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Abstract: The browning of plant-based food is commonly understood to result from the enzymatic
polymerization of phenolic compounds to pigments, called melanin. However, during the thermal
treatment of food, enzymes are deactivated, and non-enzymatic reactions predominate. The extent
of the contribution of phenolic compounds to these non-enzymatic reactions has been speculated
(“melanin-like vs. melanoidin-like”), but the literature is limited. Therefore, the aim of the present
study was to investigate the heat-induced reactions of caffeic acid (CA), para-coumaric acid (CS),
ferulic acid (FA), hydrocaffeic acid (HC), and 5-O-caffeoylquinic acid (CGA) under dry conditions.
The model systems were characterized by color formation, reactant conversion, and antioxidant
properties. Reaction products were analyzed by high-resolution mass spectrometry (HRMS) and
nuclear magnetic resonance (NMR) spectroscopy. Decarboxylation could be classified as the driving
force for the observed color formation and was significantly impacted by the substitution of the
aromatic system. Reaction products were found to contribute to an increase in the antioxidant
properties of the model systems. The oligomers described in this study could be incorporated into
food melanoidins, contributing to the color and antioxidant properties observed in roasted food rich
in phenolic compounds, such as coffee or cocoa.

Keywords: non-enzymatic browning; hydroxycinnamic acids; phenolic compounds; 4-vinylcatechol;
mass spectrometry; electrophilic aromatic substitution

1. Introduction

Thermal treatment is a vital step during the processing of most food items in modern
diets. It promotes food safety by inactivating pathogens, degrading natural toxins, and
by a conserving effect due to oxidative stabilization [1]. Additionally, heat-induced non-
enzymatic reactions result in the chemical conversion of macronutrients, leading to the
formation of flavor compounds [2], antioxidants [3], colorants [4], and macromolecules
acting as dietary fibers [5]. However, undesired off-flavors [6] and process contaminants [7]
are also described. Phenolic compounds have been proven to mitigate toxic effects by
trapping reactive carbonyl intermediates [8,9] and, thereby, inhibiting the formation of
heterocyclic aromatic amines and advanced glycation end-products (AGEs) [10]. Previous
studies have revealed the high reactivity of phenolic compounds during thermic treatment,
but little is known about their part in the MAILLARD reaction, especially regarding the
formation of colorants [11–13]. α-Dicarbonyl compounds formed from the MAILLARD reac-
tion such as 3-deoxyglucosone, methylglyoxal, and glyoxal were characterized as important
reactants in browning reactions [14–17] and are prevalent in a large number of plant-based
foods and ingredients [18]. So far, reactions of these MAILLARD reaction products and
phenolic compounds described in the literature are limited to carbonyl trapping—aromatic,
electrophilic substitution reactions between phenols and carbonyl groups—but these are
primarily understood to inhibit non-enzymatic browning reactions [19–21]. Because of their
two electrophilic carbonyl groups, reactive α-dicarbonyl compounds were found to exhibit
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the cross-linking of proteins via nucleophilic moieties such as amino groups [22]. However,
the cross-linking of nucleophilic compounds by bifunctional carbonyls might be adaptable
to phenolic compounds, uniting the concept of carbonyl trapping and the formation of
high molecular weight colorants. This is relevant because, apart from the inhibitory effect
on the MAILLARD reaction, phenolic compounds were also found to promote browning
in other studies [23] but without a solid explanation for this observation. In addition, it is
known that phenolic compounds are incorporated into food melanoidins in plant-based
goods, most prominently coffee [24–27].

However, before the complex reactions in food can be understood, a detailed charac-
terization of heat-induced non-enzymatic reactions exhibited by phenolic compounds is
needed. In this context, the phenolic ingredients of coffee, most prominently chlorogenic
acids and their corresponding hydrolysis products, caffeic acid (CA), ferulic acid (FA), or
para-coumaric acid (CS), are suitable components for model studies. These account for up
to 14% of the dry weight of green coffee beans and roasting was described to account for a
significant loss of up to 95% of phenolic compounds [28]. Aside from thermal degradation
reactions, the phenolic compounds are integrated into coffee melanoidins [26], but the un-
derlying mechanism for the formation of phenol-containing melanoidins is unknown [29].
These data are needed to widen the knowledge of the impact on human nutrition, because
coffee has been characterized as a major dietary source of melanoidins, contributing to an
intake of up to 2 g per day [30].

The non-enzymatic oxidative browning of caffeic acid was investigated in the past,
but the reaction conditions using a 100% oxygen atmosphere were not applicable to the
roasting of food [31]. The solvent-free thermic-treatment of hydroxycinnamic acids was
found to induce the decarboxylation and oligomerization of the respective decarboxylation
products [11]. The formation of tetraoxygenated phenylindan isomers was first described
by Stadler et al. [12] after the pyrolysis of caffeic acid at 230 ◦C. In a more recent study, Frank
et al. [32] elucidated the structure of different di- and trimers formed by 4-vinylcatechol,
the decarboxylation product of caffeic acid. These products were characterized as bitter-
tasting substances and their formation could be demonstrated during coffee roasting [33].
However, there are still no data regarding their contribution to food color and melanoidin
formation. The aim of the present study was to investigate the reactivity of structurally
related phenolic compounds during roasting to widen the knowledge of substitution-
dependent oligomerization, color formation, and changes in antioxidant properties.

Model experiments were carried out under dry roasting conditions by individually
heating caffeic acid, 5-O-caffeoylquinic acid (CGA), para-coumaric acid, ferulic acid, and
hydrocaffeic acid (HC) at 220 ◦C. Color formation was analyzed by Vis spectroscopy and
the conversion of the reactants was measured by high-performance liquid chromatography
coupled with a diode array detector (HPLC-DAD). The Trolox equivalent antioxidant
capacity (TEAC) assay was used to determine the antioxidant capacity. Structural character-
ization was performed by high-resolution multiple-stage mass spectrometry (HRMSn), and
the elucidation of 4-vinylcatechol dimers was achieved by one- and two-dimensional NMR
experiments. The isolated reaction products were also characterized regarding their an-
tioxidant capacity and reactivity by further heat treatment, individually or in combination
with caffeic acid.

2. Results and Discussion
2.1. Browning Potential of Hydroxycinnamic Acid Derivatives under Roasting Conditions

To clarify the relevance of non-enzymatic browning reactions during the roasting of
phenolic compounds, structurally related hydroxycinnamic acids—more precisely, caffeic
acid, para-coumaric acid, ferulic acid, hydrocaffeic acid, and 5-O-caffeoylquinic acid as
the main source of caffeic acid in coffee—were heated at 220 ◦C for up to 10 min. An
analysis of the absorbance at 420 nm as an indication for the formation of brown colorants
during the thermal treatment of food and model systems has been established as a useful
method to characterize the reactivity of the investigated systems. Instead of absolute
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absorbance at 420 nm, the color index (Figure 1A), defined as absorbance at 420 nm per
millimole of used reactant [14], is discussed. This allows a better comparison between
model systems containing different amounts of a substance. Additional information on
the colorants was obtained by measurements of the lightness (L*, Figure 1B), red/green
intensity (a*, Figure 1C), and yellow/blue intensity (b*, Figure 1D) of each sample.
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Figure 1. Time-dependent color formation of different hydroxycinnamic acid derivatives. Change in
(A) the color index of caffeic acid (CA, red line), 5-O-caffeoylquinic acid (CGA, blue line), hydrocaffeic
acid (HC, green line), para-coumaric acid (CS, brown line), and ferulic acid (FA, purple line) and
(B) lightness (L*), (C) red/green intensity (a*), and (D) yellow/blue intensity (b*) over the course
of roasting at 220 ◦C. Statistical analyses were performed by two-way ANOVA and TUKEY’s test
(p < 0.05). Statistically equal values of the data points are designated by equal letters.

During the first 2.5 min of heating at 220 ◦C, the color intensity was highest for
5-O-caffeoylquinic acid (blue line, Figure 1A), but only slightly increased compared to
caffeic acid (red line, Figure 1A). This might be a consequence of the starting conditions:
The substance was obtained as a greenish powder leading to significant colored extracts at
0 min, whereas all the other phenol compounds used in this study were colorless. After
5 min, the color index was highest for caffeic acid (red line, Figure 1A), which showed a
nearly linear increase in the color index throughout the incubation time of 10 min. After
10 min, the color index of caffeic acid was two-fold compared to 5-O-caffeoylquinic acid.
The color formation of hydrocaffeic acid (green line, Figure 1A), ferulic acid (purple line,
Figure 1A), and para-coumaric acid (brown line, Figure 1A) were comparatively low, result-
ing in color indices of around 10% (hydrocaffeic acid) and 3% (para-coumaric acid, ferulic
acid) with regard to the values obtained for caffeic acid. An indication for the underlying
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mechanism of color formation could be drawn from a study by Rizzi and Boekley [11]: The
authors described the decarboxylation reactions of caffeic acid, para-coumaric acid, and
ferulic acid after pyrolysis at 205 ◦C for 45 min, resulting in a nearly complete conversion.
The decarboxylation products were found to form dimeric compounds that were described
as pale substances depending on their substitution. The 4-vinylcatechol dimer, deriving
from caffeic acid, was reported as a pale-yellow oil, while dimers of 4-vinylguaiacol and
4-vinylphenol, formed after the decarboxylation of ferulic acid and para-coumaric acid,
were colorless [11]. Nevertheless, consecutive reactions leading to further enlargement of the
conjugated electron system must occur to explain the intense color formation observed in this
study. In a recent investigation, it was reported that the electron-donating and -withdrawing
groups of 4-hydroxycinnamic acids increase the decarboxylation rate during thermal treat-
ment [13]. In combination with the data discussed herein, the hypothesis could be formulated
that the substitution of the structurally related phenols significantly impacts their color for-
mation under roasting conditions, whereby a higher electron density of the aromatic system
correlates with higher extinction coefficients of the resulting reaction products.

As expected, the lightness decreased with an increase in the color index (Figure 1B). To
be precise, the L* value significantly declined during the heat treatment of caffeic acid from
almost 100 at 0 min (light grey bar) to 64 at 5 min (dark green bar) and to 38 at 10 min (dark
grey bar). A comparable but less intense browning was exhibited for 5-O-caffeoylquinic
acid, leading to a lightness of 59 at the end of the reaction. The roasting of hydrocaffeic acid
(89), para-coumaric acid (95), and ferulic acid (94) only led to a small decrease in lightness.
The analysis of the red (Figure 1C) and yellow (Figure 1D) color intensity of the model
systems revealed that the yellow color intensity was overall more prevalent than the red
color intensity, except for caffeic acid after 10 min of heating. Because the a* and b* values
were always in the positive range, green or blue color tones were not observed in any
system at any given time. The highest a* and b* values were obtained for caffeic acid: After
5 min, the yellow intensity was significantly higher than the red intensity, whereas both
decreased over the course of further heating, resulting in a higher red content at 10 min.
This decline could be explained by the decreasing lightness that impairs the determination
of the underlying color intensities. The roasting of 5-O-caffeoylquinic acid led to a less
sharp increase in a* and b* compared to caffeic acid, whereas the color intensity did not
decline during the observed reaction time. For hydrocaffeic acid, para-coumaric acid, and
ferulic acid, only a low increase in red content was detected after the roasting period of
10 min, but the increase in yellow intensity was significant, whereas the final b* values
were comparable for these components. After 10 min, the yellow intensity was in the range
between caffeic acid and 5-O-caffeoylquinic acid.

By analysis of the color indices, caffeic acid and 5-O-caffeoylquinic acid exhibited
an elevated browning potential compared to para-coumaric acid, ferulic acid, and hy-
drocaffeic acid. The heat treatment of 5-O-caffeoylquinic acid was described to induce
hydrolysis, yielding caffeic acid [32]. Consequently, the smaller increase in the color index
of 5-O-caffeoylquinic acid compared to caffeic acid might be a result of a delayed release
of caffeic acid and subsequent color formation. The color indices of hydrocaffeic acid,
para-coumaric acid, and ferulic acid were low and negligible compared to caffeic acid and
5-O-caffeoylquinic acid. As there were significant differences regarding the L*, a*, and
b* values between all investigated phenolic compounds, the assumption was made that
roasting induced the formation of structurally different colorants at the observed reaction
times. Overall, the color indices of the model systems correlated with the electron density
and the size of the aromatic system of the reactants, resulting in the following ranking
(from high to low): Caffeic acid > 5-O-caffeoylquinic acid > hydrocaffeic acid > ferulic acid
> para-coumaric acid.

2.2. Thermally Induced Degradation of Hydroxycinnamic Acid Derivatives and Its Influence on pH

The conversion of the reactants during the reaction was analyzed by HPLC-DAD
(Figure 2A). Earlier studies reported that the thermal treatment of these compounds induced
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decarboxylation [11,13,32]. In the present study, pH values were used as an indication of
the prevalence of decarboxylation reactions (Figure 2B). The hypothesis was made that the
degree of decarboxylation was reflected by an increase in the pH value of the methanolic
extracts of the reaction mixtures because it results in the loss of the carboxyl moiety, which
is mainly responsible for the pKa values of the phenolic acids.
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Figure 2. Reactivity of different hydroxycinnamic acid derivatives. Heat-induced (A) conversion of
caffeic acid (CA, red line), 5-O-caffeoylquinic acid (CGA, blue line), hydrocaffeic acid (HC, green line),
para-coumaric acid (CS, brown line), and ferulic acid (FA, purple line) over the course of roasting at 220 ◦C
and (B) changes in the pH values of the methanolic extracts. Data were analyzed by two-way ANOVA and
TUKEY’s test (p < 0.05). Statistical differences between the data points are designated by different letters.

The conversion of the reactant was the highest and fastest in the caffeic acid model
system. After 2.5 min, almost 98% of the initial caffeic acid was converted, and after
5 min, no caffeic acid was detectable. A slower but also almost complete conversion was
obtained after the heating of 5-O-caffeoylquinic acid, with a relative conversion of 97% after
10 min. A turnover of 85% was determined for para-coumaric acid after 10 min, whereby
its conversion was slow during the first half of the reaction and accelerated in the second
half. In contrast, the reactivity of ferulic acid was comparatively low: After 5 min, 26%
of the initially used amount was converted and further heat treatment did not result in a
change in its concentration. Hydrocaffeic acid was even less reactive: 85% of the initial
amount remained after 10 min of heating.

The pH values of the methanolic extracts of the samples were correlated inversely
with the relative concentration of the reactants (Figure 2B): A sharp increase in pH value
was measured after 2.5 min in the caffeic acid model system, which remained constant after
the caffeic acid was completely converted (Figure 2A). A consistent but slower increase
was obtained after the heating of 5-O-caffeoylquinic acid. The lower overall pH value
compared to caffeic acid could be explained by the free carboxyl group of quinic acid,
which has a lower pKa value than the carboxyl group of caffeic acid [34]. The pH value
of the para-coumaric acid model system did not significantly change during the first
5 min, but then sharply increased while its concentration declined. This indicated that
the decarboxylation was delayed compared to caffeic acid but was the main mechanism
for the observed conversion of para-coumaric acid. For ferulic acid, a small increase in
pH was determined after 2.5 min but remained almost constant thereafter. Referring to
the declining concentration during the first half of the reaction period, decarboxylation
might not be the main mechanism for the degradation observed during the first 5 min.
Instead, the pH value of the hydrocaffeic acid extract was constant in course of the reaction,
indicating that its conversion was not a result of decarboxylation.
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Overall, the data obtained by monitoring the conversion of the reactants and the pH
value at given stages during the reaction showed that a decline in the concentration of the
hydroxycinnamic acids was accompanied by an increase in the pH values of the methanolic
extracts. With regard to earlier investigations discussing the decarboxylation of hydrox-
ycinnamic acid derivatives [11,12,32], the correlation between reactant conversion and an
increase in pH value observed in the present study could be interpreted as decarboxylation
being the main reaction pathway for the conversion of caffeic acid, 5-O-caffeoylquinic acid,
and para-coumaric acid. In contrast, the data obtained in the present study do not imply
decarboxylation to be a key step during the roasting of ferulic and hydrocaffeic acid. Even
though the decarboxylation of these phenolic compounds was investigated in earlier stud-
ies [12,32], this reaction mechanism was never discussed in the context of color formation.
The data presented herein show that decarboxylation and subsequent oligomerization
could possibly contribute to the generation of colorants within non-enzymatic browning
reactions under roasting conditions.

2.3. Structural Characterization of Colored Oligomers Deriving from Hydroxycinnamic Acid
Derivatives by High-Resolution Mass Spectrometry

High-resolution mass spectrometry was used to gain structural information about the
reaction products formed during the dry heating of the phenolic compounds investigated.
For analysis, ethyl acetate extracts obtained after roasting at 220 ◦C for 5 min were used,
because the reaction was in an advanced stage, as apparent from the color indices and
the relative concentration of the reactant. Ionization was carried out by electron spray
ionization (ESI) in positive and negative ion mode as well as by atmospheric pressure
chemical ionization (APCI) in positive ion mode. APCI resulted in a higher ion yield
and a higher number of signals for reaction products formed after the treatment of caffeic
acid, para-coumaric acid, and ferulic acid. Measurements in positive ion mode resulted in
the detection of proton adducts, whereas other commonly formed sodium or potassium
adducts were not found in significant intensities compared to the respective proton adducts.
On the other hand, for hydrocaffeic acid, only ESI(−) resulted in usable HRMS spectra,
whereas none of the applied methods resulted in the detection of reaction products formed
after the treatment of 5-O-caffeoylquinic acid.

The APCI(+) scan spectrum of the extract resulting from the heat treatment of caffeic
acid is shown in Figure 3. Based on their sum formulae, the most abundant signals were
assigned to its decarboxylation product, 4-vinylcatechol. Tentative assignment can be found
in Table S1 (Supplementary Material). Almost every signal highlighted in Figure 3 could
be assigned to proton adducts of 4-vinylcatechol and further oligomerization products
thereof. The base peak of m/z 137 was assigned to the proton adduct of vinylcatechol.
m/z 269 and m/z 271 are representatives of vinylcatechol dimers with varying degrees of
oxidation (–n × H2). This “redox pattern” of oligomerization products was also detected
for vinylcatechol trimers with main signals at m/z 405 and 407, as well as its tetramers with
m/z 541 and 543. m/z 163 was assigned to a fragment of a vinylcatechol dimer with a neutral
loss of dihydroxybenzol (–C6H6O2). The fragmentation of phenolic compounds occurring
as a consequence of APCI(+) has already been reported by other authors [35].

The HRMS analysis of equally treated solutions of para-coumaric acid (Figure S8A,
Table S2), ferulic acid (Figure S9, Table S3), and hydrocaffeic acid (Figure S10A, Table
S3) revealed the formation of heterogeneous reaction products of the initial phenolic acid
with its decarboxylated derivative. However, decarboxylation could only be observed for
para-coumaric acid and ferulic acid in the form of proton adducts of 4-vinylphenol (m/z 121)
and 4-vinylguaiacol (m/z 151). The HRMS-ESI(−) analysis of hydrocaffeic acid did not
reveal the formation of the corresponding decarboxylation product 4-ethylcatechol at all.
Instead, the pseudomolecular ions detected after the HRMS analysis of hydrocaffeic acid
were predominantly assigned to condensation products of the native compound. In general,
the incorporation of further phenolic acid molecules into oligomers could be explained
by the formation of ester bonds by the aromatic hydroxy and aliphatic carboxyl groups.
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Overall, the abundance of pseudomolecular ions of the reactants with conserved carboxyl
functions was significantly higher compared to decarboxylated monomers or heterogeneous
oligomers of the respective reactants. These findings reveal that oligomerization products
and, consequently, the underlying mechanism, differ depending on the substitution of
the respective phenolic compound, whereby a higher degree of conjugation, as well as
substituents stabilizing a negative charge, tend to promote decarboxylation and lead to
higher color intensities of the resulting oligomeric product mixtures. Instead, for phenolic
acids, other than caffeic acid, condensation reactions and ester formation were most likely
the relevant pathway for oligomerization.
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2.4. Isolation, Structural Elucidation, and Formation Mechanism of Colored 4-Vinylcatechol
Dimers

By means of preparative HPLC, three different compounds from the reaction mixture
of caffeic acid 1 were isolated and their structures were elucidated using one- and two-
dimensional NMR spectroscopy. They were identified as dimers based on 4-vinylcatechol
2; in detail, two stereoisomers of 1-(3,4-dihydroxyphenyl)-3-methyl-2,3-dihydro-1H-indene-
5,6-diol 4 (P1 and P2) and (E)-4,4′-(but-1-ene-1,3-diyl)bis(benzene-1,2-diol) 3 (P3). These
compounds, including different diastereomers, were already isolated by Frank et al. [32] af-
ter heating caffeic acid at 220 ◦C for 15 min. The relevance in the context of food processing
was proven in a follow-up study by Blumberg et al. [33], who characterized these reaction
products as bitter-tasting compounds that are formed during coffee roasting. The authors
proposed that the protonation of 4-vinylcatechol to its corresponding cation was necessary
prior to their dimerization, yielding 3 and 4 [12,32]. This mechanism was comparable to the
proposal by Stadler et al. [12], who were the first researchers to describe the formation of two
stereoisomers of 4. However, solvent-free conditions, as applied in earlier studies [12,32]
as well as in the present study, are unlikely to promote proton transfer to the extent that
the reactants are fully converted after 2.5 min of heating. In a more recent investigation,
it was reported that heat treatment in polar and protic solvents enabling proton transfer
resulted in a yield twice as high compared to reactions performed in apolar media. In
contrast to the data discussed herein, longer reaction times (30 min at 200 ◦C) were needed
for a comparable conversion of caffeic acid, and no polymerization of 4-vinylcatechol was
reported under these conditions [13]. In the present study, a revised mechanism that does
not require any medium for proton transfer and makes the rapid conversion of caffeic
acid more plausible is proposed in Figure 4: Under roasting conditions, caffeic acid 1 per-
forms an intramolecular proton transfer and decarboxylation, yielding 4-vinylcatechol 2.
Subsequent reactions of 4-vinycatechol 2 with caffeic acid promote the decarboxylation
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and the formation of a 4-vinylcatechol dimer, 4,4′-(but-1-ene-1,3-diyl)bis(benzene-1,2-diol)
3, in a concerted reaction via a six-membered transition state (Figure 3). The formation
of the 1-(3,4-dihydroxyphenyl)-3-methyl-2,3-dihydro-1H-indene-5,6-diol 4 isomer results
from a cyclization by the intramolecular electrophilic aromatic substitution of 3. Sub-
sequent reactions of 4 with caffeic acid 1, via the proposed concerted mechanism or an
electrophilic substitution reaction of 4 with 4-vinylcatechol, could explain the formation
of larger oligomers, such as the trimer 5, whose oxidized species were detected as m/z 405
and m/z 407 by HRMS. Both reactions are reasonable, whereas these might be strongly
dependent on the concentration of the respective reactants. As 4-vinylcatechol catalyzes
the decarboxylation of caffeic acid and subsequent oligomerization, the propagation of
the reaction accelerates the conversion of caffeic acid, resulting in the fast conversion as
observed by HPLC-DAD. This mechanism offers a plausible explanation for the accelerated
decarboxylation of caffeic acid under dry conditions and the subsequent color formation
on the basis of concerted oligomerization reactions.
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Figure 4. Decarboxylation of caffeic acid 1 and the subsequent oligomerization of 4-vinylcatechol
2 leads to the formation of (E)-4,4′-(but-1-ene-1,3-diyl)bis(benzene-1,2-diol) 3 (P3). Cyclization
via an intramolecular electrophilic substitution reaction of 3 results in the formation of 1-(3,4-
dihydroxyphenyl)-3-methyl-2,3dihydro-1H-indene-5,6-diol 4 (P1, P2), whereas the addition of 2
before restoring aromaticity leads to the trimer 5.
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2.5. Composition of Novel Colorants by High-Resolution Multiple-Stage Mass Spectrometry

Further analysis of oligomers found in the reaction mixtures of different hydroxycin-
namic acids obtained after roasting was performed by HRMSn experiments. As mentioned
before, products of up to four units of the respective acids or their decarboxylation products
could be found. For caffeic acid, most of the fragmentation pathways observed could be
explained by the neutral loss of vinylcatechol (–C8H8O2) or its dimer (–C16H14O4). In
addition, the loss of dihydroxybenzol (–C6H6O2) and dehydration (–H2O) were found to
yield stable pseudomolecular ions. Oxidation (–n × H2) was induced by fragmentation, as
well. Fragmentation spectra and a table for the tentative assignment of the fragment ions
resulting from the fragmentation of seven oligomers detected in the scan HRMS spectrum
can be found in the Supplementary Material (Figure S11 and Table S5).

A step-by-step example of the fragmentation of a pseudomolecular ion m/z 543 to its
monomer m/z 137 is shown in Figure 5. Based on the sum formula C32H30O8, the tentative
structure was composed of four vinylcatechol units that underwent one oxidation step.
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The collision-induced dissociation (CID) of m/z 543 caused a neutral loss of vinylcate-
chol (–C8H8O2) and led to a trimer (m/z 407). Similarly, the loss of two vinylcatechol units
(–C16H14O4) resulted in the fragment ion with m/z 271. Analogous fragmentation mecha-
nisms were proposed for the fragment ion m/z 407: A loss of vinylcatechol (–C8H8O2) re-
sulted in the detection of m/z 271, whereas the formal loss of the dimer (–C16H14O4) yielded
the fragment ion of m/z 137. Further fragmentation of m/z 271 led to m/z 161 (–C6H6O2),
m/z 143 (–C6H6O2, –H2O), and m/z 123 (–C9H8O2). In summary, the observed fragmenta-
tion reactions resulting in vinylcatechol as well as its dimer and trimer clearly showed that
the pseudomolecular ion indeed comprises four units of vinylcatechol.

The data resulting from the fragmentation experiments of pseudomolecular ions
m/z 285 and m/z 405 detected after the HRMS analysis of para-coumaric acid can be found
in the Supplementary Material (Figure S8B,C and Table S6). The parent ion m/z 405 was
composed of two units of vinylphenol and one unit of para-coumaric acid, and m/z 285
was composed of one unit each of para-coumaric acid and vinylphenol. These reaction
products differed in their composition compared to caffeic acid, because aside from the
decarboxylation product, the native phenolic compound was also incorporated into the
dimer or the trimer. The most abundant fragment ions resulted from the neutral losses of
dihydroxybenzol (–C6H6O2), water (–H2O), para-coumaric acid (–C9H8O3), and combina-
tions thereof. Consequently, roasting induced the formation of a number of heterogeneous
oligomers composed of para-coumaric acid and its decarboxylation product, vinylphenol.

Fragmentation spectra and a tentative assignment resulting from the tandem HRMS experi-
ments of hydrocaffeic acid can be found in the Supplementary Material (Figure S10B,C and Table S7).
These were performed for pseudomolecular ions formally assigned to an addition (m/z 363)
and a condensation product (m/z 345) of two hydrocaffeic acid units. The fragmentation
was characterized by neutral losses of hydrocaffeic acid (–C9H10O4) and water (–H2O).
Thereby, the oligomerization of hydrocaffeic acid could be explained as simple addition
or condensation reactions, but decarboxylation was only detected to a low degree, even
after CID. Because the structure of hydrocaffeic acid does not provide an electrophilic
center, a simple addition reaction of two hydrocaffeic acid molecules is unrealistic. A
more reasonable explanation for the composition of the detected addition product is the
formation of a water adduct of the respective condensation product during ionization. The
formation of such water adducts has already been reported using the same conditions in
previous investigations [14,15].

Due to the low abundance of pseudomolecular ions in the corresponding HRMS spectra
of ferulic acid, CID experiments could not be performed for this hydroxycinnamic acid.

Results of the HRMSn experiments strengthened the hypothesis that the substituents
and the extent of the conjugated double-bond system significantly impacted decarboxyla-
tion reactions and the subsequent oligomerization of caffeic acid and structurally related
phenols. The data clearly showed that decarboxylation is the driving force for the forma-
tion of oligomers with increased molecular weight for caffeic acid, whereas the analysis
of para-coumaric acid revealed the formation of heterogeneous oligomers, including the
reactants with conserved carboxylic acid functions, as well as the respective decarboxylated
phenols. The decarboxylation of hydrocaffeic acid was less prevalent, and, instead, possibly
addition but more likely condensation reactions of the native phenol could explain the
composition of the predominant reaction products.

2.6. Impact of Heat-Induced Oligomerization on the Antioxidant Capacity

Although the chemical structures of selected lower molecular weight reaction products
resulting from the roasting of 5-O-caffeoylquinic acid [32], caffeic acid [12], para-coumaric
acid, and ferulic acid [11] have already been described in the literature, there are no data
regarding their antioxidant properties. Consequently, the antioxidant capacity compared to
Trolox was determined for the reaction mixtures of the phenolic compounds after heating
times of 0, 5, and 10 min (Figure 6A), as well as for the isolated reaction products P1, P2,
and P3 (Figure 6B).
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Figure 6. Antioxidant properties of phenolic compounds. (A) Antioxidant activity of reaction
mixtures of caffeic acid, chlorogenic acid, hydrocaffeic acid, para-coumaric acid, and ferulic acid.
(B) Antioxidant capacity of caffeic acid and reaction products 3 (P3) and 4 (P1/P2) at 0 min compared
to Trolox, given as Trolox equivalents (TE). (C) Proposed oxidation reactions of products 3 and 4.
Statistically significant values (p < 0.05) were analyzed by (A) two-way ANOVA and TUKEY’s test
and (B) one-way ANOVA and TUKEY’s test. Statistical differences within the columns are designated
by different letters.

The antioxidant capacity of the five native hydroxycinnamic acids was comparable.
An increase in the antioxidant activity of the resulting reaction mixtures of caffeic acid and
5-O-caffeoylquinic acid was observed after thermal treatment at 220 ◦C for 5 and 10 min,
whereas a significant decline could be determined for hydrocaffeic acid. A comparable but
not statistically significant decline was observed after the heat treatment of ferulic acid.
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The antioxidant capacity of para-coumaric acid decreased in the first half of the reaction
period, but heating for 10 min resulted in an increase in the antioxidant activity that was
comparable to the unheated sample (0 min).

In addition to the antioxidant activity of the reaction mixtures, the antioxidant capacity
of the isolated products P1, P2, and P3 was determined. Generally, the capacities of
these products were significantly higher than the capacity of caffeic acid (Figure 6B):
For P3, it was around two times higher and for P1 and P2 it was three times as high.
These differences in antioxidant capacity could be explained by the different amount of
oxidation steps enabled by the structure of the respective products. Native caffeic acid
contains a single ortho-dihydroxybenzol moiety that might be oxidized once, yielding
an ortho-chinone structure (Figure 6C). In contrast, all three dimers P1, P2, and P3 contain
two ortho-dihydroxybenzol moieties. For P3, these are separated by an alkenyl bridge and
each ortho-dihydroxybenzol moiety might undergo one oxidation step, resulting in two
oxidations and consequently twice the antioxidant capacity as native caffeic acid. The
oxidation of P1 and P2 results in the conjugation of both ortho-dihydroxybenzol moieties
and, thereby, in an expansion of the aromatic system, enabling an additional oxidation step
compared to P3. In consequence, the antioxidant capacity of P1 and P2 could have been
expected to be around three times higher compared to caffeic acid. Despite their different
absolute configuration, the antioxidant properties of P1 and P2 were equal.

The increase in the antioxidant activities of the reaction mixtures observed during
the roasting of caffeic acid and 5-O-caffeoylquinic could be explained by the formation of
vinylcatechol dimers, such as P1, P2, and P3. Because the antioxidant capacities of these
reaction products were significantly higher compared to the antioxidant activity of the
reaction mixtures obtained after 5 and 10 min of the thermal treatment of caffeic acid, the
hypothesis could be formulated that further oligomerization does not result in a linear
increase in the antioxidant capacity relative to caffeic acid. This hypothesis is strengthened
by findings published by Plumb et al. [36], who studied the antioxidative properties of
epicatechin and its di-, tri-, and tetramer. The dimer, procyanidin B2, exhibited a two-fold
antioxidative capacity compared to epicatechin, but only a slight increase compared to the
dimer was determined for the trimer. The addition of another epicatechin unit resulted in a
decrease in the antioxidant capacity.

The heat treatment of para-coumaric acid resulted in a decline in the antioxidant
activity in the first 5 min of the reaction. Further heat treatment was accompanied by
a significant increase to an elevated value after 10 min. Because para-coumaric acid is
missing one electron-donating hydroxy group compared to caffeic acid, the rate of the
decarboxylation of para-coumaric acid is slower and the formation of structurally related
oligomers exhibiting increased antioxidant capacity is delayed.

In contrast, the oligomerization of hydrocaffeic acid and ferulic acid was proposed to
result from condensation reactions, as discussed before. The condensation of the carboxyl
function with an aromatic hydroxy group would inhibit the antioxidant activity of the
ortho-dihydroxy moiety, resulting in a decrease in the antioxidant capacity.

2.7. Investigation of the Polymerization Mechanism by High-Resolution Mass Spectrometry

Further information on the polymerization of the reaction products P1, P2, and P3
was obtained by HRMS spectra and HRMSn experiments of the native substances and the
reaction mixtures obtained after heating (5 min, 220 ◦C) with or without the addition of
caffeic acid. The aim of these experiments was to investigate if the dimers could further
polymerize on their own and if caffeic acid or its decarboxylation products would promote
polymerization. The corresponding scan spectra are shown in Figure 7A–F. The tentative
assignments of the main signals are found as Supplementary Material in Tables S8–S13.
The equivalent treatment of P2 provided comparable results to P1 and can also be found in
the Supplementary Material (Figure S12 and Tables S14–S16).
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Figure 7. HRMS scan spectra of (A) P1 and (B) P3 before heat treatment, as well as (C) P1, (D) P3,
(E) P1/CA, and (F) P3/CA after heat treatment for 5 min at 220 ◦C using an APCI-orbitrap-MS
instrument in positive ion mode. Mass spectra were modified by removing the signal of the solvent
(dimer of ethylacetate) and re-referencing the intensity of all signals accordingly. A scan spectrum of
the solvent is attached and can be found in the Supplementary Material (Figure S1).

The APCI(+)-induced in-source fragmentation of the vinylcatechol dimers P1 (Figure 7A)
and P3 (Figure 7B) is reflected by a neutral loss of dihydroxybenzol (–C6H6O2) and the
detection of m/z 163 as a base peak. Further, the analysis of P1 resulted in the sole de-
tection of the oxidized species m/z 271 (–H2), whereas the redox pairs of vinylcatechol
trimers and tetramers were detected for P3 with low intensities. The exact chemical struc-
ture and number of carbon and hydrogen atoms were determined by NMR spectroscopy
(Figure S2–S7, Supplementary Material). The occurrence of higher oligomers, especially for
P3 (Figure 7B), could be a consequence of adduct formation during ionization or impurities
of the sample.

After the heat treatment of P1 and P3, m/z 271 was the base peak. This could be a result
of ring-opening and/or cyclization to thermodynamically preferred isomers that are less
prone to undergo fragmentation under APCI(+) conditions. For both P1 (Figure 7C) and
P3 (Figure 7D), redox pairs of vinylcatechol trimers (P1: m/z 401, m/z 403, m/z 405, m/z 407;
P3: m/z 401, m/z 403, m/z 405, m/z 407, m/z 409) and its tetramers (P1: m/z 535, m/z 537,
m/z 539, m/z 541; P3: m/z 535, m/z 537, m/z 539, m/z 541, m/z 543, m/z 545) were found
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in a high abundance, which was even significantly higher for P3 compared to P1. This
indicated that both dimers were able to undergo subsequent reactions resulting in larger
structures. The fact that, besides tetramers, trimers were also formed from the dimers,
showed that the latter also undergo cleavage reactions resulting in vinylcatechol, which
then reacted with other dimers. Pseudomolecular ions m/z 409 and m/z 545 exclusively
detected after the heat treatment and analysis of P3 could be assigned to oligomers of
P3 and vinylcatechol, whereas products assigned to P1 underwent at least one oxida-
tion step. In contrast, the impact on the formation of tri- and tetramers after roasting
P2 was negligible (Figure S12, Supplementary Material). The higher abundance of oxi-
dized species could be explained by the different structural properties of P1 and P3: The
cyclic indane structure exceeds the higher antioxidant activity compared to the aliphatic-
linked ortho-dihydroxybenzol moieties, as present in P3. Further, one oxidation step of the
indane P1 induces aromatization, yielding an aromatic indene, which exhibits a higher
stabilization by resonance.

The presence of caffeic acid during the incubation of P1 and P3 significantly increased
the abundance of discussed trimeric and tetrameric species: For P1, additional signals
could be assigned to a trimer (m/z 401) and a tetramer (m/z 539) (Figure 7E). Based on the
relative intensity of the respective signals, the formation of the trimer m/z 405 was favored
for P3 (Figure 7F), which was the base peak after heat treatment. The relative abundance of
tetramers did not change compared to samples of P1 and P3 heated without the addition of
caffeic acid, whereas an increase in the relative intensity was observed after incubating P2
with caffeic acid. These observations support the proposed reaction mechanism shown in
Figure 4: The concerted decarboxylation and the addition of the vinylcatechol body. Hence,
the decarboxylation of caffeic acid is the driving force of this reaction, and the formation of
higher oligomers by the reaction of vinylcatechol dimers or other oligomers is less relevant.

Overall, these experiments indicate that the oligomerization of vinylcatechol and its
dimers depends on the constitution. As P1 and P3 were found to favor the formation of
a trimer after the addition of caffeic acid, an increase in the trimer and tetramer resulted
from the incubation of P2. The composition of various signals was verified by multi-stage
HRMS experiments. Independently of the reactant, the composition could be assigned to
different redox stages and oligomers of vinylcatechol, whereas the exact constitution could
not be determined. The fragmentation spectra and tentative assignments can be found in
the Supplementary Material (P1: Figures S13–S15 and Tables S17–S19; P2: Figures S16 and
S17 and Tables S20 and S21; P3: Figures S18 and S19 and Tables S22 and S23).

3. Materials and Methods
3.1. Chemicals

Acetic acid was purchased from Carl Roth GmbH + Co., KG (Karlsruhe, Germany). Acetoni-
trile, ethyl acetate, and methanol were purchased from VWR International GmbH (Darmstadt,
Germany). Acetonitrile-d3, 2,2′-azinobis(3-ethylbenzothiazoline-6-suflonate), caffeic acid, chloro-
genic acid, and potassium persulfate were purchased from Sigma-Aldrich Chemie GmbH (Stein-
heim, Germany). Ferulic acid, hydrocaffeic acid, and para-coumaric acid were purchased from
Fluka Chemicals Ltd. (Wales, UK). Potassium dihydrogen phosphate and potassium hydrogen
phosphate were purchased from Merck KGaA (Darmstadt, Germany).

3.2. Incubation of Phenolic Compounds under Roasting Conditions

Model roasting was performed by incubating 0.05 mmol of a phenolic compound.
Caffeic acid (9.0 mg), 5-O-Caffeoylquinic acid (17.7 mg), para-coumaric acid (8.2 mg), ferulic
acid (9.7 mg), and hydrocaffeic acid (9.1 mg) were heated individually in sealed glass vials
at 220 ◦C. At defined reaction times (0, 2.5, 5.0, 7.5, and 10.0 min), samples were taken and
cooled down in a freezer to −20 ◦C to stop the reaction. For color and pH measurements,
HPLC analysis, and TEAC, the residue was taken up in 1.0 mL of methanol. Every sample
was prepared in triplicate (all results are given as ± standard deviation). Measurements of
pH were performed using a Mettler Toledo Five Easy™ pH meter (Mettler-Toledo GmbH,
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Gießen, Germany). To avoid the detection of methylated derivatives, the residues of equally
treated samples were taken up in ethyl acetate (for caffeic acid, para-coumaric acid, ferulic
acid, and hydrocaffeic acid) or water/acetonitrile (50/50, v/v) (for chlorogenic acid) prior
to HRMS analysis.

3.3. Color Measurements

The color of the methanol extracts was characterized by L* a* b measurements as
defined by The International Commission on Illumination (CIE) [37]. Visible spectra
(400–800 nm) of the samples were recorded with a spectrophotometer (Specord 200 Plus,
Analytik Jena GmbH, Jena, Germany; software: WinAspect Plus Version 4.3). For illumina-
tion, a D65 lamp with an angle of 2◦ was used. The observer angle was set to 10◦.

For the characterization of the brown color, additional measurements at 420 nm were
conducted. Samples were diluted in methanol when the extinction exceeded 1.0. To allow
a comparison of all model systems, the results of the measurements at 420 nm are given
as color index, which was defined as the absorbance at 420 nm multiplied by the dilution
factor per millimole of the reactants (A420 × F)/ni.

All measurements were performed in a quartz cuvette against methanol.

3.4. HPLC-DAD Analysis of Phenolic Compounds

Caffeic acid, chlorogenic acid, para-coumaric acid, ferulic acid, and hydrocaffeic acid
were identified by HPLC with reference standards and quantified relative to samples
without treatment (t = 0 min) by HPLC-DAD. For separation, a Shimadzu analytical
HPLC system (Shimadzu Corp, Kyōto, Japan) with the following setup was used: pump,
Shimadzu LC-9A; degasser, DG-1300 (Knauer Wissenschaftliche Geräte GmbH, Berlin,
Deutschland); autosampler, Shimadzu SCL-6B and SIL-6B; column, Prodigy™ ODS-3 C18
(Phenomenex Ltd. Deutschland, Aschaffenburg, Deutschland); detector, Shimadzu SPD-
M10A; and software, Shimadzu Class-LC10 v1.64A. The following settings were used:
column temperature, 35 ◦C; flow rate, 0.5 mL/min; eluent A, water with 0.5 vol.% acetic
acid; eluent B, acetonitrile; eluent gradient, 0 min, 97.5% A; 5 min, 10% A; and 11 min;
97.5% A; and wavelength for quantitation, 270 nm (hydrocaffeic acid) and 310 nm (caffeic
acid, chlorogenic acid, para-coumaric acid, and ferulic acid).

3.5. Isolation of 1-(3,4-Dihydroxyphenyl)-3-methyl-2,3-dihydro-1H-indene-5,6-diol (P1, P2) and
(E)-4,4′-(But-1-ene-1,3-diyl)bis(benzene-1,2-diol) (P3)

Caffeic acid (90 mg, 0.5 mmol) was heated at 220 ◦C in a sealed glass vial for 5 min. To
stop the reaction, the sample was cooled down in a freezer to−20 ◦C. The residue was taken
up in 5 mL acetonitrile/water (3:7, v/v) and the extract was purified by preparative HPLC.
For separation, an Agilent 1200 Series preparative HPLC system (Agilent Technologies,
Waldbronn, Germany) with the following setup was used: two preparative pumps G1361A;
dual loop autosampler G2258A; column, NUCLEODUR 100-5 C18 ec (MACHEREY-NAGEL
GmbH and Co., KG, Düren, Germany); column oven, Merck-Hitachi T-6300 (Merck KGaA,
Darmstadt, Germany); detector, MWD G1365B; sample collector, prep FC G1364B; and
software, Agilent ChemStation B.02.01-SR1.

The following settings were used: column temperature, 35 ◦C; flow rate, 10 mL/min;
eluent A, water; eluent B, acetonitrile; eluent gradient, 0 min, 30% A; 27 min, 40.1% A;
29 min, 85% A; and 35 min, 85% A; and wavelength for identification, 285 nm. Fractions
were collected based on retention time. Two diastereomers of 1-(3,4-dihydroxyphenyl)-3-
methyl-2,3dihydro-1H-indene-5,6-diol were collected from 22.35 min to 22.85 min (P1, oily-red)
and 23.15 min to 23.70 min (P2, oily-red). (E)-4,4′-(but-1-ene-1,3-diyl)bis(benzene-1,2-diol)
(P3, oily-brown) was collected between 24.00 and 24.60 min. This procedure was repeated
until sufficient material was isolated to allow structural elucidation by NMR and HRMS
analysis. Spectroscopic data are in line with Frank et al. [32].
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Product P1:
1H NMR {400 MHz, acetonitrile-d3}: δH 6.69 (d, 1H, CH, 4), 6.68 (d, 1H, CH, 5′),

6.52 (d, 1H, CH, 2′), 6.44 (m, 1H, CH, 6′), 6.39 (s, 1H, CH, 7), 4.15 (t, 1H, CH, 1), 3.18 (m, 1H,
CH, 3), 2.13 (m, 1H, CH, 2), 2.03 (m, 1H, CH, 2), 1.16 (d, 3H, CH3, 3”).

13C NMR (100 MHz, acetonitrile-d3): δC 145.3 (s, C3′),144.6 (s, C6), 144.2 (s, C5),
143.6 (s, C4′), 141.6 (s, C7a), 139.7 (s, C1′), 138.9 (s, C3a), 120.2 (s, C6′), 116.1 (s, C5′), 115.4 (s, C2′),
112.3 (s, C7), 111.0 (s, C4), 49.3 (s, C1), 45.8 (s, C2), 38.5 (s, C3), 21.1 (s, C3”). Oxidized species
detected by HRMS (APCI+). Calculated for C16H14O4H+, 271.0967; found, 271.0961. Chemical
structure and assignments are shown in Figures S2 and S3 (Supplementary Material).

Product P2:
1H NMR {700 MHz, acetonitrile-d3}: δH 6.74 (d, 1H, CH, 5′), 6.67 (s, 1H, CH, 4),

6.62 (d, 1H, CH, 2′), 6.56 (dd, 1H, CH, 2′), 6.24 (s, 1H, CH, 7), 3.95 (q, 1H, CH, 1),
3.00 (m, 1H, CH, 3), 2.56 (m, 1H, CH, 2), 1.42 (m, 1H, CH, 2), 1.25 (d, 3H, CH3, 3”).

13C NMR (175 MHz, acetonitrile-d3): δC 145.3 (s, C3′), 144.5 (s, C6), 144.0 (s, C4′),
143.8 (s, C5), 141.4 (s, C7a), 139.6 (s, C1′), 138.7 (s, C3a), 120.8 (s, C6′), 116.1 (s, C5′), 115.9 (s, C2′),
112.1 (s, C7), 110.6 (s, C4), 50.2 (s, C1), 47.4 (s, C2), 38.6 (s, C3), 20.0 (s, C3”). Oxidized species
detected by HRMS (APCI+). Calculated for C16H14O4H+, 271.0967; found, 271.0965. Chemical
structure and assignments are shown in Figures S4 and S5 (Supplementary Material).

Product P3:
1H NMR {700 MHz, acetonitrile-d3}: δH 6.84 (s, 1H, CH, 3′), 6.73 (s, 1H, CH, 6), 6.72

(m, 1H, CH, 6′), 6.71 (m, 1H, CH, 3), 6.71 (m, 1H, CH, 5′), 6.61 (dd, 1H, CH, 1), 6.24 (d, 1H,
CH, 1”), 6.14 (m, 1H, CH, 2”), 3.43 (t, 1H, CH, 3”), 1.32 (d, 3H, CH3, 4”).

13C NMR (175 MHz, acetonitrile-d3): δC 145.6 (s, C2), 145.4 (s, C2′), 144.9 (s, C1′), 143.6
(s, C1), 139.5 (s, C4), 134.3 (s, C2”), 131.6 (s, C4′), 128.6 (s, C1”), 119.7 (s, C5), 119.6 (s, C5′),
116.3 (s, C6), 116.2 (s, C6′), 115.2 (s, C3), 113.6 (s, C3′), 42.7 (s, C3”), 21.9 (s, C4”). HRMS
(APCI+) calculated for C16H16O4H+, 273.1119; found, 273.1121. Chemical structure and
assignments are shown in Figures S6 and S7 (Supplementary Material).

3.6. Incubation of Compounds P1, P2, and P3

1-(3,4-Dihydroxyphenyl)-3-methyl-2,3dihydro-1H-indene-5,6-diol (2.7 mg) and (E)-
4,4′-(but-1-ene-1,3-diyl)bis(benzene-1,2-diol) (1.3 mg) were incubated individually as well
as in equimolar mixtures with caffeic acid (P1/P2: 1.8 mg, P3: 0.9 mg) at 220 ◦C for 5 min.
To stop the reaction, samples were cooled down in a freezer to −20 ◦C. The residue was
extracted in ethyl acetate, diluted (1 mg/mL), and analyzed by APCI(+)-HRMS.

3.7. Trolox Equivalent Antioxidant Capacity Assay

Trolox equivalent antioxidant capacity (TEAC) assay was performed as described by
Kanzler et al. [38]. An aqueous solution of 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic
acid) solution (ABTS; 10 mmol/L) was mixed with an aqueous solution of potassium
persulfate (3.5 mmol/L). For the preparation of the radical cation solution, the mixture
was incubated overnight at room temperature. The working radical solution was prepared
by diluting the radical cation solution 12:100 with phosphate buffer (PBS) (5 mmol/L
phosphate, pH 7.2–7.4). Calibration was performed with six Trolox standards (0.01, 0.02,
0.04, 0.06, 0.08, and 0.1 mmol/L; diluted in phosphate buffer). An amount of 500 µL of the
working solution and 500 µL of the samples (diluted with phosphate buffer) were mixed.
Extinction at 734 nm was measured using a Biotek Uvikon XL (Agilent Technologies Inc.,
Santa Clara, CA, USA) after an incubation time of 120 min. The extinction was multiplied
with the dilution factor to allow a comparison of all samples.

3.8. APCI(+) and ESI-Orbitrap Multiple-Stage High-Resolution Mass Spectroscopy

HRMSn analyses were carried out as described before [39]: A Thermo Fisher Scientific
Inc. LTQ Orbitrap XL™ instrument equipped with an Ion Max™ Source (Waltham, MA,
USA) was used. Measurement of the samples (1 mg/mL in acetonitrile/water (50/50,
(v/v) or ethyl acetate) was performed in positive and negative ion mode (ESI) as well as in
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positive ion mode (APCI) by direct infusion. Reserpine (0.05 mg/mL) was used for mass
calibration. The normalized collision energy of collision-induced dissociation varied from
5 to 50%. For the interpretation of the mass spectra, the software Freestyle 1.6 was used
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

3.9. NMR Spectroscopy

NMR spectra were recorded on either a Bruker Avance™ II 400 MHz (Bruker Cor-
poration, Billerica, MA, USA) operating at 400 MHz (1H NMR) or 100 MHz (13C NMR)
or a Bruker Avance™ III 700 MHz spectrometer operating at 700 MHz (1H NMR) or
175 MHz (13C NMR). Standard one-dimensional (1H, 13C, DEPT) and two-dimensional
experiments (HSQC, HMBC, COSY) were employed for structural elucidation. NMR shifts
were referenced to the residual signal of the solvent acetonitrile-d3 according to [40].

3.10. Statistical Analysis

All samples were prepared and analyzed in triplicate. All results are shown as means
± standard deviation. Significant differences (p < 0.05) were analyzed by one- or two-way
analysis of variance (ANOVA) and TUKEY’s test using the GraphPad Prism 8.0.2 software
(San Diego, CA, USA).

4. Conclusions

In the present study, the reactivity of caffeic acid and structurally related phenolic
acids was characterized with a focus on their contribution to non-enzymatic browning
reactions. Incubation under roasting conditions revealed that polymerization and, thereby,
the browning intensity of the reaction mixture strongly depends on electron density and the
size of the aromatic ring system of the reactant. Decarboxylation reactions were identified
as the driving force of the oligomerization of caffeic acid. In the process of decarboxylation,
4-vinylcatechol undergoes a concerted addition reaction with another vinylcatechol body
or another vinylcatechol oligomer. Hence, the presence of reaction products deriving from
caffeic acid accelerated the decarboxylation of caffeic acid and oligomerization by the in
situ incorporation of 4-vinylcatechol.

In essence, this study provides crucial information on the contribution of phenolic
compounds to the underlying mechanism of non-enzymatic color formation and the struc-
tural background of the increase in antioxidant properties during non-enzymatic browning
reactions. The herein-discussed data are mostly relevant for plant-based goods containing
caffeic acid, most prominently coffee [26]. Combining the concepts for the non-enzymatic
formation of colorants proposed in this study and recent findings on the oligomerization
of MAILLARD reaction intermediates [14,15,17] is helpful for the structural clarification of
coffee melanoidins that are already known for their high content of phenolic compounds. In
this context, electrophilic aromatic substitution, as already described for carbonyl trapping,
should be considered a key mechanism for the linkage of phenol-deriving colorants and
melanoidins via carbonyl moieties or unsaturated domains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217564/s1. The document provides additional data
regarding the structural elucidation performed in this study, including NMR, HRMS and HRMSn

spectra, and tentative assignments of the detected pseudomolecular ions.
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