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We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer
Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of
systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the
proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the
base classifiers and, broadly speaking, similar to that of the best one.Thus the proposed methodology allows realizing systems that
can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has
to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them frommisclassifications
into abstentions, thereby improving the level of safety in BCI for environmental or device control.

1. Introduction

The last two decades have seen an increasing interest in Brain-
Computer Interface (BCI) as a means of communication
and control for patients affected by severe neuromuscular
disorders. A BCI can be regarded as a direct communication
channel between a user’s brain and a device; it does not rely
on the conventional neuromuscular output pathways and it
is therefore suitable for those suffering from the locked-in
syndrome [1]. Nowadays, one of the leading directions in BCI
research is concerned with the development of noninvasive
systems in which the subject’s brain activity is measured
through electroencephalography (EEG).This is because those
BCIs are relatively inexpensive and, as EEG recording does
not require strict environmental conditions, such as those
needed by functional Magnetic Resonance Imaging and
Magnetoencephalography, promising for real use outside of
research laboratories [1].

Figure 1 depicts the logical schema of a generic BCI.
The translation of user’s intents into commands towards
an external peripheral is a complex multistage process in

which pattern recognition holds a fundamental role. For each
feature vector x in input, the classification phase outputs the
Logical Symbol (LS) that x is expected to encode, that is, the
class to which x is expected to belong. Logical symbols may
not have any semantic meaning; it is the Control Interface
that transforms one ormore LSs into a Semantic Symbol (SS),
which is used to control a device.

Given the importance of classification, many of the most
popular pattern recognition techniques have been applied
and evaluated within the context of EEG-based BCI (see [2]
for a review), for example, Fisher’s Linear Discriminant Anal-
ysis (FLDA), Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), and Bayesian Linear Discriminant
Analysis (BLDA).With respect to ensemblemethods, Lee and
Choi [3] applied stacking [4] to motor imagery recognition.
Two boosting [5] approaches were evaluated in [6, 7], with
different outcomes. Hoffmann et al. [6] reported positive
results with gradient boosting in visual P300 BCI, whereas
Boostani and Moradi [7] found that a linear classifier often
outperforms Adaboost in motor imagery recognition. The
strategy that obtained the best performance for the second
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Figure 1: Logical schema of a BCI. After acquisition, signal pre-
processing occurs and then one Logical Symbol (LS) is produced
by means of a classifier. One or more LSs are then translated into
a Semantic Symbol (SS) which is used for device control. The user
may receive feedback from the system in one ormore of the different
stages.

dataset of the BCI Competition III was grounded on an
ensemble of SVMs having their output averaged [8]. An
analogous attempt was made by Johnson and Krusienski
[9] with Stepwise Linear Discriminant Analysis as classifier
for the P300 speller. In such a context, also an ensemble
of FLDAs was considered [10]. In [11] a Multiple Classifier
System (MCS) has been applied to a self-pacedBCI, achieving
promising results. In addition, some studies [12, 13] compared
different ensemble methods and traditional EEG-based BCI
classification techniques.

In this paper we focus on combination of classifiers using
fuzzy integrals [14, 15], a technique that has been successfully
applied in pattern recognition since the nineties but that has
drawn, to the best of our knowledge, minimal interest in the
BCI community. Traditionally, MCSs have been viewed as a
means for improving classification accuracy and reducing its
variance, and as such they have been so far, mainly, applied to
BCI. In this paper, we propose the use of classifier combina-
tion in a somewhat different fashion. Our study is concerned
with the development of a framework for combination of
classifiers that can be applied to a variety of BCI systems with
minimal effort and changes to their structure. Our investi-
gation has been motivated by two typical EEG-based BCI
issues. Firstly, it has been observed (see, e.g., [13]) that, given
a BCI protocol, there is often no evidence of a single classifier
outperforming all the others for all the users of the system.
Thus, the use of multiple pattern recognition algorithms and
the automatic, subject-specific selection of those that perform
best would be a step towards the realization of BCIs ready to
be used by different subjects. Secondly, in many BCI systems,
misclassification has a high impact and therefore, in vague
situations, abstention is valuable [16, 17]. As it integrates
decisions from different sources, combination of classifiers is
promising of being better at uncertainty identification than
a single pattern recognition technique. It is worthy to note
that such an improvement would not only affect system
performance in terms of accuracy but also in usability and
safety, especially in the case of BCIs for environmental or
device control. To evaluate the effectiveness of the proposed
approach we applied it to a visual P300 BCI system.

The rest of this paper is organized as follows. In Section 2.1
we introduce the basic principles and the structure of a
generic classifier combination system. Section 2.2 is devoted
to the presentation of the theoretical concepts on which the
proposed classification strategy is grounded. In Sections 2.3
and 2.4, respectively, the proposed framework and its appli-
cation to visual P300 BCI are illustrated.The results obtained
in the offline analysis of data from 5 healthy subjects are
presented in Section 3. In Section 4 we discuss experimental
findings and possible applications of the proposed approach.
Finally (Section 5), we conclude and remark on future work.

2. Materials and Methods

2.1. Fundamentals of Combination of Classifiers. Let 𝐶
1
,

𝐶
2
, . . . , 𝐶

𝑛
denote the possible output classes of a given pat-

tern recognition task, and let 𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑘
be 𝑘 classifiers

for that task. We will often refer to the 𝐷
𝑗
(𝑗 = 1, 2, . . . , 𝑘) as

first level classifiers. Indicating with x an input feature vector,
with the term combination of classifiers system (Figure 2), we
denote an ensemblemethod that chooses the class𝐶

𝑖
towhich

x is expected to belong on the basis of the output of the
classifiers𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
only. In addition, the system has the

possibility of abstaining in case some predefined decision-
reliability criteria are not met.

The type of combination that can be performed depends
on the information provided by the first level classifiers.
Drawing on the concepts introduced in [18], it is possible to
distinguish tree levels in the output of a classifier:

(i) Abstract level: the classifier outputs only the class to
which it assigns the input vector.

(ii) Rank level: the classifier ranks all the classes in a queue
at whose top is placed the most probable class for the
input vector to belong to.

(iii) Measurement level: the classifier assigns to each class
a value representing the degree to which the input
vector is believed to belong to that class.

If only information at the abstract level is provided, then
the combination decision logic typically reduces to voting,
whereas if the output of the first level classifiers is at themea-
surement level,more rich techniques, such asweighted averag-
ing or fuzzy integrals, can be applied. In order for the combi-
nation to be successful, the first level classifiers should be dif-
ferent [19]. Here we use the term different in an informal fash-
ion and say that two classifiers are such if (i) they are based on
different algorithms (e.g., one is a feed-forward ANN and the
other is based on LDA) and/or (ii) they operate on different
sets of features and/or (iii) they are trained on different
subsets of the available data. More formal definitions and
measures of diversity in classifier ensembles lie beyond the
scope of this paper and the interested reader is referred to [19].

2.2. Theoretical Background. We use the following notation
and conventions: 0 denotes the empty set; |𝑋| and P(𝑋)

indicate, respectively, the cardinality and the power set of a
given set𝑋; 0! = 1, as usual.
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Figure 2: Logical schema of a classifier combination system. The
input vector is classified by an ensemble of pattern recognition
techniques in parallel and, from their outputs and according to its
decision logic, the system returns the class to which the input vector
is expected to belong or possibly abstains from making a decision.

2.2.1. FuzzyMeasure and Integral. Consider a decision system
with 𝑛 inputs 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
. To express the importance of

each input and of each possible coalition of inputs, we can
define a measure on 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}. However, in many

applications, the information sources manifest some sort
of positive/negative synergy when considered together, and
therefore the additive property of the measure may result too
restrictive. To overcome this limitation, Sugeno introduced
the concept of fuzzy measure [20].

Definition 1. Let 𝑋 be a finite set. A fuzzy measure 𝜇 on 𝑋 is
a set function defined onP(𝑋) satisfying the axioms:

(1) 𝜇(0) = 0.
(2) ∀𝐴, 𝐵 ∈ 𝑋 : 𝐴 ⊆ 𝐵 ⇒ 𝜇(𝐴) ≤ 𝜇(𝐵).

If in addition 𝜇(𝑋) = 1, then the fuzzy measure is said to be
normalized.

To aggregate information coming from the set of inputs
on which we have defined a fuzzy measure, we need an
extension of the (classical) integral operator, that is, we
need a fuzzy integral. In the literature it is possible to find
various definitions of integral operators with respect to fuzzy
measures [21]. In this paper we will concentrate on the
Choquet integral [21, 22]. This choice is motivated by both a
theoretical property, that is, it is a proper generalization of
the classical integral operator, and a practical one, that is, our
learning task can be expressed as a convex quadratic program
and therefore solved by means of well-known algorithms.

Definition 2. Let 𝑋 be a finite set of 𝑛 elements and let 𝜇

be a fuzzy measure on 𝑋. Let 𝑓 : 𝑋 → R+. Permute the
elements of 𝑋 so that 0 ≤ 𝑓(𝑥

1
) ≤ 𝑓(𝑥

2
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥

𝑛
),

where 𝑥
1
denotes the first element of 𝑋 permuted, 𝑥

2
the

second, and so on. The Choquet integral of 𝑓 with respect to
𝜇, (C) ∫ 𝑓(𝑥)𝑑𝜇(𝑥), is defined as

(C) ∫𝑓 (𝑥) 𝑑𝜇 (𝑥) =

𝑛

∑

𝑖=1

(𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖−1
)) ⋅ 𝜇 (𝐴

𝑖
) , (1)

where 𝑓(𝑥
0
) = 0 and 𝐴

𝑖
= {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≥ 𝑓(𝑥

𝑖
)}.

To define a fuzzy measure on a set 𝑋 of 𝑛 elements,
2
𝑛
− 1 (2𝑛 − 2 in the case of a normalized fuzzy measure)

coefficients are needed.This exponential complexity is rather
prohibitive and therefore, in the aim to combine the high
descriptive power of fuzzy measures with the simplicity of
traditional measures, Grabisch introduced the concept of 𝑘-
additive fuzzy measure [23]. A 𝑘-additive fuzzy measure on
a set of 𝑛 elements requires ∑𝑘

𝑖=1
(
𝑛

𝑖 ) coefficients, thus being
a good tradeoff between expressiveness and computational
tractability.

2.2.2. Importance and Interaction Index. Given a fuzzy mea-
sure 𝜇 on the finite set 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} of system

inputs, the Shapley value [24] can be used to estimate the
contribution that each 𝑥

𝑖
(𝑖 = 1, 2, . . . , 𝑛) brings to the task

at hand.

Definition 3. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a finite set and let 𝜇

be a fuzzy measure on 𝑋. The Shapley value, or importance
index, V

𝑥𝑖
of element 𝑥

𝑖
with respect to 𝜇 is defined as

V
𝑥𝑖

= ∑

𝐴⊆𝑋\{𝑥𝑖}

(𝑛 − |𝐴| − 1)! |𝐴|!

𝑛!
Δ
𝑥𝑖
(𝐴) , (2)

where Δ
𝑥𝑖
(𝐴) = 𝜇(𝐴 ∪ {𝑥

𝑖
}) − 𝜇(𝐴).

Similarly, to estimate contribution of a coalition of inputs,
we can use the extended interaction index proposed by
Grabisch [23].

Definition 4. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a finite set and let

𝜇 be a fuzzy measure on 𝑋. The extended, or generalized,
interaction index 𝐼

𝑆
of the coalition 𝑆 ⊆ 𝑋 with respect to

𝜇 is defined as

𝐼
𝑆

= ∑

𝐴⊆𝑋\𝑆

(𝑛 − |𝐴| − |𝑆|)! |𝐴|!

(𝑛 − |𝑆| + 1)!
∑

𝐵⊆𝑆

(−1)
|𝑆|−|𝐵|

⋅ 𝜇 (𝐴 ∪ 𝐵) .
(3)

When the coalition is constituted by two elements, the
extended interaction index reduces to the so-called (pairwise)
interaction index, previously proposed by Murofushi and
Soneda [25] to estimate how well two sources interact.
Moreover, it can be shown [23] that the extended interaction
index is a proper generalization of the Shapley value.

2.3. Proposed Framework. Here we give a succinct presenta-
tion of the proposed framework, highlighting the key aspects
and omitting many technical details which have been already
described in [26].

Consider 𝑘 different classifiers for the same 𝑛-classes
pattern recognition task, and assume each classifier output
is at the measurement level. Note that this assumption is
not overly restrictive, as many of the most widely used
algorithms (e.g., ANN) readily provide information at this
level, or it is easy to extract it. For each class 𝐶

𝑖
we construct

a logical coalition of 𝑠 classifiers out of the 𝑘 available; this
ensemble, 𝐸

𝑖
, includes those learners that are best at/best
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Figure 3: Logical schema of the proposed framework. The input vector is classified by class-specific ensembles of classifiers whose output
is combined by means of the Choquet integral with respect to class-specific fuzzy measures. The system returns the class to which the input
vector is expected to belong according to the combination outcomes or possibly abstains. In the figure, 𝐷𝑖

𝑗
indicates the 𝑗th classifier in the

ensemble for class 𝐶
𝑖
; DRI indicates the mapping procedure from each classifier output space into the common, classifier-independent space;

CI represents the Choquet integral with respect to the fuzzy measure 𝜇
𝑖
relative to class 𝐶

𝑖
.

cooperate for recognition of input instances belonging to class
𝐶
𝑖
. The coalition’s task is providing us with some useful

information about the likelihood that a given input feature
vector belongs to class 𝐶

𝑖
. Each classifier 𝐷

𝑗
in the coalition

already computes its own likelihood value but would like to
improve by combining all these scores into a global one taking
into account also the worth of each learner and possible
synergies among them. To this extent, we define a fuzzy
measure on 𝜇

𝑖
on each 𝐸

𝑖
and use the Choquet integral as

the aggregation operator. Finally, we either output the class
having the maximum likelihood or abstain if the decision
seems to be too uncertain, that is, if the two top-rated
classes are too close in likelihood with respect to a predefined
abstention threshold. Figure 3 shows a conceptual schema of
the framework.

For the sake of clarity, in the previous paragraph we have
omitted an important step. Before performing the integration
we need to map each classifier output into a common and
classifier-independent space; otherwise combination would
not be legitimate since each learner may have its own output
space (e.g., for a Bayesian classifier the output scores are
typically a posteriori probabilities, whereas for a SVM they
could be distances in the feature space).We propose the use of
a simple procedure to fulfill this requirement. Firstly, linearly
map the score 𝑠𝑖

𝑗
assigned by classifier𝐷

𝑗
to class𝐶

𝑖
to a value

in [−1, 1] in a way such that the minimum score gets mapped
to−1 and themaximumone to+1.Then, project each of those
values into [0, 1] by means of a sigmoid function centered
between the two highest values. We can interpret the output
of the procedure as the degree of belief into the proposition
“the input vector belongs to class𝐶

𝑖
,” where 0 denotes absolute

certainty that the input vector does not belong to 𝐶
𝑖
, 1

indicates absolute certainty that the input vector belongs to
𝐶
𝑖
, and intermediate values from 0 to 1 expressmonotonically

increasing degrees of belief. Limiting the slope factor of the
sigmoid function and appropriately choosing the crossover
point (bymeans of a simple nonlinear optimization problem),
we can also lower the scores if considerable uncertainty shines
through the classifier decision; see [26] for further details.

The class-specific fuzzy measures 𝜇
1
, . . . , 𝜇

𝑛
are learned

from data in the training phase [26]. The approach is
grounded on least squares optimization and, due to the
peculiarities of the Choquet integral, results in a convex
quadratic program that can be solved using well-known and
efficient algorithms.

The class-specific ensembles of classifiers 𝐸
1
, . . . , 𝐸

𝑛
are

built according to the following principle: a good team is
made up of good players that positively collaborate towards
the achievement of a common goal. We initialize 𝐸

𝑖
to the

empty set. Then, iteratively, we add to 𝐸
𝑖
the learner that best

interacts with those already in the ensemble, until |𝐸
𝑖
| = 𝑠. To

estimate interaction we use the extended interaction index,
computed from the 𝑠-additive fuzzy measure on the entire
set of classifiers. The fuzzy measure is learned from data in
a preliminary training phase. Note that, since the extended
interaction index is a proper generalization of the Shapley
value, the first learner added to 𝐸

𝑖
is the most important in

terms of contribution to the recognition of input instances
belonging to class 𝐶

𝑖
.

2.4. Application toVisual P300 BCI. This section is devoted to
the application of the proposed frameworkwithin the context
of visual P300 BCI. Since a vast literature (see, e.g., [1, 27–
29]) already covers this BCI paradigm, we describe it briefly
and instead concentrate on the issues related to the use of the
proposed combination of classifiers strategy.

The most diffused protocol in visual P300-based BCI
is the so-called matrix speller, or P300 speller, introduced
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by [27]. The subject sits in front of a computer screen that
displays a 6 × 6 matrix containing alphabet letters, single
digit numbers, and some commands, for example, undo and
space. By making each row and column flash randomly, and
asking the subject to concentrate on the item he/she wants to
communicate, we induce an oddball paradigm which allows
us to infer the desired symbol from the P300 component
of the brain activity. In our experiments, each row and
column flashed for 15 times; each flash lasted 100ms and the
interstimulus interval was set to 180ms. These settings have
been already used in [30]. With respect to EEG recording,
we used an EBNeuro Mizar System (Florence, Italy), with
61 electrodes positioned according to the 10-10 international
system (with reference between AFz and Fz and ground
between Pz and POz), and the NPXLab Suite [31] for signal
preprocessing and first level classification. The sampling rate
was of 256Hz, and then data was band-pass filtered between
0.5 and 30Hz. Artifacts (e.g., eye-blinks) were removed by an
expert technician. As a final remark we would like to point
out that different numbers of symbols can be considered but
the 6 × 6 matrix arrangement is the standard one, since it
allows including all the useful characters and commands for
communication. Lowering the number of symbols typically
improves recognition performance but is aimed at different
applications, for example, environmental control.

Thefirst level classifierswere chosen among themost used
in the P300 speller [28]: Bayesian classifier (BLDA), Artificial
Neural Network (ANN), SVMwith linear kernel (SVM-LIN)
and with radial basis function kernel (SVM-RBF), Shrunken
Regularized Linear Discriminant Analysis (SRLDA), and
Stepwise Linear Discriminant analysis (SWLDA). The size
of the class-specific ensembles was limited to 4 classifiers to
avoid excessive computational complexity. Regarding rejec-
tion, since in thematrix speller there are no safety constraints
and the objective is to maximize communication capabilities,
we did not impose a fixed abstention threshold but rather
chose the one that led to the best performance. In particular,
we formulated this task as an optimization problem and
solved it approximately using grid search; see [26] for further
details.

3. Results

The experiments involved five healthy subjects (3 men and
2 women, aged from 22 to 43 years). Each experimental
session was concerned with the communication of 6 different
symbols. We recorded 6 sessions per subject, with a small
break between two consecutive ones. Trainingwas performed
as follows. The first level classifiers learned from the first 12
symbols (2 sessions). Afterwards, the proposed framework
was trained on data from the third session. Testing involved
the last 18 symbols.

Concerning performancemetrics, we feel that, among the
ones available in the BCI field, the efficiency [32] is the most
appropriate; this is because of the primary importance of
the abstention within the proposed framework. Nevertheless,
since the aforementioned index is not yet widely diffused
in the BCI community, to facilitate comparison between

different realizations, we report the results of the study also
in terms of Nykopp’s information transfer rate (ITR) [33].

Tables 1 and 2 report, respectively, the efficiency and
the ITR of the BCI system equipped with one of the first
level classifiers and the proposed framework. Experimental
results support one of the main assumptions behind our
investigation into combination of classifiers in BCI: even
within the same protocol, there is often not a single classifier
that leads to the highest performance for all the subjects.
Moreover, which classifier is the best for a given user depends
also on the metric being considered, for example, for subject
A SVM-LIN is the best classifier according to the efficiency
whereas ANN is the one with respect to the ITR. Finally,
notice that for subject B the efficiency of the BCI system
using ANN or SRLDA is not defined—that is, the number of
misclassifications and their distribution do not allow effective
communication—and that the combination performedby the
framework makes the system reach a level of performance
that solves the problem.

Figure 4 shows the percentage improvement, in terms
both of the efficiency and of the ITR, obtained by means
of the framework with respect to the average performance
of the first level classifiers. Figure 5 shows an analogous
comparison with respect to the best first level classifier.
Percentage improvement in efficiency ranges frommore than
14% to more than 45% with regard to the average case and
from less than−16%tomore than 12%with respect to the best
classifier. Percentage improvement in ITR ranges from about
6%tomore than 22%with regard to the average case and from
less than −4% to about 5% with respect to the best classifier.
This makes us argue that the framework reaches a level of
performance that is significantly greater than the average of
the available classifiers but not necessarily higher than that of
the best of them. Such a behavior is typical of multiclassifier
systems [34].

Figure 6 depicts the relationship between classification
errors and abstentions as a function of the framework’s
abstention threshold for subject B (similar trends characterize
the other users). As the abstention threshold increases,
the number of errors lowers and that of abstentions rises;
therefore, by combining information from multiple different
sources, the framework is able to better identify uncertain
situations and abstain instead of misclassifying them.

4. Discussion

From the experimental results and those known in the
literature it is possible to argue that, even within the same
BCI protocol, there is often no evidence of a single classifier
outperforming all the others for all of the subjects. This leads
to the need of preliminary configuration phase during which
an expert has to identify the classifier that performs best
for each user. The proposed framework, which for all of
the subjects obtained performance higher than the average
of the first level classifiers and similar to that of the best
one, eliminates the aforementioned need, thus facilitating the
development of systems ready to be used by different subjects.
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Table 1: Efficiencya of the BCI system as a function of the classification technique.

Subject BLDA ANN SRLDA SWLDA SVM-LIN SVM-RBF Framework
A 0.6821 0.6690 0.3277 0.3392 0.6986 0.6519 0.6964
B 0.5320 ND ND 0.3283 0.2019 0.3874 0.5121
C 0.4194 0.2131 0.3235 0.3166 0.4559 0.2084 0.3798
D 0.4619 0.4837 0.2358 0.2774 0.5145 0.4143 0.5789
E 0.8272 0.7979 0.5948 0.7873 0.8046 0.7729 0.8736
aND, which stands for not defined, indicates that the classifier performance does not allow effective communication.

Table 2: ITR (bit/symbol) of the BCI system as a function of the classification technique.

Subject BLDA ANN SRLDA SWLDA SVM-LIN SVM-RBF Framework
A 1,8800 1,8885 1,6434 1,7259 1,8424 1,8341 1,9133
B 1,5703 1,1351 0,9654 1,2729 1,0330 1,3857 1,5010
C 1,1983 1,0374 1,0845 1,0617 1,2053 0,9610 1,1899
D 1,5542 1,4622 1,4282 1,2773 1,4989 1,4819 1,5764
E 2,1422 2,0673 1,7038 2,1059 2,0801 2,0202 2,2532
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Figure 4: Proposed framework performance: percentage improve-
ment with respect to the average performance of the first level
classifiers.

The recognition of uncertain situations, which are often
turned into abstentions instead of resulting into misclassi-
fications, can improve the effectiveness of BCI systems for
communication and the level of safety of those for environ-
mental or device control. With regard to the former systems,
the framework’s abstention threshold can, for example, be
learned in the training phase by means of the maximization
of a given performance metric, whereas in the latter it can be
specified a priori according to domain-specific constraints.
Obviously, a very high threshold will avert many errors but
may (and probably will) also turn some correct classifications
into abstentions. A tradeoff between safety, speed, and usabil-
ity has therefore to be found. In addition, the framework
provides an expert/researcher with the Shapley value, which
can be used for ranking the first level classifiers on the basis
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Figure 5: Proposed framework performance: percentage improve-
ment with respect to the best first level classifier.

of their contribution to the pattern recognition process.
Analogously, the interaction indexes allow the estimation of
synergy among coalitions of classifiers; such a knowledge can
be used, for example, to determine which pattern recognition
algorithms are worthy to be considered together and which
are not.

In [35], to our knowledge, the only study dealing with
combination of classifiers based on fuzzy measures and inte-
grals in the BCI literature (except for our previous studies [26,
36]), a system based on motor-imagery has been investigated
and the results are reported only in terms of the error rate. A
meaningful comparison of [35] and this study is therefore not
possible and the only point of contact is in the MCS having a
level of performance higher than the average of the first level
classifiers but not always better than the best of them.
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Figure 6: Framework error-abstention relationship as a function of
the abstention threshold: subject B.

Our study concentrated on the offline analysis of data
coming from healthy subjects. Two important issues are thus
to be addressed: how the performance is expected to vary
in the online scenario and how the system is expected to
perform when used by disabled subjects. With respect to
the first point, since the proposed method operates on top
of the first level classifiers by aggregating their responses,
we expect that possible performance differences between the
offline and the online scenario will be more related to the first
level classifiers behavior rather than their combination. In
particular, we expect a higher variance in the base classifiers
performance (e.g., due to the presence of artifacts such as eye-
blinks) and therefore aggregation by means of the proposed
method, which reduces classification variance, is likely to be
useful and lead to results similar to those obtained in the
offline analysis. With respect to the second issue, it is worthy
to point out that the P300 speller has been widely and suc-
cessfully used by disabled subjects [1, 29]; therefore we expect
that our framework will comply with what is usually found
in the literature with respect to performance with disabled
users. In particular, we expect that the real advancement will
be found in system usability: the proposed method, in fact,
often allows avoiding misclassifications by turning them into
abstentions, a fact that can surely improve system control
and the effectiveness perceived by its users. This is likely to
translate into users’ satisfaction towards the system.

5. Conclusions

This study has been concerned with the application of
combination of classifiers based on fuzzy measures and
integrals to EEG-based BCI. In particular we concentrated
on the Choquet integral and proposed a framework which
can be applied to a variety of systems. To evaluate its
effectiveness we have applied it to a visual P300 based BCI.
Experimental testing involved the offline analysis of data
relative to 5 healthy subjects. The framework performance

has been compared to that of the first level classifiers in terms
of both the efficiency and Nykopp’s information transfer rate.
Among the principal results we can cite:

(1) The best first level classifier is not the same for all of
the subjects and itmay also varywith the performance
metric being considered.

(2) The framework obtains performance similar to that of
the best first level classifier and significantly greater
than their average (frommore than 14% tomore than
45% in terms of efficiency).

(3) The framework is often able to identify uncertain
situations and turn them from misclassifications into
abstentions.

Given the aforementioned results we argue that combination
of classifiers using fuzzy measures and integrals is suitable
for application to EEG-based BCI. The proposed framework
allows realizing systems that can be used by different subjects
with a good level of performance (i.e., similar to the one
that could have been obtained by means of the best available
classifier) without the need of a preliminary configuration
phase and provides indexes for estimating the contribution
that each classifier brings to the pattern recognition task
and the interaction between them.The framework abstention
threshold can be learnt during training or be set a priori
according to domain-specific constraints.The latter feature is
of particular importance in BCI for environmental or device
control; in such systems the framework can also improve the
level of safety.

For some of the subjects it has been possible to notice an
increase in performance even with respect to best of the first
level classifiers; this can lead to better systemusability and, for
example, permit lowering the number of stimuli/trials needed
for the recognition of a symbol in BCI for communication.
However, further investigation into such a possibility is
needed. Additional future developments are the evaluation
of the framework in the context of other BCI systems and,
especially, its validation in online sessions.
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