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Abstract. Currently, using human prostate cancer (PCa) tissue 
samples to conduct proteomics research has generated a large 
amount of data; however, only a very small amount has been 
thoroughly investigated. In this study, we manually carried out 
the mining of the full text of proteomics literature that involved 
comparisons between PCa and normal or benign tissue and iden-
tified 41 differentially expressed proteins verified or reported 
more than 2 times from different research studies. We regarded 
these proteins as seed proteins to construct a protein-protein 
interaction (PPI) network. The extended network included one 
giant network, which consisted of 1,264 nodes connected via 
1,744 edges, and 3 small separate components. The backbone 
network was then constructed, which was derived from key nodes 
and the subnetwork consisting of the shortest path between seed 
proteins. Topological analyses of these networks were conducted 
to identify proteins essential for the genesis of PCa. Solute carrier 
family 2 (facilitated glucose transporter), member 4 (SLC2A4) 
had the highest closeness centrality located in the center of each 
network, and the highest betweenness centrality and largest 
degree in the backbone network. Tubulin, beta 2C (TUBB2C) 

had the largest degree in the giant network and subnetwork. In 
addition, using module analysis of the whole PPI network, we 
obtained a densely connected region. Functional annotation indi-
cated that the Ras protein signal transduction biological process, 
mitogen-activated protein kinase (MAPK), neurotrophin and 
the gonadotropin-releasing hormone (GnRH) signaling pathway 
may play an important role in the genesis and development of 
PCa. Further investigation of the SLC2A4, TUBB2C proteins, 
and these biological processes and pathways may therefore 
provide a potential target for the diagnosis and treatment of PCa.

Introduction

In recent decades, prostate cancer (PCa) has become one of the 
most common types of cancers in Europe and in the United 
States (1). The American Cancer Society predicted that there 
would be 220,800 new cases of PCa with 27,540 deaths in 
2015 (2). The pathogeny and risk factors of PCa are complex 
and not yet fully understood. Thus, it appears to be urgent and 
meaningful to further investigate the tumor-associated proteins 
and PCa pathogenesis. The rise of omics technologies in recent 
years and their use in PCa research have delivered a number of 
novel potential biomarkers for PCa (3). Among the available 
technologies, the ongoing improvements in proteomics technolo-
gies have resulted in increased information on protein behavior 
during cellular processes. The exponential accumulation of 
proteomics data has the potential to improve the treatment and 
prognosis of PCa by shedding light on the most important events 
that regulate prostate cells under normal and pathophysiological 
conditions (4). The standard proteomics experimental strategies 
are designed to compare proteomics signatures of cells in normal 
and anomalous states. As a result, a set of proteins with differen-
tial expression levels as a consequence of the different states of 
the cells is delivered. To fully understand the cellular machinery 
that leads to the different states, simply listing these identified 
proteins is not sufficient. As protein-protein interactions (PPI) 
are the key mechanisms of almost all biological processes, the 
characterization of all possible interactions connecting the iden-
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tified proteins is required (5). At the same time, using PPI to form 
a molecular regulatory network, which includes key nodes and 
signal transduction pathways, not only helps to further under-
stand the biological processes from a systems perspective, but 
can also be used to predict and evaluate the corresponding treat-
ments, providing a theoretical basis for the search for novel drug 
targets (6). Nevertheless, limited research associated with protein 
interactions specific to PCa proteomics-related proteins has been 
conducted. Therefore, to put our proteomics data in a biological 
context, we used a systems biology approach (the platform of 
PCa-related protein networks based on the available proteomics 
literature data) as a rational strategy for the identification of novel 
specific markers and novel therapeutic targets.

Network science is gradually altering our view of cell 
biology by offering unforeseen possibilities to understand the 
internal organization of a cell (7). Rather than the traditional 
approach of studying individual proteins or genes, a systematic 
investigation of PCa proteins in the human PPI network may 
provide important biological information for uncovering the 
molecular mechanisms of PCa (8). In recent years, there have 
been a number of successful studies that have found important 
target genes and markers by constructing and analyzing the 
protein interaction networks associated with diseases. In 2011, 
Lee et al constructed PPI networks of abnormally expressed 
genes for schizophrenia, bipolar disease and major depression, 
and identified several disease markers, such as strawberry notch 
homolog 2 (Drosophila) (SBNO2) for schizophrenia, SEC24 
homolog C, COPII coat complex component (SEC24C) for 
bipolar disorder and serrate, RNA effector molecule (SRRT) 
for major depression (9). In April 2013, Ran et al constructed 
and analyzed PPI networks for essential hypertension (EH), 
and suggested that blood pressure variations related to EH are 
orchestrated by an integrated PPI network with the protein 
encoded by the nitric oxide synthase 3 (endothelial cell) (NOS3) 
gene (10). Recently, in August 2014, Rakshit et al constructed 
PPI networks based on gene expression profiles of Parkinson's 
disease (PD) and identified 37 network biomarkers that can be 
used as potential therapeutic targets for PD applications devel-
opments (7).

In this study, we mined the differentially expressed 
proteins (DEPs) verified or reported more than 2 times in 
the proteomics literature of PCa. The DEPs were regarded 
as seed proteins to construct an extended PPI network, which 
not only consisted of the seed proteins, but also their direct 
PPI neighbors and the interactions between these proteins. 
Topological analyses were performed to determine the signifi-
cant network biomarkers. The association of these biomarkers 
with the genesis of PCa was investigated. The backbone 
network constructed of key nodes and the subnetwork of the 
shortest paths, as well as the densely connected region, were 
also investigated. Thus, the findings of this study may provide 
insight into the potential targets for developing novel treatment 
strategies for PCa.

Data collection and methods

Mining proteomics literature of PCa and screening criteria. 
We used the PubMed Database as the main source for literature 
retrieval and adopted an advanced search option by inputting 
‘(prostate cancer[Title]) AND Proteomics’ for literature before 

July 26th, 2015. The search was limited to publications in English. 
The inclusion criteria were the following: i) studies on the human 
species. ii) Studies using PCa tissue samples, including samples 
obtained by prostate needle biopsies and radical prostatectomy. 
The key to a more effective diagnosis, prognosis and therapeutic 
management of PCa could lie in the direct analysis of cancer 
tissue. Prostate tissue has the advantage over other biomate-
rials, that in addition to being a rich source of potential PCa 
biomarkers, it offers the possibility to clarify the mechanisms 
at the basis of the transformation of a normal prostate cell to a 
tumor cell and subsequent progression to a metastatic state (11). 
iii) Studies involved in the comparison between the tumor and 
normal or benign tissues, including PCa and benign prostatic 
hyperplasia (BPH), PCa and adjacent benign tissues or PCa and 
normal tissues. Exclusion criteria were the following: i) Studies 
on non-human tissue. ii) Studies on the PCa cell lines. Human 
tumor tissues and cell lines cultured in vitro are each valuable 
resources. However, the in vitro environment may cause changes 
in protein expression level of PCa cells. Therefore, in this study, 
we were limited to human tumor tissues. iii) Studies on samples 
of biological fluids, including serum, plasma, urine, seminal 
plasma and expressed prostatic secretions. iv) Studies only 
involved in tumor aggressiveness or metastasis. v) Studies on the 
effects of certain interventions on the protein expression profiles. 
vi) Studies which did not supply names or accession numbers of 
DEPs. vii) Literature reviews.

Extraction of DEPs associated with PCa proteomics. To 
prevent the omission of DEPs, we manually carried out the 
evaluation of publications in line with the above conditions; 
a total of 175 DEPs was extracted. The DEPs were turned 
into corresponding official gene symbols with the Protein 
Information Resource (PIR, Georgetown University Medical 
Center, Washington, DC, USA). The PIR is an integrated public 
bioinformatics resource to support genomic, proteomic and 
systems biology research and scientific studies (12).

Since proteomics technologies use complex instrumenta-
tion and costly consumables, the majority of investigations 
have a small sample size, and this, coupled with the relatively 
low reliability of the proteomics technology itself, leads to the 
reliability of the final results being questionable. We believed 
that if different proteomics studies have obtained the same 
DEPs, the reliability of the proteins associated with PCa would 
be greatly enhanced. Therefore, to improve the accuracy and 
reliability of the DEPs to the maximum extent, we extracted 
the DEPs verified or reported more than 2 times from different 
proteomics studies as seed proteins. The count criteria were as 
follows: i) If in one article several DEPs have the same official 
gene symbol, that was counted as once. ii) If in one article some 
DEPs were selected by the proteomics methods as the protein 
of interest to be further experimentally verified (by western blot 
analysis or immunohistochemistry), that was counted as twice. 
A total of 41 DEPs were obtained (Table I) as the seed proteins 
of the construction of the PCa proteomics PPI network.

Construction of the PPI network and extracting the giant 
component from the extended network. To avoid the loss 
of protein interactions using a single database, we used a 
combination of multiple databases to construct the network. 
Although the protein interactions in the different databases 
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largely overlap, the databases are complementary (13). We 
made use of the POINeT bioinformatics tool to form the 
human PPI network. POINeT is currently a relatively popular 
construction tool that integrates PPI information collected 

by various protein databases, including the Database of 
Interacting Proteins (DIP), Molecular INTeraction database 
(MINT), Biomolecular Interaction Network Database (BIND), 
Human Protein Reference Database (HPRD), Mammalian 

Table I. List of the 41 differentially expressed proteins between prostate cancer and normal or benign tissues by literature mining 
and screening the reported frequencies.

   Reported
Gene ID Symbol (Refs.) Description frequency

1674 DES (11,48-52) Desmin 6
3329 HSPD1 (11,48,50,51,53) Heat shock 60 kDa protein 1 (chaperonin) 5
3309 HSPA5 (48,50,51) Heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa) 3
3875 KRT18 (11,50,51) Keratin 18, type I 3
3856 KRT8 (11,50,51) Keratin 8, type II 3
7414 VCL (48,50,54) Vinculin 3
55 ACPP (50,53) Acid phosphatase, prostate 2
213 ALB (11,51) Albumin 2
308 ANXA5 (50,52) Annexin A5 2
392 ARHGAP1 (11,50) Rho GTPase activating protein 1 2
396 ARHGDIA (50,51) Rho GDP dissociation inhibitor (GDI)α 2
563 AZGP1 (11,50) alpha-2-glycoprotein 1, zinc-binding 2
822 CAPG (50,54) Capping protein (actin filament), gelsolin-like 2
1152 CKB (51,52) Creatine kinase, brain 2
30846 EHD2 (11,48) EH-domain containing 2 2
2023 ENO1 (50,53) Enolase 1, (α) 2
2266 FGG (50,51) Fibrinogen gamma chain 2
2288 FKBP4 (11,50) FK506 binding protein 4, 59 kDa 2
2638 GC (11,50) Group-specific component (vitamin D binding protein) 2
2934 GSN (48,50) Gelsolin 2
2947 GSTM3 (50,54) Glutathione S-transferase mu 3 (brain) 2
2950 GSTP1 (50,54) Glutathione S-transferase pi 1 2
3187 HNRPH1 (48,50) Heterogeneous nuclear ribonucleoprotein H1 (H) 2
3313 HSPA9 (48,51) Heat shock 70 kDa protein 9 (mortalin) 2
3315 HSPB1 (48,50) Heat shock 27 kDa protein 1 2
3848 KRT1 (11,50) Keratin 1, type II 2
3880 KRT19 (50,51) Keratin 19, type I 2
5034 P4HB (50,51) Prolyl 4-hydroxylase, beta polypeptide 2
5245 PHB (50,51) Prohibitin 2
7052 TGM2 (49,50) Transglutaminase 2 2
7163 TPD52 (48,50) Tumor protein D52 2
7168 TPM1 (49,52) Tropomyosin 1 (α) 2
10383 TUBB2C (50,51) Tubulin, beta 2C 2
7431 VIM (48,52) Vimentin 2
3615 IMPDH2a (54) IMP (inosine 5'-monophosphate) dehydrogenase 2 2
64087 MCCC2a (54) Methylcrotonoyl-CoA carboxylase 2 (β) 2
10631 POSTNa (48) Periostin, osteoblast specific factor 2
5500 PPP1CBa (11) Protein phosphatase 1, catalytic subunit, beta isozyme 2
5694 PSMB6a (11) Proteasome (prosome, macropain) subunit, beta type, 6 2
10131 TRAP1a (54) TNF receptor-associated protein 1 2
7334 UBE2Na (11) Ubiquitin-conjugating enzyme E2N 2

aGene symbol with ‘a’ indicates that the protein only appeared in one article, but was given further experimental (western blot analysis and immu-
nohistochemistry) validation as a protein of interest. Apart from those labeled with ‘a’, the remaining proteins were at found in at least two studies.
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Protein-Protein Interaction Database (MIPS), MIPS 
Comprehensive Yeast Genome Database (CYGD), Biological 
General Repository for Interaction Datasets (BioGRID) and 
NCBI database (14). The PPI networks constructed by POINeT 
were then visualized using Cytoscape 3.2.1, which is a software 
package available on the internet for biological network visual-
ization, data integration and interactive network generation (15). 
In this study, the extended network included a giant component 
and 3 small separate components derived from 3 seed proteins. 
This study aimed to explore the mechanisms responsible for 
PCa at the system level; the major central nodes must be in the 
giant network as the 3 small separate components consisted of 
a very small number of nodes, so only the giant network and 
its parameters related to the network theory had been analyzed 
or processed. To analyze and process the giant network conve-
niently, we extracted it from the extended network.

Topological analysis of the protein interaction network. The 
molecular organization can be visualized as a network of differ-
entially connected nodes. Each node stands for a protein and the 
edges represent dynamic interactions. Nodes thereby receive 
input and output values as mathematical functions (16). In the 
theory of the network, the connectivity degree (k), betweenness 
centrality (BC) and closeness centrality (CC) value of nodes 
are three fundamental parameters that are usually adopted to 
evaluate the nodes in a network (17). The degree, defined as the 
number of interacting partner proteins, is the most basic charac-
teristic of a node. The BC value is the fraction of the number of 
shortest paths that pass through each node in a network, which 
measures how often the node is located on the shortest paths 
between other nodes (18). The shortest path is the path containing 
the least number of vertices between two vertices in a network. A 
node with a higher BC value indicates that it has more influence 
over the information flow in the network. Therefore, BC values 
are generally useful indicators to detect bottlenecks in a network. 
The CC value is the inverse of the average length of the shortest 
paths to/from all other nodes in the graph and measures how close 
a node is to other nodes. The node with the highest CC value is 
usually the topological center of the network (18). In this study, 
Cytoscape 3.2.1 (15) was used to calculate the properties of the 
nodes and perform measurements under default parameters.

Creation of the backbone network of the PPI network for PCa. 
In the theory of the graph, proteins with high BC values are 
usually thought to be bottlenecks controlling the information 
flow in the transportation network (10). We set the critical node 
with a high BC value at 5% of the total nodes in the network. The 
proteins with a higher BC value and the links between them will 
make up a backbone network. Thus, we extracted the proteins 
with the top 5% of BC values and the links between them from 
the PPI network for PCa to create a backbone network.

Construction of a subnetwork consisting of all of the shortest 
paths between the seed proteins. Even in the giant network, 
there are a few pairs of seed proteins that are not connected 
directly. To construct a subnetwork in which all proteins asso-
ciated with PCa are connected directly or indirectly with the 
minimum number of nodes, we found all the shortest paths 
between every pair of seed proteins. Pesca3.0 (19), a plug-in for 
Cytoscape, was used to calculate the shortest paths between the 

41 seed proteins. The subnetwork consists of all nodes in these 
shortest paths. The subnetwork indicates the possible minimal 
number of connections among the 41 seed proteins responsible 
for the genesis of PCa.

Identification of densely connected regions in the PPI network. 
Biological networks are likely comprised of several subnet-
works or functional modules contributing to various diverse 
biological processes. A node may have negligible impact on 
the global network or global properties, yet is influential on 
a subnetwork with specific functionality (14). Therefore, we 
used Mcode1.4.1 (20) (a plug-in for Cytoscape) to cluster the 
whole network to identify densely connected regions. The 
module division parameters were as follows: degree cut-off, 2; 
node score cut-off, 0.2; k-core, 2; and max depth, 100. After 
clustering the PPI network, function annotation of the nodes 
located in the cluster was performed by DAVID Bioinformatics 
Resources 6.7 (the Database for Annotation, Visualization and 
Integrated Discovery, from National Institute of Allergy and 
Infectious Diseases, NIH, USA) (21).

The function annotation includes GO (Gene Ontology) 
analysis and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathways analysis. GO categories analysis provides 
a common descriptive framework to functionally annotate and 
classify gene sets. GO categories are organized into 3 groups: 
biological process, cellular component and molecular function. 
KEGG pathways bring together the molecular interactions and 
the reaction networks through an artificial pathway diagram.

The Benjamini method was used to control the false 
discovery rate (FDR) to correct the P-value. The Benjamini 
method is useful in large-scale multiple testing problems based 
on discrete test statistics and derive its basic asymptotic (as the 
number of hypotheses tends to infinity) properties, subsuming 
earlier results.

Results

PPI network. The extended network includes one giant network 
and 3 separated small components that are derived from the seed 
proteins, alpha-2-glycoprotein 1, zinc-binding (AZGP1), capping 
protein (actin filament), gelsolin-like (CAPG) and periostin, 
osteoblast specific factor (POSTN) (Fig. 1). The giant network 
consisted of 1,264 nodes connected via 1,744 edges (Fig. 2). 
The backbone network consisted of 63 nodes connected via 
186 edges (Fig. 3). We compared the measurement parameters 
of the network between the giant network and the backbone 
network (Table II). The largest degree in the giant network 
was 174, while the average degree was 2.759. This network is 
characterized by a small number of highly connected nodes, 
while most of the other nodes have few connections, which is 
the classical character of a PPI network (22).

Key nodes in the PPI network. In this study, the nodes with a 
large degree or high BC were viewed as key nodes, and 5% of 
the total nodes set of the network was used as the critical point 
of large degree and high BC nodes. Of the 1,264 total nodes, 
63 nodes had a high BC value, 58 nodes had a large degree and 
50 nodes were selected with a high BC value and large degree. 
To distinguish the different roles of these key nodes in the 
network, they were highlighted with different colors and sizes. 
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The size of the nodes corresponded to their BC values (Fig. 2). 
Tubulin, beta 2C (TUBB2C) is a hub protein with the largest 
degree and second highest BC value, while albumin (ALB) is 
a bottleneck protein with the highest BC value and the second 
largest degree. Solute carrier family 2 (facilitated glucose trans-
porter), member 4 (SLC2A4) has the highest CC value, which 
indicates that SLC2A4 is located at the center of the network.

Backbone network of the PPI network. The backbone network 
consisted from 63 nodes with a high BC value, the size of 

which corresponds to their BC value and the 186 links between 
them (Fig. 3). SLC2A4 was located at the center of the backbone 
network with the highest CC value. SLC2A4 also had the largest 
degree and the highest BC value; thus, it controls the information 
flow in the backbone network. SLC2A4 has 17 neighbors: heat 
shock 70 kDa protein (HSPA)5, TUBB2C, vimentin (VIM), 
HSPA9, heat shock 60 kDa protein 1 (HSPD1), IMP (inosine 
5'-monophosphate) dehydrogenase 2 (IMPDH2), prolyl 
4-hydroxylase, beta polypeptide (P4HB), enolase 1 (ENO1), 
glutathione S-transferase Pi 1 (GSTP1), heat shock 27 kDa 
protein 1 (HSPB1), protein phosphatase 1, catalytic 
subunit, beta isozyme (PPP1CB), keratin 8, type II (KRT8), 
ubiquitin-conjugating enzyme E2N (UBE2N), Rho GDP 
dissociation inhibitor (GDI) Alpha (ARHGDIA), proteasome 
subunit beta 6 (PSMB6), desmin (DES) and EH-domain 
containing 2 (EHD2). The details of the other proteins in the 
backbone network are not presented here.

Subnetwork consisting of the shortest paths between the 
seed proteins. The subnetwork consisted of 302 nodes and 
769 edges (Fig. 4). We found that TUBB2C had the highest 
BC value and the largest degree. SLC2A4 was also located 
at the center of the subnetwork and had the highest CC value. 
This is consistent with the results of the giant network and 

Figure 1. Overview of the extended network. The extended network includes one giant network and 3 separate small components which are derived, respectively, 
from the seed proteins, AZGP1, CAPG and POSTN. Nodes with a red triangular shape are the seed proteins shown in Table I, the rest are their neighbors.

Table II. The general measurements for each network.

 Giant Backbone
Parameter network network Subnetwork

Νο. of nodes 1,264 63 302
Average degree 2.759 5.905 5.093
Largest degree 174 17 72
Diameter 7 5 5
Mean shortest 3.859 2.675 3.145
path length
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Figure 2. Topology of the giant network. The giant network extracted from the extended network is the biggest component in the extended network. It consisted of 
1,264 nodes and 1,744 edges. Key nodes in the giant network are highlighted in different colors. Nodes with a triangular shape are the seed proteins. The size of 
the nodes corresponds to their BC values. SLC2A4 is located at the center of the giant network. BC, betweenness centrality.

Figure 3. Topology of the backbone network. The backbone network consisted of 63 nodes with a high BC value and 186 edges. The size of the nodes corresponds 
to their BC values. Nodes marked with red are the 17 neighbors of SLC2A4. BC, betweenness centrality.
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backbone network. In these 302 points, apart from AZGP1, 
CAPG and POSTN which are related to 3 separate small 
components, the rest of the seed proteins are all among 
these points. We determined that the top 63 BC nodes in this 
subnetwork coincided well with the 63 nodes in the backbone 
network. There are only 16 proteins which are not in the list 
of the 63 nodes with large BC values in the giant network. 
These are epidermal growth factor receptor (EGFR), cystic 
fibrosis transmembrane conductance regulator (ATP-binding 
cassette subfamily C, member 7) (CFTR), immunoglobulin 
heavy constant mu (IGHM), caspase-3 (CASP3), GINS 
complex subunit 2 (Psf2 homolog) (GINS2), exocyst 
complex component 5 (EXOC5), voltage-dependent anion 
channel 1 (VDAC1), nuclear factor of kappa light polypep-
tide gene enhancer in B-cells inhibitor, alpha (NFKBIA), 
tubulin, gamma 1 (TUBG1), tumor necrosis factor receptor 
superfamily, member 1A (TNFRSF1A), GDP-mannose 
pyrophosphorylase B (GMPPB), TNF receptor-associated 
factor 6, E3 ubiquitin protein ligase (TRAF6), cyclin-
dependent kinase 2 (CDK2), heterogeneous nuclear 
ribonucleoprotein K (HNRPK), eukaryotic translation 
initiation factor 4 gamma, 1 (EIF4G1) and 3-hydroxy-3-meth-
ylglutaryl-CoA synthase 1 (soluble) (HMGCS1).

Densely connected region in the constructed PPI network for 
PCa. Through M-code module analysis, we found a densely 
connected region with keratin 18, type I (KRT18), growth 
factor receptor-bound protein 2 (GRB2), EGFR, HSPA5 and 
KRT8 as the main nodes (Fig. 5). Among these, KRT18, HSPA5 
and KRT8 were seed proteins. Module function annotational 
by DAVID revealed that the module was mainly enriched in 
the apoptosis and Ras protein signal transduction biological 
processes (Table III). The KEGG pathway analysis revealed 
the involvment of the MAPK signaling pathway, neurotrophin 
signaling pathway, GnRH signaling pathway, colorectal cancer 
and non-small cell lung cancer (Table IV).

Discussion

Currently, PCa proteomics has generated a large amount of 
data; however, only a very small amount has been thoroughly 
investigated. Mining these DEPs and building a PPI network 
could be regarded as an effective way to explore the biological 
significance behind it. Mining of the proteomics data may 
further reveal novel pathogenic mechanisms by contributing to 
the characterization and understanding of biological processes 
and their aberrant functions in PCa; it may also provide a 

Figure 4. The subnetwork consisting of all of the shortest paths between the 41 seed proteins. The subnetwork consisted of 302 nodes and 769 edges. The size 
of the nodes corresponds to their BC values. SLC2A4 is located at the center of the subnetwork. TUBB2C has the highest BC value and the largest degree. 
BC, betweenness centrality.
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framework for the design of specific drugs by identifying 
potential therapeutic targets (13,23). The purpose of this study 

was to analyze the contribution of these proteins to the patho-
genesis of PCa and discover other key proteins cooperating with 
them by topological analyses. To minimize the heterogeneity 
of the research subjects to the maximum extent, we selected 
proteomics studies in the literature focusing on human prostate 
tissue instead of biological fluids. On this basis, to further ensure 
the reliability of the DEPs in proteomics studies, we screened 
41 PCa-associated DEPs that were reported more than 2 times 
from different researchers or further experimentally confirmed 
as seed proteins. The constructed network consisted of a giant 
network and 3 small separate components (Fig. 1). Only 3 seed 
proteins (AZGP1, CAPG and POSTN) were separate from the 
giant network, suggesting that the PPI between these proteins 
orchestrates the genesis of PCa. It is possible that some proteins 
were missed in the literature search and new reliable proteins 
remain to be discovered for PCa, in addition to false nodes 
resulting from false interactions in the network. However, 
biological networks are tolerant to the deletion of nodes, and 
new nodes prefer to link to nodes with a large degree. In other 
words, biological networks are robust to the random alteration 
of nodes, but are sensitive to hub removal (10,22).

Ideally, a topological network analysis identifies proteins 
susceptible to be biomarkers or therapeutic targets (24). Because 
cancer-related proteins have a higher ratio of promiscuous 

Figure 5. The significant modules in the whole extended network.

Table III. Gene Ontology (GO) functional enrichment analysis of the densely connected region with the threshold of P<0.05.

Category GO ID Term Count P-valuea Size

BP GO:0006915 Apoptosis 8 6.4E-4 602
BP GO:0007265 Ras protein signal transduction 4 9.8E-3 105
BP GO:0042981 Regulation of apoptosis 7 1.1E-2 804

aCalculated with the Benjamini method to control the false discovery rate (FDR) to correct the P-value. Category, GO function; Count, the 
number of proteins; Size, the total number of genes in the GO BP. BP, biological process.

Table IV. KEGG pathway enrichment analysis of the densely 
connected region with the threshold of P<0.05.

KEGG pathway KEGG entry Count P-valuea Size

MAPK signaling  hsa04010 5 3.5E-2 267
pathway
Neurotrophin  hsa04722 4 2.9E-2 124
signaling pathway
GnRH signaling  hsa04912 4 2.9E-2 98
pathway
Colorectal cancer hsa05210 4 3.7E-2 84
Non-small cell  hsa05223 3 4.6E-2 54
lung cancer

aCalculated with the Benjamini method to control the false discovery 
rate (FDR) to correct the P-value. Count, the number of proteins. Size, 
the total number of genes in the pathway. KEGG, Kyoto Encyclopedia 
of Genes and Genomes.
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structural domains, they are more prone to interact with other 
proteins. In fact, they have a large number of interacting 
proteins and occupy a central position in the networks (25). 
Proteins interacting with cancer-related proteins have a higher 
probability of being related to the cancer process than non-
interacting proteins. Hence, the study of these proteins may 
be an efficient way to discover novel cancer genes and cancer 
biomarkers (26-28). In the giant network, TUBB2C is a hub 
protein with the largest degree and second highest BC value. 
Through topological analysis of the subnetwork, we found that 
TUBB2C also had the largest degree and the highest BC value. 
TUBB2C is a member of the tubulin family. Tubulin, the major 
protein in microtubules, consists of a heterodimer of subunits 
designated as α and β. Both α- and β-tubulins are encoded by 
6 to 7 genes each and exist as multiple isotypes in cells (29). 
TUBB2C is one of the β-tubulin isotypes; it is also known 
as β2, TUBB2 and TUBB4B. Currently, there are very few 
detailed studies on the association between TUBB4B and PCa. 
Only Ranganathan et al have proposed that the expression of 
the β2 tubulin isotype in PCa and BPH tissues differs (30). 
However, the specific mechanisms of its involvement in PCa 
and subsequent research all lack specific elaboration. It has been 
found that TUBB2C is involved in the genesis and development 
of many types of tumors. The increased expression of TUBB2C 
is associated with the early lymph node micrometastasis of 
colorectal cancer (31); high levels of expression of TUBB2C in 
neuroepithelial tumors may reflect architectural changes in the 
developing brain (29). The downregulation of TUBB2C is also 
important in the development of nasopharyngeal carcinoma (32). 
ALB is a bottleneck protein with the highest BC value and 
second largest degree. Research has confirmed that a low pre-
operative serum albumin level may indicate extensive disease 
of clinically localized PCa and may ultimately be correlated 
with biochemical recurrence (33). In this study, TUBB2C and 
ALB were located in the top two of the BC and degree values in 
the giant network, suggesting that TUBB2C and ALB may be 
involved in the development and progression of PCa. However, 
further studies are required to verify our hypothesis.

In the backbone network, SLC2A4 has the largest degree 
and the highest BC value. In the giant network, backbone 
network and subnetwork, SLC2A4 was also located in the 
center with the highest CC value, suggesting that SLC2A4 
may play an important role in the genesis of PCa. SLC2A4, 
also known as GLUT4, is a member of the glucose trans-
porter (GLUT) family (34). It has been found that SLC2A4 can 
be used as a potential biomarker for many types of malignant 
tumors, including lung carcinoma, endometrial carcinoma, 
gastric cancer and breast cancer (35-38). Cancer cells need 
a steady source of metabolic energy to achieve uncontrolled 
growth and proliferation. Accelerated glycolysis is one of the 
biochemical characteristics of tumor cells, and the glycolytic 
breakdown of glucose is initiated by the transport of glucose, 
a rate-limiting process mediated by GLUT. Increased GLUT 
expression in malignant cells has been associated with the 
deregulated expression of GLUT proteins (39). Gonzalez-
Menendez et al demonstrated that SLC2A4 is present in PCa 
cells and participates actively in glucose uptake. SLC2A4 is 
more important in glucose uptake in androgen-insensitive 
than in androgen-sensitive PCa cells (40). However, studies on 
SLC2A4 participating in PCa are relatively rare. This study 

found that SLC2A4 has an important node in the proteomics 
PPI network, and may act as a candidate for molecular markers 
and drug targeting associated with PCa.

To further confirm the role of TUBB2C and SLC2A4 in the 
giant network and backbone network, we constructed a subnet-
work consisting of all of the shortest paths between the seed 
proteins (Fig. 4). The results revealed that TUBB2C had the 
highest BC value and largest degree. SLC2A4 was also located 
at the center of the subnetwork. Moreover, in this subnetwork, 
out of the 63 nodes with a high BC value in the giant network, 
only 3 seed proteins were excluded, indicating that the nodes 
with large BC values can efficiently connect and integrate these 
seed proteins. We also determined that the top 63 BC nodes in 
this subnetwork coincided well with the 63 nodes with large 
BC value in the giant network.

Through module analysis, we found a densely connected 
region which contained the seed proteins, KRT8, KRT18 and 
HSPA5. KRT8 and 18 (K8/18) are simple epithelial cell-specific 
intermediate filament proteins. The loss of K8/18 expression 
during epithelial-mesenchymal transition (EMT) is associated 
with metastasis and chemoresistance (41). Fortier et al noted 
that K8/18 knockdown increases epithelial cancer cell motility 
and invasion without modulating EMT markers, and improves 
PI3K/Akt activation in epithelial cancer cells (41). HSPA5 plays 
a critical role in tumorigenesis, progression and resistance to 
chemotherapeutic agents. Approximately 70% of human PCa 
tumors express high levels of HSPA5, which is associated with 
recurrence, development of castration resistance and poor 
survival (42). Following Gene Ontology (GO) and KEGG 
pathway analysis, we found that the Ras protein signal trans-
duction biological process and the MAPK signaling pathway 
were overrepresented. It has been suggested that Ras may be 
involved in the genesis and development of PCa. It has been 
shown that enhanced Ras signaling can reduce dependency for 
androgens in the LNCaP PCa cell line (43), whereas the inhibi-
tion of Ras can restore hormone dependency in C42 cells, a line 
that is otherwise hormone-independent (43,44). Furthermore, 
as a downstream target of Ras signaling, MAPK levels are 
augmented in patients who have failed hormone ablation 
therapy (45). Finally, Ras activation in the DU145 human PCa 
cell line has been shown to promote metastasis to the brain 
and bones (46). Recently, Mulholland et al suggested that RAS/
MAPK pathway activation may serve as a potentiating second 
hit to PTEN/PI3K/AKT pathway alterations to androgen-
dependent PCa and castrate-resistant PCa (47). These 
aforementioned data support the hypothesis that Ras protein 
signal transduction and the MAPK signaling pathway may act 
as molecular target candidates associated with PCa.

In conclusion, in the present study, we conducted meticu-
lous collation and mining of proteomics studies in the literature 
on PCa and identified 41 DEPs between cancer and normal or 
benign tissues. We then adopted a systems biology method in 
order to construct an extended PPI network related to PCa. 
Through topological analysis of the giant network, backbone 
network and subnetwork, we identified SLC2A4 and TUBB2C 
as network biomarkers; however, further research is required to 
determine their function and mechanisms of action in PCa. In 
addition, by module analysis, we determined that Ras protein 
signal transduction and the MAPK signaling pathway may play 
an important role in the genesis and development of PCa. This 
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study conducted a comprehensive analysis of the protein inter-
action network for proteomics DEPs in the overall perspective. 
Further investigations of these network biomarkers, biological 
process and pathways are warranted and this may reveal the 
specific pathogenesis of PCa and develop new targets for 
clinical treatments.

Acknowledgements

This study was supported by the National Natural Science 
Foundation of China (grant no. 81100518), the Science and 
Technology Foundation of Hebei Provincial Higher Education 
for Youth (grant no. QN2014013) and the Social Science Fund 
Project of Hebei Province (grant no. HB12SH030).

References

 1. Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA 
Cancer J Clin 64: 9-29, 2014.

 2. Smith RA, Manassaram-Baptiste D, Brooks D, Doroshenk M, 
Fedewa S, Saslow D, Brawley OW and Wender R: Cancer screening 
in the United States, 2015: A review of current American cancer 
society guidelines and current issues in cancer screening. CA 
Cancer J Clin 65: 30-54, 2015. 

 3. Davalieva K, Kiprijanovska S, Komina S, Petrusevska G, 
Zografska NC and Polenakovic M: Proteomics analysis of urine 
reveals acute phase response proteins as candidate diagnostic 
biomarkers for prostate cancer. Proteome Sci 13: 2, 2015. 

 4. Dihazi GH and Dihazi H: Protein-protein interaction networks 
improve the proteomics data interpretation in induced apoptosis. 
Expert Rev Proteomics 7: 177-180, 2010. 

 5. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S 
and Bork P: Comparative assessment of large-scale data sets of 
protein-protein interactions. Nature 417: 399-403, 2002. 

 6. Xin-Yu Y and Zheng-Ping X: An introduction to protein-protein 
interaction database and its application. Chin J Biochem Mol 
Biol 24: 189-196, 2008.

 7. Rakshit H, Rathi N and Roy D: Construction and analysis of the 
protein-protein interaction networks based on gene expression 
profiles of Parkinson's disease. PLoS One 9: e103047, 2014. 

 8. Sun J and Zhao Z: A comparative study of cancer proteins in the 
human protein-protein interaction network. BMC Genomics 11 
(Suppl 3): S5, 2010. 

 9. Lee SA, Tsao TT, Yang KC, Lin H, Kuo YL, Hsu CH, Lee WK, 
Huang KC and Kao CY: Construction and analysis of the protein-
protein interaction networks for schizophrenia, bipolar disorder, 
and major depression. BMC Bioinformatics 12 (Suppl 13): S20, 
2011. 

10. Ran J, Li H, Fu J, Liu L, Xing Y, Li X, Shen H, Chen Y, Jiang X, 
Li Y, et al: Construction and analysis of the protein-protein 
interaction network related to essential hypertension. BMC Syst 
Biol 7: 32, 2013. 

11. Davalieva K, Kostovska IM, Kiprijanovska S, Markoska K, 
Kubelka-Sabit K, Filipovski V, Stavridis S, Stankov O, Komina S, 
Petrusevska G and Polenakovic M: Proteomics analysis of 
malignant and benign prostate tissue by 2D DIGE/MS reveals 
new insights into proteins involved in prostate cancer. Prostate 75: 
1586-1600, 2015. 

12. Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear J, Chen Y, 
Hu Z, Kourtesis P, Ledley RS, Suzek BE, et al: The Protein 
Information Resource. Nucleic Acids Res 31: 345-347, 2003. 

13. Sardiu ME and Washburn MP: Building protein-protein inter-
action networks with proteomics and informatics tools. J Biol 
Chem 286: 23645-23651, 2011. 

14. Lee S-A, Chan C-H, Chen T-C, Yang CY, Huang KC, Tsai CH, 
Lai JM, Wang FS, Kao CY and Huang CY: POINeT: Protein 
interactome with sub-network analysis and hub prioritization. 
BMC Bioinformatics 10: 114, 2009. 

15. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, 
Pico AR, Bader GD and Ideker T: A travel guide to Cytoscape 
plugins. Nat Methods 9: 1069-1076, 2012. 

16. Jeanquartier F, Jean-Quartier C and Holzinger A: Integrated web 
visualizations for protein-protein interaction databases. BMC 
Bioinformatics 16: 195, 2015. 

17. Raman K: Construction and analysis of protein-protein inter-
action networks. Autom Exp 2: 2, 2010. 

18. Xie W, Sun J and Wu J: Construction and analysis of a protein-
protein interaction network related to self-renewal of mouse 
spermatogonial stem cells. Mol Biosyst 11: 835-843, 2015. 

19. Scardoni G, Petterlini M and Laudanna C: Analyzing biological 
network parameters with CentiScaPe. Bioinformatics 25: 
2857-2859, 2009. 

20. Rhrissorrakrai K and Gunsalus KC: MINE: Module identifi-
cation in networks. BMC Bioinformatics 12: 192, 2011.

21. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, 
Lempicki RA: DAVID: Database for annotation, visualization, and 
integrated discovery. Genome Biol 4: P3, 2003.

22. Lima-Mendez G and van Helden J: The powerful law of the 
power law and other myths in network biology. Mol Biosyst 5: 
1482-1493, 2009. 

23. Xia J, Benner MJ and Hancock RE: NetworkAnalyst - integrative 
approaches for protein-protein interaction network analysis and 
visual exploration. Nucleic Acids Res 42: W167-W174, 2014. 

24. Sanz-Pamplona R, Berenguer A, Sole X, Cordero D, Crous-Bou M, 
Serra-Musach J, Guinó E, Pujana MÁ and Moreno V: Tools for 
protein-protein interaction network analysis in cancer research. 
Clin Transl Oncol 14: 3-14, 2012. 

25. Jonsson PF and Bates PA: Global topological features of cancer 
proteins in the human interactome. Bioinformatics 22: 2291-2297, 
2006. 

26. Xu J and Li Y: Discovering disease-genes by topological features 
in human protein-protein interaction network. Bioinformatics 22: 
2800-2805, 2006. 

27. Sanz-Pamplona R, Aragüés R, Driouch K, Martín B, Oliva B, 
Gil M, Boluda S, Fernández PL, Martínez A, Moreno V, et al: 
Expression of endoplasmic reticulum stress proteins is a candidate 
marker of brain metastasis in both ErbB-2+ and ErbB-2- primary 
breast tumors. Am J Pathol 179: 564-579, 2011. 

28. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, 
Rennert G, Moreno V, Kirchhoff T, Gold B, et al: Network 
modeling links breast cancer susceptibility and centrosome 
dysfunction. Nat Genet 39: 1338-1349, 2007. 

29. Sugita Y, Nakamura Y, Yamamoto M, Oda E, Tokunaga O and 
Shigemori M: Expression of tubulin beta II in neuroepithelial 
tumors: Reflection of architectural changes in the developing 
human brain. Acta Neuropathol 110: 127-134, 2005. 

30. Ranganathan S, Salazar H, Benetatos CA and Hudes GR: 
Immunohistochemical analysis of beta-tubulin isotypes in 
human prostate carcinoma and benign prostatic hypertrophy. 
Prostate 30: 263-268, 1997. 

31. He ZY, Wen H, Shi CB and Wang J: Up-regulation of hnRNP A1, 
Ezrin, tubulin β-2C and Annexin A1 in sentinel lymph nodes of 
colorectal cancer. World J Gastroenterol 16: 4670-4676, 2010. 

32. Chan CML, Wong SCC, Lam MYY, Hui EP, Chan JK, Lo ES, 
Cheuk W, Wong MC, Tsao SW and Chan AT: Proteomic 
comparison of nasopharyngeal cancer cell lines C666-1 and NP69 
identifies down-regulation of annexin II and β2-tubulin for naso-
pharyngeal carcinoma. Arch Pathol Lab Med 132: 675-683, 2008.

33. Sejima T, Iwamoto H, Masago T, Morizane S, Yao A, Isoyama T, 
Kadowaki H and Takenaka A: Low pre-operative levels of serum 
albumin predict lymph node metastases and ultimately correlate 
with a biochemical recurrence of prostate cancer in radical pros-
tatectomy patients. Cent European J Urol 66: 126-132, 2013.

34. Aparicio LM, Villaamil VM, Calvo MB, Rubira LV, Rois JM, 
Valladares-Ayerbes M, Campelo RG, Bolós MV and Pulido EG: 
Glucose transporter expression and the potential role of fructose 
in renal cell carcinoma: A correlation with pathological 
parameters. Mol Med Rep 3: 575-580, 2010. 

35. Ito T, Noguchi Y, Satoh S, Hayashi H, Inayama Y and Kitamura H: 
Expression of facilitative glucose transporter isoforms in lung 
carcinomas: Its relation to histologic type, differentiation grade, 
and tumor stage. Mod Pathol 11: 437-443, 1998.

36. Shibata K, Kajiyama H, Ino K, Nawa A, Nomura S, Mizutani S 
and Kikkawa F: P-LAP/IRAP-induced cell proliferation and 
glucose uptake in endometrial carcinoma cells via insulin 
receptor signaling. BMC Cancer 7: 15, 2007. 

37. Liu J, Wen D, Fang X, Wang X, Liu T and Zhu J: p38MAPK 
signaling enhances glycolysis through the up-regulation of the 
glucose transporter GLUT-4 in gastric cancer cells. Cell Physiol 
Biochem 36: 155-165, 2015.

38. Garrido P, Osorio FG, Morán J, Cabello E, Alonso A, Freije JM 
and González C: Loss of GLUT4 induces metabolic repro-
gramming and impairs viability of breast cancer cells. J Cell 
Physiol 230: 191-198, 2015. 



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  37:  1576-1586,  20161586

39. Won HJ, Ha TK, Kwon SJ, Cho HY, Hur SJ, Baik HH, Suh SI, 
Ha E and Kim YH: Differential effects of 5-fluorouracil on 
glucose transport and expressions of glucose transporter proteins 
in gastric cancer cells. Anticancer Drugs 21: 270-276, 2010. 

40. Gonzalez-Menendez P, Hevia D, Rodriguez-Garcia A, Mayo JC 
and Sainz RM: Regulation of GLUT transporters by flavonoids 
in androgen-sensitive and -insensitive prostate cancer cells. 
Endocrinology 155: 3238-3250, 2014. 

41. Fortier AM, Asselin E and Cadrin M: Keratin 8 and 18 loss 
in epithelial cancer cells increases collective cell migration 
and cisplatin sensitivity through claudin1 up-regulation. J Biol 
Chem 288: 11555-11571, 2013. 

42. Misra UK and Pizzo SV: Ligation of cell surface GRP78 with 
antibody directed against the COOH-terminal domain of GRP78 
suppresses Ras/MAPK and PI 3-kinase/AKT signaling while 
promoting caspase activation in human prostate cancer cells. 
Cancer Biol Ther 9: 142-152, 2010. 

43. Bakin RE, Gioeli D, Bissonette EA and Weber MJ: Attenuation of 
Ras signaling restores androgen sensitivity to hormone-refractory 
C4-2 prostate cancer cells. Cancer Res 63: 1975-1980, 2003.

44. Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y 
and Pinkas-Kramarski R: Ras inhibition results in growth arrest 
and death of androgen-dependent and androgen-independent 
prostate cancer cells. Biochem Pharmacol 72: 427-436, 2006. 

45. Jia S, Gao X, Lee SH, Maira SM, Wu X, Stack EC, Signoretti S, 
Loda M, Zhao JJ and Roberts TM: Opposing effects of androgen 
deprivation and targeted therapy on prostate cancer prevention. 
Cancer Discov 3: 44-51, 2013.

46. Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M and 
Kelly K: Activation of the RalGEF/Ral pathway promotes prostate 
cancer metastasis to bone. Mol Cell Biol 27: 7538-7550, 2007. 

47. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, 
Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK activation 
cooperate to promote EMT and metastasis initiated from prostate 
cancer stem/progenitor cells. Cancer Res 72: 1878-1889, 2012. 

48. Sun C, Song C, Ma Z, Xu K, Zhang Y, Jin H, Tong S, Ding W, 
Xia G and Ding Q: Periostin identified as a potential biomarker 
of prostate cancer by iTRAQ-proteomics analysis of prostate 
biopsy. Proteome Sci 9: 22, 2011. 

49. Pang J, Liu W-P, Liu X-P, Li LY, Fang YQ, Sun QP, Liu SJ, 
Li MT, Su ZL and Gao X: Profiling protein markers associated 
with lymph node metastasis in prostate cancer by DIGE-based 
proteomics analysis. J Proteome Res 9: 216-226, 2010. 

50. Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, 
Giebel J, Scharf C, Woenckhaus C, Dombrowski F and Walther R: 
Prohibitin identified by proteomic analysis of prostate biopsies 
distinguishes hyperplasia and cancer. Cancer Lett 266: 171-185, 
2008. 

51. Alaiya AA, Al-Mohanna M, Aslam M, Shinwari Z, 
Al-Mansouri L, Al-Rodayan M, Al-Eid M, Ahmad I, Hanash K, 
Tulbah A, et al: Proteomics-based signature for human benign 
prostate hyperplasia and prostate adenocarcinoma. Int J 
Oncol 38: 1047-1057, 2011. 

52. Geisler C, Gaisa NT, Pfister D, Fuessel S, Kristiansen G, 
Braunschweig T, Gostek S, Beine B, Diehl HC, Jackson AM, 
et al: Identification and validation of potential new biomarkers for 
prostate cancer diagnosis and prognosis using 2D-DIGE and MS. 
BioMed Res Int 2015: 454256, 2015. 

53. Skvortsov S, Schäfer G, Stasyk T, Fuchsberger C, Bonn GK, 
Bartsch G, Klocker H and Huber LA: Proteomics profiling of 
microdissected low- and high-grade prostate tumors identifies 
Lamin A as a discriminatory biomarker. J Proteome Res 10: 
259-268, 2011. 

54. Han ZD, Zhang YQ, He HC, Dai QS, Qin GQ, Chen JH, Cai C, 
Fu X, Bi XC, Zhu JG, et al: Identification of novel serological 
tumor markers for human prostate cancer using integrative 
transcriptome and proteome analysis. Med Oncol 29: 2877-2888, 
2012. 


