b 5.56b

D1 Mixed plantation 1506 99.18 1796 5.57

D2 Mixed plantation 1567 99.07 1952 5.62

D3 Mixed plantation 1427 99.26 1690 5.56

Average 1500c 99.17a 1812c 5.58b

E1 Pure plantation 1022 99.31 1367 4.65

E2 Pure plantation 1058 99.43 1293 4.98

E3 Pure plantation 981 99.42 1224 4.52

Average 1020d 99.39a 1294d 4.72c

Statistical significance was assessed by one-way ANOVA followed by DMRT, P < 0.05. Different lowercase letters showed statistically significant differences.

addition, no significant difference in Ca2+ concentration was
observed among vegetation types except for pure plantation,
which had the lowest value (0.37). In general, TN, SOC, and SM
increased significantly (p< 0.05) as the vegetation changed from
grassland to forest. Furthermore, carbon to nitrogen C:N ratios
were comparable among the natural succession vegetation types
(12.99–14.61), although pure plantation and mixed plantation
showed higher values (14.9 and 15.79, respectively).

Distribution of Taxa and Phylotypes
We obtained a total of 1,182,391 high-quality bacterial V4–V5
Illumina sequences and 3778 OTUs (at 3% evolutionary distance)
after applying all quality filters. Almost all sequences (99.95%)
were between 350 and 400 bp, with an average read length
of 396.21 bp. The number of sequences obtained from each
sample ranged from 59,788 to 108,809. Good’s coverage values
ranged from 98.9 to 99.4% (Table 2), with the number of OTUs
increasing sharply before reaching a plateau, which indicates
that the number of bacterial sequences obtained represented
the bacterial communities well, as the rarefaction curves tended
toward saturation (Supplementary Figure S1). The bacteria were
from 32 phyla, 76 classes, 170 orders, 312 families, and 506
genera. The dominant phyla (except for Proteobacteria, which
were characterized at the class level) across all samples were
Acidobacteria (21.73–57.08%), Actinobacteria (2.21–22.89%),
Alphaprotebacteria (9.95–16.8%), Chloroflexi (0.94–10.26%),
Planctomycetes (3.59–9.79%), Deltaproteobacteria (4.21–8.64%),

Gammaproteobacteria (3.34–7.34%), and Betaproteobacteria
(1.42–3.97%) and to a lesser degree Gemmatimonadetes (0.063–
6.02%), Bacteroidetes (0.88–3.38%), Armatimonadetes (0.26–
1.81%), Nitrospirae (0–1.78%), and Latescibacteria (0–1.73%;
>1%), which together accounted for more than 95% of bacterial
sequences from each of the vegetation types (Supplementary
Figure S2).

Bacterial Diversity and Differences in
Community Structure among the
Vegetation Types
According to OTU diversity estimated by Shannon’s index,
the greatest bacterial diversity was in grassland and shrubbery
soils (average = 6.21 and 6.18, respectively) followed by
secondary forest and mixed plantation (average = 5.56 and
5.58, respectively), whereas pure plantation showed the lowest
bacterial diversity (average = 4.72; Table 2). These results
indicate that vegetation restoration plays an important role in
determining soil bacterial diversity.

The relative abundance of each bacterial taxonomic group
varied among the five vegetation types (Supplementary
Figure S2). It is remarkable that the relative abundance of
bacterial phyla associated with grassland and shrub differed
significantly from the other three vegetation types. For example,
the Acidobacteria and Gammaproteobacteria phylotypes were
less abundant in grassland (33.95 and 3.49%, respectively)
and shrubbery (21.80 and 3.56%) than in the secondary forest
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FIGURE 1 | Clustering analysis of bacterial communities under five vegetation
types based on OTU abundance-based Bray-Curtis similarity coefficients.

(49.53 and 5.57%), mixed plantation (50.20 and 5.55%), and
pure plantation (53.62 and 6.82%) sites. Conversely, some taxa
decreased markedly in relative abundance from grassland and
shrubbery to the three forest types, including Actinobacteria,
Betaproteobacteria, Gemmatimonadetes, and Nitrospirae.

The Impact of Vegetation-Associated
Soil Characteristics on Bacterial
Community Composition and Diversity
Bray-Curtis dissimilarity analysis revealed that the 15 bacterial
community samples clustered into five groups that corresponded
very well to the five vegetation types (Figure 1). Clustering
indicated that the grassland and shrubbery sites were closely
related and secondary forest and mixed plantation shared a
close relationship. A Venn diagram demonstrated that OTUs
differed among the five vegetation types (Figure 2). The number
of site-specific OTUs ranged from 56 (pure plantation) to 321
(shrubbery). In addition, a total of 624 OTUs were shared
among all five vegetation types; these were defined as generalists.
Generalist OTUs were composed of a number of bacterial
groups, including Acidobacteria, Proteobacteria, Actinobacteria,
and Bacteroidetes.

To investigate the differences in the soil bacterial communities
of the five vegetation types, we used heatmap analysis of

FIGURE 2 | Venn diagram of exclusive and shared bacterial OTUs (at the 3%
evolutionary distance) under five vegetation types.

the 50 most abundant OTUs, which highlighted their relative
distributions and abundances (Supplementary Table S2). As
shown in the heatmap (Figure 3), the abundance of these 50
dominant OTUs differed among the five vegetation types. The
dominant OTUs in each vegetation type were also different.
For example, the mixed plantation site was dominated by
OTU2328 and OTU2824, whereas pure plantation was enriched
by OTU686.

Redundancy analysis and a Monte Carlo permutation test
were used to determine the relationships among six biochemical
factors and bacterial community structure. All of the edaphic
variables explained 81.2% of the variance, with axis 1 explaining
62.1% of the variance and axis 2 explaining another 11.3%
(Figure 4). The major biochemical characteristics driving soil
bacterial community composition were pH (F = 3.55, p= 0.001),
soil moisture (F = 3.33, p = 0.001), Ca2+ (F = 2.90, p = 0.001),
soil organic C (F = 2.724, p = 0.004), total N (F = 2.31,
p= 0.004), and C/N (F = 2.051, p= 0.013).

Bacterial Co-occurrence Network
Analysis
Across all 15 samples from five Karst vegetation types, correlation
network analysis showed 219 strong positive correlations among
49 genera (R > 0.6, p ≤ 0.01; Figure 5). The network of positive
correlations formed three distinct major (≥10 OTUs) modules of
co-occurring taxa. The average path length between two nodes
(APL) was 2.03 edges with a diameter of six edges. The clustering
coefficient (CC) was 0.72 and the modularity index (MD) was
0.53, where MD > 0.4 suggests that the network has a modular
structure.
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FIGURE 3 | A heatmap diagram of the dominant 50 OTUs under five vegetation types.

All genera in the network were assigned to bacteria phyla.
Among these, Proteobacteria and Acidobacteria made up the
two largest proportions, accounting for 38.78 and 20.41%
of all nodes, respectively. When the distribution of nodes
was modularized, all nodes were classified into three major
modules (>10 nodes). Based on betweenness centrality scores,
the top three genera identified were Bryobacter, GR-WP33-
30, and Rhizomicrobium, which indicates the critical roles
these microbes play as keystone taxa in the co-occurrence
network.

Modules varied in their environmental associations, which
indicates that taxa from the same module were ecologically
similar (Supplementary Table S1). For instance, the abundance of
genera in module I showed no significant correlations with any
environmental factors, whereas the other two modules strongly
correlated with such factors. In addition, the abundances of
genera in the three major modules were negatively correlated
with soil pH, nutrients, and water content, which suggests
that these modules were composed primarily of oligotrophic,
acidophilic, and drought-tolerant taxa.
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FIGURE 4 | Redundancy analysis to show correlation between the bacterial
communities and physicochemical properties under five vegetation types.

DISCUSSION

Responses of Soil Environmental
Properties to the Vegetation Types
Both vegetation succession and afforestation can enhance soil
organic C and N dynamics by increasing SOM input and
decreasing the decomposition rate (Grünzweig et al., 2007;

Morris et al., 2007; Zhu et al., 2012; Cheng and An, 2015;
Nadal-Romero et al., 2016). Furthermore, vegetation restoration
can increase the water-holding capacity of the soil (Selma,
2014; Zhang et al., 2016). In the present study, TN, SOC,
and SM content generally increased as plant communities
changed from grass to shrub and forest, which suggests that
vegetation restoration accelerates organic matter accumulation
and improves soil moisture conditions in Karst ecosystems.
By contrast, a decreasing trend in pH was observed as
vegetation restoration progressed, in accordance with previous
studies (Robertson and Vitousek, 1981; Schipper et al., 2001;
Dmowska and Ilieva-Makulec, 2006; Holtkamp et al., 2008; Zhao
et al., 2014). Compared to Quercus aquifolioides × Lithocarpus
dealbatus secondary forest, Pinus armandii pure plantation and
Pinus yunnanensis× Alnus ferdinandi-coburgii mixed plantation
exhibited lower pH values, which may have been due to
acidification caused by coniferous afforestation (Brand et al.,
1986; Jönsson et al., 2003). The native plants in Karst calcareous
soil are mainly calcicoles, which accumulate amount of calcium
in their leaves (White and Broadley, 2003). In the present study,
a lower calcium accumulation capacity in these two calcifuge
Pinus foliage may have reduced the calcium content of leaf
litter and consequently by a decrease of pH value in topsoil.
Besides, various origins of root-mediated changes such as organic
acid may also affect soil pH (Hinsinger et al., 2003). Tree
species was the most important factor determining the C:N
ratio in European forest soils (Cools et al., 2014). In this study,
the Pinus armandii plantation and Pinus yunnanensis × Alnus
ferdinandi-coburgii mixed plantation had higher soil C:N ratios
than other vegetation types, perhaps because of the divergent
chemical characteristics of conifers compared to other plant
species (Laganière et al., 2013; Hume et al., 2016). These

FIGURE 5 | Co-occurring network of bacterial communities across five vegetation types based on correlation analysis. The nodes in network (A) are colored by
phylum. The nodes in network (B) are colored by modularity class. The connections stands for a strong (spearman’s ρ > 0.6) and significant (P < 0.01) correlations.
The size of each node is proportional to the relative abundance of specific genus. The thickness of each edge is proportional to the ρ.
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results suggest that both vegetation restoration stage and
chemical characteristics of the plant species present impact soil
properties.

Vegetation-Associated Edaphic Impacts
on Bacterial Community Structure
The critical role of pH in shaping bacterial community structure
is well characterized (Fierer and Jackson, 2006; Lauber et al.,
2009; Chu et al., 2010; Griffiths et al., 2011; Ling et al., 2016). In
the present study, soil pH was closely correlated with bacterial
diversity across Karst revegetation sites. Moreover, soil microbial
communities were influenced primarily by soil pH. The strong
correlation between soil pH and microbial distribution could
be due to the relatively narrow growth tolerances exhibited by
most bacterial taxa. Indeed, each type of microorganism has
an optimal pH value, and a slight change in pH might favor
distinct bacterial taxa. Therefore, pH is a universal factor for
predicting bacterial diversity and community structure (Fierer
and Jackson, 2006; Singh et al., 2012). We observed a significant
increase in the abundance of Acidobacteria with decreased
pH, which has also been observed across terrestrial soil types
(Eichorst et al., 2007). Calcium ion is implicated in a broad
array of bacterial functions, including heat shock, pathogenicity,
chemotaxis, differentiation, and the cell cycle (Norris et al.,
1996). Ca2+ is closely related to bacterial community structure
in typical Chinese forest soils (Xia et al., 2016). In this
study, bacterial richness and diversity demonstrated significant
positive correlations with Ca2+, which implies that the available
calcium content acts as a determining factor in shaping soil
bacterial populations and activity. In addition, soil moisture
is an important factor driving microbial diversity across Karst
vegetation types. Changes in soil water conditions affect oxygen
content and substrate availability and consequently the microbial
community (Yu et al., 2012; Banerjee et al., 2016). This finding
is in agreement with previous studies in Antarctic soils (Yergeau
et al., 2007; Chong et al., 2010), Canadian low Arctic tundra
(Chu et al., 2011), the Yellow River Estuary in China (Yu
et al., 2012), and Beilu River permafrost soils (Zhang et al.,
2013).

In our study, soil bacterial diversity was negatively correlated
with soil nutrient concentrations (SOC and TN). This pattern
may indicate that low-resource environments in grassland
and shrubbery lead to more unique niches, whereas relatively
high-resource forestland habitats are less inclined to microbial
niche differentiation, which has a major impact on microbial
diversity (Bakker et al., 2013; Schlatter et al., 2015). Soil
resource elemental stoichiometry plays an essential role in
bacterial diversity and community composition (Högberg
et al., 2007; Wan et al., 2015; Delgado-Baquerizo et al.,
2017). In this study, significant relationships of C:N ratio
with bacterial diversity and community structure were
also observed, which indicates that variables associated
with nitrogen transformations may be crucial determinants
of bacterial community structure (Shi et al., 2015). Taken
together, these results indicate that vegetation-associated soil
properties play a vital role in determining bacterial community
composition.

Co-occurrence Patterns of Bacteria
during Vegetation Restoration
The most abundant phyla studied in the co-occurrence network
were Acidobacteria and Proteobacteria, which indicates that
these generalists are adapted to a variety of environments (Jiao
et al., 2016). Moreover, the CC value of 0.72 for the bacterial
co-occurrence network in this Karst region was higher than
those reported for other ecosystems (Ju et al., 2014; Peng
et al., 2014), which demonstrates stronger correlations in this
ecological network. The fact that Bryobacter, GR-WP33-30, and
Rhizomicrobium had the top three betweenness centrality values
indicates the importance of these nodes in the co-occurrence
network. Bryobacter, an aerobic chemo-organotrophic bacterium
that utilizes various sugars, polysaccharides, and organic
acids, plays an important role in the biogeochemical carbon
cycle (Dedysh et al., 2016). Rhizomicrobium is a symbiotic
mycorrhizophere bacterium and is crucial for nitrogen fixation
(Ueki et al., 2010). GR-WP33-30 has also been identified
as a keystone species in previous research, and future work
is needed to better understand the role of this bacterium
in co-occurrence networks (Ma et al., 2016). Thus, all
three keystone taxa may play critical roles in ecological
processes.

Microbial species interactions are crucial to the structure and
dynamics of soil bacterial communities (Czárán et al., 2002;
Prosser et al., 2007; Hibbing et al., 2010; Schlatter et al., 2015).
Correlation-based network analysis has been successfully used
to explore the co-occurrence patterns of microbial communities
(Barberán et al., 2012; Purkamo et al., 2015; Chao et al.,
2016; Ma et al., 2016; Jiao et al., 2016; Pérez-Valera et al.,
2017). Network analysis showed non-random co-occurrence
patterns in microbial communities. Note that the 10 strongest
positive correlations were all between different phyla, which
indicates that metabolic cooperation may play an important
role in shaping species co-occurrence (Zelezniak et al., 2015).
Moreover, the different correlations between the abundance of
genera and soil characteristics among modules indicate specific
ecological characteristics in these assemblies. These non-random
assembly patterns of bacteria indicate the dominance of species
interactions and environmental filtering in shaping community
structure.

CONCLUSION

In the present study, we determined the effects of vegetation
restoration and microbial interactions on the structure of
bacterial communities in five vegetation types in KRD areas.
Our work suggested that variations in soil physiochemical
properties following revegetation led to shifts in the structure of
the bacterial communities. Coniferous-broadleaved mixed
plantation showed more similar bacterial community
structure with secondary forest than coniferous plantation,
indicating a better effect on ecological restoration of KRD
land. Soil pH emerged as the major determinant of bacterial
community characteristics. Bryobacter, GR-WP33-30, and
Rhizomicrobium are the keystone taxa in KRD areas of
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southwestern China. Finally, we demonstrated non-random
co-occurrence and modular patterns of bacterial communities.
This information improves understanding of microbial
responses to vegetation restoration in degraded karst regions.
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