
micromachines

Article

Modeling Red Blood Cell Viscosity Contrast Using Inner Soft
Particle Suspension

Alžbeta Bohiniková 1,† , Iveta Jančigová 2,*,†, and Ivan Cimrák 1,2,†
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Abstract: The inner viscosity of a biological red blood cell is about five times larger than the viscosity
of the blood plasma. In this work, we use dissipative particles to enable the proper viscosity contrast
in a mesh-based red blood cell model. Each soft particle represents a coarse-grained virtual cluster
of hemoglobin proteins contained in the cytosol of the red blood cell. The particle interactions are
governed by conservative and dissipative forces. The conservative forces have purely repulsive
character, whereas the dissipative forces depend on the relative velocity between the particles. We
design two computational experiments that mimic the classical viscometers. With these experiments
we study the effects of particle suspension parameters on the inner cell viscosity and provide
parameter sets that result in the correct viscosity contrast. The results are validated with both static
and dynamic biological experiment, showing an improvement in the accuracy of the original model
without major increase in computational complexity.

Keywords: viscosity; dissipative particles; blood cells; computational modeling; rheology

1. Introduction

Blood is a multi-component suspension and consists mostly of plasma (~55%), red
blood cells (RBCs, ~45%) and white blood cells and platelets (~1%). Due to their high
content, RBCs play major role in flow dynamics and rheological properties of blood.
A healthy RBC has a biconcave shape with a diameter 6–8 µm and thickness 2 µm [1].
The RBC membrane consists of a lipid bilayer and a spectrin network attached to the inner
side of the bilayer. The cytoplasm contains mostly hemoglobin, a protein responsible for
oxygen transfer. This protein causes higher viscosity of the inner cytoplasm compared to
the outer plasma, which is referred to as viscosity contrast.

The blood flow in large vessels is mostly driven by a uniform shear flow that occurs
near the vessel walls or by the fairly uniform flow in the central parts of the vessels. On the
contrary, in vessel bifurcations and in small arterioles and microcapilaries with diameters
comparable to the size of the cells, the parabolic velocity profile introduces non-uniformity
and the flow patterns differ significantly from those in large vessels.

The shape of the red blood cell in large vessels is mostly close to the relaxed biconcave
shape or to prolonged ellipsoidal shapes, with dynamic patterns such as tumbling and
tank-treading [2–5]. In capillaries, the shape patterns are richer. Different flow conditions
result in cup-like parachute shapes at the vessel center, elongated slipper shapes at an
off-center position, bullet-like shapes in very narrow vessels, snaking dynamics—a periodic
cell swinging around the tube center, or tumbling trilobe state at large flow rates and low
confinements [6].

Besides the flow conditions and the elasticity of the membrane, an important parameter
influencing the cell dynamics is the viscosity contrast Λ. It has been shown that Λ signifi-
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cantly affects the RBC behavior in simple shear flow [7–10]. Only recently, several studies
have confirmed that the viscosity contrast is important in microcapillary flow [6,11–14].
In [6], the authors study the dependence of the RBC shape and dynamics on the viscosity
contrast in tube flow. They provide state diagrams of RBC dynamical states for various
viscosity contrasts and wide ranges of flow rates and tube diameters. They conclude that
the region of parachute shapes is significantly larger for Λ = 1 in comparison to Λ = 5.
In another study [13], many-cell simulations show an increasing difference between relative
apparent viscosity for Λ = 1 and Λ = 5 with increasing Reynolds number. This indicates
that the viscosity contrast plays a more important role as the flow shear rates increase.

An interesting result concerns the cell free layer (CFL). While in works [11,13] the
authors conclude that the viscosity contrast influences the thickness of the CFL only very
weakly, if at all, the opposite conclusion has been drawn in [14] where the authors claim
that at 10% hematocrit, the viscosity contrast is not negligible when calculating the CFL
thickness. They study small arteriole flows (20–40 µm) with a hematocrit of 10–20% and a
physiological viscosity contrast, which is Λ = 5 on average [15,16].

The viscosity contrast has proven to play an important role in microcirculation. In this
work, we employ a novel approach to taking the viscosity contrast into account. We extend
the existing red blood cell model based on lattice-Botzmann method (LBM) for governing
the fluid and spring network for governing the elasticity of cell membrane [17,18]. We
include dissipative particles (DPs) inside the cell as a coarse-grained hemoglobin model to
increase the viscosity of the resulting suspension inside the cell. We analyse the influence
of suspension properties on its effective viscosity. We model two scenarios to measure the
suspension viscosity. The results from these two computational experiments are then used
in the RBC model with DPs. The new model is validated using biological data from the
static RBC stretching and the dynamic release [19].

2. Viscosity Contrast in Other Red Blood Cell Models

Many of the recent simulation studies for simplicity assume the viscosity contrast
Λ = 1 [20–23]. For lower shear stresses and for the flows with no small confinements, it is
a reasonable assumption that can be deduced from conclusions of [11,13].

There are, however, models that assume non-unit viscosity contrast. The continu-
ous model in [14] for example treats the coupled problem governed by Navier–Stokes
equations that conserve momentum both in the fluid and in the membrane sub-domains.
Computational domain is divided into fluid and cell with the stress balance to be satisfied
at the boundary of fluid and cell. The cell is modeled as a 2D hyperelastic membrane
with Skalak model. To solve the coupled fluid–solid problem, they utilize an Immersed
Finite Element Method. The viscosity contrast is naturally incorporated by different fluid
properties inside the cell domain. This method requires re-meshing of the computational
domain when the cell deforms.

The method in [6,11] is based on smoothed dissipative particle dynamics. Here,
the fluid consists of fluid particles which interact through conservative, dissipative and ran-
dom forces. The cytosol inside the RBC is separated from the outside fluid (plasma) by the
layer of membrane particles. The number of membrane particles is typically around 3000
and the density of the fluid particles can be set from 9 to 12 per unit volume (1 µm3) [6,11].
The viscosity of the inner and outer fluid is achieved by frictional dissipative force between
neighbouring particles. Therefore, the viscosity contrast can be increased simply by tak-
ing two different magnitudes of the dissipative forces for the inner and outer particles.
The elasticity of the membrane is achieved by using a spring network of particles with
elastic moduli: stretching, bending, local and global area and volume modulus. The elastic
forces are computed by minimization of total potential energy of the particle system.

The model in [13] consists of coupled lattice-Boltzmann and Immersed Boundary
method (IBM). The blood plasma is represented as a continuous incompressible Newtonian
fluid that is computed using LBM with a fixed lattice with 19 directions providing second
order accuracy for fluid computations. The cells are represented as spring-network meshes
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with elastic properties defined by the total potential energy similar to that of the model
presented in [6,11]. The fluid and the membrane are coupled using a validated immersed
boundary method [22]. The fluid viscosity in LBM is controlled by a relaxation parameter
τ and in general, this parameter can be variable in space ensuring different viscosities at
different locations. It is important to carefully handle the discontinuity when considering
two distinct viscosities for inner and outer membrane fluid. To introduce a viscosity
contrast into such model, one needs to keep track of the fluid nodes residing inside the RBC
membranes. These membranes are represented as closed surface triangular meshes which
enclose lattice nodes of the fluid grid. For these grid nodes, the relaxation parameter τ of the
LBM method can be altered to express the increase in local viscosity. In [22], determining
whether a lattice point is inside an RBC was done using the ray-casting algorithm, where for
a point inside or outside a polygon a ray is cast and the number of membrane intersections
is counted. Odd number means the point is an interior point. Although the complexity of
such algorithm is high, the authors have optimised the performance to ensure the increase
in typical runtime is less than 25%.

3. RBC Model and the Concept of Dissipative Particles

We work with an RBC model that we previously developed and introduced in [17,18].
The model consists of two principal components: the fluid and elastic objects immersed in
it. For the fluid, we use the lattice-Boltzmann method [24]. The three-dimensional space
is discretized with a fixed lattice. Fictive particles can move and collide over the edges
and the diagonals of this lattice, representing coarse-grained fluid. From the density and
movements of these particles, one can express the velocity, density and other properties of
the fluid in each time step on a fixed lattice grid.

The second component is a triangular mesh representing a closed surface of the cell
membrane, see Figure 1a. The elastic properties of the object are represented with different
types of force-like bonds between neighboring mesh points. This way, the deformation of
the object changes the relaxed distances between the mesh points and this induces forces
acting against the change at the corresponding mesh points.

Unlike in the IBM described above, the fluid and the elastic objects are coupled via a
dissipative force here. Forces induced by the cell deformation enter the lattice-Boltzmann
equation. Analogously, fluid forces are also transferred to the object’s mesh points. This
method has been known as Immersed Boundary via Dissipative Coupling (IB-DC).

The two distinct meshes—the lattice mesh for the fluid and the triangular mesh for
the cell—overlap, which results in uniform viscosity for the fluid inside and outside the
cell. One solution for introducing the viscosity contrast in LBM was described above
in combination with the IBM method [13]. Another solution, presented here, is to in-
troduce the viscosity contrast by mimicking the biological essence of cytosol content,
the hemoglobin proteins.

(a) (b)

Figure 1. Visualization of RBC model. (a) triangular mesh modelling the membrane, (b) dissipative
particles included inside the membrane.

The major component of RBC is water (721 mg mL−1 RBC), which is twice the mass of
total RBC protein (371 mg mL−1 RBC). Hemoglobin makes up 95% of total RBC protein [25].
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This may suggest that including hemoglobin into the model of RBC would lead to correct
modelling of the viscosity contrast.

Hemoglobin is a protein that folds into globular structures [26]. There are no sub-
stantial holes and almost no water molecules in the protein interior. As a consequence,
the proteins are rigid structures. Their spheroidal shape was confirmed by micrograph [27]
to be of 6 × 6 × 5 nm3 as presented in Table 4 in [28].

In this work, we employ a coarse-graining method called dissipative particle dy-
namics (DPD). Since modelling each individual hemoglobin molecule is computationally
too expensive (rough calculation would lead to 108 hemoglobin molecules in one cell),
we represent a virtual cluster of hemoglobin molecules as one soft dissipative particle
(DP). The dissipative forces are included in the particle interactions due to the eliminated
degree of freedom during the coarse-graining procedure [29]. Similar approach for mod-
elling of the aligned hemoglobin polymer in sickle-cell RBCs was presented in [30,31].
The vizualization of the model with particles is depicted in Figure 1b.

4. Practical Considerations for Model Implementation

The typical number of mesh points in the triangular mesh of IB-DC model can vary.
At least 200 mesh points are needed to capture the cell shape properly but with increased
demand on the accuracy, the mesh can contain up to few thousand mesh-points. The aim
is to keep the complexity of the model comparable and thus the number of inner particles
should not exceed couple thousand.

The coarse-graining procedure clusters a large number of hemoglobin molecules
into one dissipative particle. Although the hemoglobin molecules are rigid, the virtual
clustering causes the particle to be soft. It is thus modelled as a non-dimensional particle
with radius rh interacting with other particles by two kinds of forces: conservative and
dissipative. The classical DPD approach also includes random forces but on the scale we
are interested in, the Brownian motion is not of the interest and thus we omit the random
component. The conservative forces depend on the position of the particles and are purely
repulsive, while the dissipative forces depend on the relative velocity between the particles.

Conservative forces We consider two different repulsive potentials with cutoff distance being
twice the radius of the DPs.

The first is the soft-sphere potential leading to the repulsive forces Fso f t between
two particles at distance d

Fso f t =

{
a · n 1

dn+1 d ≤ cso f t
0 d > cso f t

where the parameters a, n define the magnitude and steepness of the potential and cso f t = 2rh
its cutoff distance. Note that the soft-sphere forces blow up at zero particle distance and
are not continuous at the cutoff distance.

The second potential is a hat potential defined as

Fhat =

{
Fmax(1− d

chat
) d ≤ chat

0 d > chat

where Fmax defines the maximal repulsive force when the two particles overlap which
linearly decreases to zero at cutoff distance chat = 2rh.

Dissipative forces For modelling of the viscosity, the dissipative forces consist of two compo-
nents, one that aligns with the particle-particle line and one that is perpendicular to it:

F‖DPD =

{
γ‖〈~rij,~vij〉~rij d ≤ cDPD
0 d > cDPD
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F⊥DPD =

{
γ⊥(~vij − 〈~rij,~vij〉~rij) d ≤ cDPD
0 d > cDPD

where 〈·, ·〉 denotes scalar product,~rij is the unit vector between two particles i, j, ~vij is
the relative velocity and cDPD = 2rh is the cutoff radius. Although the dissipative forces
have two distinct contributions, parallel with and normal to~rij and can in principle be
scaled differently, we use a common multiplicative parameter γDPD for both of them, so
γDPD = γ‖ = γ⊥.

The number of particles inside an RBC can vary and depends on the rh and the desired
solid-volume fraction φ. Both rh and φ influence the viscosity of the resulting suspension.

To ensure that the DPs stay within the cell membrane, we use another soft-sphere
potential defining the repulsive forces F∗so f t between the membrane mesh and the DPs.
The definition of F∗so f t is analogous to Fso f t with parameters a∗ and n∗. The cutoff radius
for this potential is denoted by c∗so f t and its fine-tuning depends on the size of edges in the
triangular membrane mesh. The cutoff radius c∗so f t must be large enough so that the DPs
cannot slip through any of the triangles. A reasonable value of c∗so f t is the average length
of the edges in the relaxed mesh. A similar force is also used for the repulsive interaction
between the membrane and the outer suspension in Section 5.2.2 with parameters given in
Table A4.

Once we decide the size and number of particles, we randomly seed them inside a
rhomboid inscribed into the cell. We turn on the repulsive forces Fso f t between the DPs
and F∗so f t between the DPs and the triangular mesh and we let the particles relax into
equilibrium. An increase in rh or φ is needed if they do not fill up the whole inner region
of the cell. The resulting equilibrium positions are saved and used later for subsequent
simulations as initial seedings.

5. Viscosity of Particle Suspensions

Particles suspended in liquid increase its effective viscosity. There are different phe-
nomena for suspensions of rigid particles and soft particles.

5.1. Suspensions of Spheres or Colloids

For rigid spheres, it is possible to derive analytical formulas that relate the viscosity of
suspension to the underlying solid volume fraction. If the particle concentration φ is very
low (.0.1 volume fraction), the resulting viscosity can be expressed as

η = η0(1 +
5
2

φ + O(φ2)), (1)

where µ0 is the viscosity of the underlying fluid [32]. The corrected version for a dilute
emulsion of viscous droplets was derived in [33]

η = η0

[
1 +

5
2

φ

(
µ′ + 2

5 µ

µ′ + µ

)
+ O(φ2)

]
, (2)

where µ′ is the viscosity of the droplet fluid.
The Formula (1) was later adapted [34,35] in the case of pure straining without effect

of Brownian motion for spheres of the same size with total volume fraction from 0.15 to
0.2 as

η = η0(1 +
5
2

φ + 7.6φ2). (3)

For even higher volume fractions there is an analytical expression [36] that takes into
account also two other parameters

η = η0(1−
φ

φmax
)−[η]φmax , (4)
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where φmax is the maximum possible solid fraction and (η) is a parameter related to particle
shape (with value of 2.5 for spheres). The maximum solid fraction is φmax = 0.74 for a
regular packing and approximately φmax = 0.64 for a random packing of spheres [37].

While the formulas for rigid spheres are not easily applied to soft-sphere suspensions
that exhibit much richer rheological properties, they can serve as an upper bound.

For colloidal suspensions [38,39], the models treat particles as hard or soft spheres
with lubrication forces suspended in a fluid. The modelling of particle behaviour involves
tracking their position, mass and rotational inertia that enter the Newton motion equations
together with lubrication forces. The results presented in the above works show nonlinear
dependence of the suspension viscosity on the volume fraction and the shear rate.

In Ref. [40], the authors use simulations to establish a relation between the structure
of soft colloids and their macroscopic properties in the flow. They study colloids consisting
of linear, star-shaped or dendrimer polymers.

When modeling the colloids, the particles in the model typically represent individual
physical objects. In our case, the molecules of hemoglobin are too small to be treated
individually and we coarse-grain thousands of them into one particle.

5.2. Computational Viscosity Measurements

Looking at the biological viscosity values, listed in Table 1 and taking into account the
large variance of whole blood viscosities (depending on the shear rate under which it was
measured), it is generally concluded that the RBC cytosol is about five times as viscous as
the blood plasma. Our aim is to determine parameters of DPs so that the resulting medium
will reach those values. To this end, we provide a study analysis of the influence of those
parameters on the suspension viscosity.

Table 1. Viscosity measurements. Blood is a shear thinning fluid and thus the whole blood viscosity
depends on shear rate. The values listed here approximately correspond to the shear rates 70–100 s−1.

Temperature [◦C] Viscosity [mPa.s = cP]

20 1.00
water 25 0.89

37 0.69

20 2.2 [41]
blood plasma 25 1.63 [42]

37 1.5 [41]

20 ∼10 [43]
whole blood 25 ∼7 [43]

37 ∼5 [44]

RBC cytosol 37 3–10 [15,45]

PBS 37 0.7 [46]

To measure the viscosity of a particle suspension, we design two computational
experiments that resemble the laboratory experiments for measuring the viscosity. The clas-
sical viscometers employ either rotational shear or falling of a sphere principle. In both
approaches, the fluid exerts drag force either on a rotating plate or on a sinking ball.
Simulation parameters can be found in the Appendix A, Tables A1–A4.

5.2.1. Shear Flow between Two Plates

To mimic the shearing viscometer, we model a simple shear flow between two plates.
In Couette (shear) flow, the velocity varies linearly from zero at the bottom to ut at the top.
This means that the shear rate defined as u/h, where h is the height, is constant.

The relationship between the applied force per unit area and the (dynamic) viscosity
is as follows:
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Fshear
A

= η
u
h

.

While this relationship between shear stress and viscosity is linear and can be used
as a first approximation, it is known that blood is a shear-thinning fluid, meaning that its
viscosity decreases as the shear stress increases, due to blood cells aligning and sliding
over each other.

In this computational experiment, we apply the given force Fshear per area A, measure
the shear rate u/h and calculate the resulting viscosity. We can do this for various soft
sphere suspensions and determine the parameters that give the viscosity we need.

In order to apply the force per unit area on the moving upper plate, we modify the
experiment, Figure 2, and mirror the geometry. Here, both upper and lower boundaries
are stationary and there is a layer of particles in the middle that has a force applied in the
x-direction. In order to validate this viscosity measurement, we tested an empty channel
and recovered the same viscosity as was set as the fluid parameter.

(a) (b)

Figure 2. Modified computational shear flow experiment. Both upper and lower boundaries have
zero no-slip conditions, with force applied to a layer of particles in the middle. This results in two
mirrored sections with linear velocity profiles. (a) no particles , (b) particle volume fraction φ = 0.5.

To measure the viscosity of the simulated particle suspension, we also fix a layer of
stationary particles at the bottom and top walls to avoid slip issues at the boundaries.

The shear rates that we want to examine range from 0 to 200 s−1, since these levels of
rates were measured for red blood cells in biological experiments [47,48].

5.2.2. Drag Force Experiment

To make a computational analogue to the falling-sphere experiment, we apply force
Fdrag in the direction of x-axis to have a sphere moving in a stationary fluid (suspension of
soft DPs), see Figure 3.

The viscosity is then measured, using the Stokes Law, as

η =
Fdrag

6πRv
(5)

where η is the dynamic viscosity, Fdrag is the drag force, R is the radius of the sphere and v
is the (terminal) flow velocity.
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Figure 3. Initial position of a sphere in a drag force computational experiment (left). A horizontal
force Fdrag is applied to the sphere, eventually resulting in a steady terminal velocity (right). To visu-
alise the cell movement in the suspension, only a slice (width ±1 µm from the central x− y plane
of the channel) of the suspensions is rendered. Size of the channel 96 × 96 × 96 µm3, cell radius
R = 3 µm.

This relation holds in an ideal infinite domain. For practical computational purposes,
we cannot use periodic boundary conditions since this leads to ever-increasing velocity
of the sphere. On the other hand, by imposing solid boundaries, i.e., zero velocity on the
boundary, we introduce an artificial boundary effect and the terminal velocity is lower
than theoretical. In order to compensate for this, we first evaluate the motion of the sphere
in free fluid without particles. In this case, the fluid viscosity is known and thus we can
compute the terminal velocity from (5). Given Fdrag = 0.4 nN, R = 3 µm, number of mesh
nodes = 304, and η = 1.2 mPas, we calculate the terminal velocity v∞ = 5.894 mms−1 in
infinite domain. We compared different sizes of cube simulation boxes L to measure the
boundary effects, Table 2.

Table 2. Boundary effects—relative deviation of terminal velocity from theoretical value.

box size L [µm] 50 100 200 400

R/L [−] 0.06 0.03 0.015 0.0075

vterm [mms−1] 4.59 5.24 5.63 5.79
boundary effect −22.02% −10.95% −4.44% −1.61%

The boundary effect is calculated as relative deviation of computed terminal velocity
from the theoretically predicted value

vterm − v∞

v∞
. (6)

Testing various sizes of the sphere revealed that the effect of the boundary is not fixed
to the size L of the channel but rather to the ratio R/L of the cell radius and the size of
the cross section of the channel. The complete analysis of the boundary effect is presented
in Figure 4 which gives us guidelines how to correct the simulated terminal velocities
depending on the ratio of object size and size of the simulation box.

We also tested a range of drag forces 0.05–0.4 nN and two values of fluid viscosity 0.7,
1.2 mPas. These variations had only insignificant impact on the terminal velocity.
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Figure 4. Boundary effect—relative deviation of computed terminal velocity from the theoretically
predicted value. Sphere radius R given in µm.

Due to the shear thinning properties of particulate suspensions, we need to compare
results corresponding to the same shear rates. While in the experiment with two parallel
moving plates, the shear rate is explicitly given by the velocity of the moving plates, in the
drag force experiment, the shear rate is computed from the fluid velocity gradient near the
top and bottom pole of the sphere, assuming horizontal movement of the sphere in the
positive x-direction.

The computational complexity of large dense simulations restricts the number of
dissipative particles for this computational experiment and implies a lower bound on the
radius of the particles. In order to maximize the domain size which reduces the correcting
factor depicted in Figure 4, we performed most computational experiments with particle
size rh = 0.5 µm. For the computational domain 100 × 100 × 100 µm3 with particle-volume
fraction φ = 0.5 this accounts for ∼106 particles. A decrease to rh = 0.25 µm would lead to
eight-fold increase in number of particles with the same solid-volume fraction.

5.3. Determining Appropriate Particle-Volume Fraction

Our aim is to reach the viscosity ratio of at least 4. In relation (4), one can take the
values φmax = 0.67, (η) = 2.76 from [36] and conclude that we need at least φ = 0.35 to
have the viscosity contrast close to 4.

Computational experiments for purely conservative forces (γ⊥ = γ‖ = 0 that corre-
spond to no phenomenological viscosity effects in particle suspension) show that it is not
possible to have the viscosity ratio higher than two. It is thus clear that we need to also
include the dissipative forces. For such forces to have any effect, the pairs of particles need
to be closer than the cutoff distance. This fact thus creates a lower bound for φ. Indeed,
if the particle-volume fraction is too low, the particles do not touch and their distance is
larger than cutoff distance for dissipative forces and therefore no dissipation is present.

On the other hand, too high value of φ would make the inter-particle distances smaller
than cutoff (effectively meaning an overlap of the DPs) which in turn, in combination with
conservative forces, would create a constant tension and make the inner suspension too
stiff for a cell to relax back to its original shape.

To determine the appropriate value of particle-volume fraction φ, we performed the
following set of computational experiments for various particle-volume ratios:

• Random initialisation of particles inside a 2 × 2 × 2 µm3 domain without boundaries;
• Random initialisation of particles inside a 2 × 2 × 2 µm3 domain with boundaries in

y and z direction;
• Random initialisation of particles inside red blood cell.

The value 2 µm was chosen to reflect the thickness of RBC. For all of these we let
the suspension relax with conservative forces turned on. We measured the minimal inter-
particle distance and number of particle pairs that overlap, i.e., their distance is less than 2rh,
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Table 3. Here, we see that the boundaries have a significant effect. The same particle-volume
fraction φ = 0.545 results in no overlap in the small cubical domain without boundaries,
but causes overlap of particles in domain with boundaries. Similarly, φ = 0.503, which is
low enough for all particles to relax in cubical domain with or without boundaries is high
enough in RBC to cause 513 pairs of particles to overlap. The boundary effect means that
there are larger particle-free areas next to boundary than in the middle of the suspension.
The RBC with its particularly large surface (boundary) with respect to volume (that helps to
transport oxygen in blood) means that the suspension needs to have a lower φ. Therefore,
in the following, we will consider φ = 0.5 and φ = 0.485.

Table 3. Determining the appropriate particle-volume fraction φ. dmin (µm) is the minimal distance
of two particles (over 1000 replications), npairs is the maximum (over 1000 replications) number of
particle pairs that are closer than 2rh, where rh = 0.2 µm.

Cube, No Boundaries Cube, Boundaries RBC

φ dmin npairs φ dmin npairs φ dmin npairs

0.545 0.400 0 0.545 0.351 93 0.503 0.371 513
0.503 0.400 0 0.524 0.39994 3 0.485 0.389 40
0.461 0.400 0 0.503 0.400 0 0.467 0.400 0

5.4. Considerations for Initial Values of Simulation Parameters

Given the typical ~8 µm size of an RBC, we decided to use slightly reduced radius of
the sphere R = 3 µm to keep the volume of the sphere closer to that of an RBC. From Table 2
we see that to keep the correction term from boundary effects close to 10% we need to use
ratio R/L less than 0.03 which gives us lower bound for box size L = 100 µm.

From Table 1 we can see that the viscosity of water and PBS solution ranges from 0.7
to 1.2 mPas, while the viscosity of blood plasma ranges from 1.5 to 2.2 mPas, depending on
the temperature. We will use viscosity of suspending medium η = 1.2 mPas as a mid value.

We will work with the triangulated spheres with 304 nodes and RBCs with 1002 nodes.
These triangulations give us the average edge length 0.66 µm for sphere with R = 3 µm and
0.4 µm for the RBC. The fluid in the lattice-Boltzmann method is discretized into a cubical
lattice with grid size 1 µm.

5.5. Results

When using the conservative forces alone, Figure 5 grey line, we see only very slight
impact on the effective viscosity at volume fractions around φ = 0.5. The particles rearrange
quickly when needed and the desired higher values of viscosity cannot be achieved.

The inclusion of the dissipative forces effectively slows the particles and enables
higher viscosity.

With the dissipative forces included, in Table 4 and Figure 5 we see that the parallel
plate computational experiment and drag force computational experiment give very similar
effective viscosity values at rh = 0.5 µm. Due to significantly larger number of particles
needed for simulations with radii small enough to be relevant for inner RBC suspension,
we performed only the parallel plate experiment with these, assuming there would be a
similar correspondence to the drag force experiment. In the following, we summarize the
results from the parallel plate experiment.

In Figure 5, we see that viscosity increases with decreasing particle radius. This is true
for various values of γDPD as well as for various particle volume densities. The second
thing we see from Figure 5 is that viscosity increases with increasing γDPD. This means we
can use the parameter γDPD to tune the viscosity contrast.

Next, in Table 5, we see that for small shear rates there is almost no difference between
viscosities measured at different shear rates. The shear-thinning properties of blood
manifest at higher shear rates.
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Furthermore, finally, there is a steep decline of viscosity for lower particle volume
fractions as evidenced in Table 6. Volume fractions below 45% do not engage the particle
dissipative forces enough to raise the viscosity sufficiently.

From these results, we conclude that it is possible to use various combinations of
γDPD and φ > 0.45 to achieve the desired viscosity ratio. We list some of the suitable
combinations in Table 7.

Table 4. Comparison of effective viscosity [mPas] of particle suspensions in shear flow between
parallel plates vs. in drag force experiment. The viscosity of the underlying fluid was 1.2 mPas,
γDPD = 3 nNm−1s and the radius of DPs was rh = 0.5 µm, shear rate given in [s−1].

Parallel Plates Drag Force Sphere

φ shear rate ηin shear rate ηin

0.5 68 4.3 39 4.1
0.485 53 3.6 41 3.7
0.45 65 3.0 58 2.9

Table 5. At low shear rates, the shear rate has almost no impact on the particle suspension viscosity
(here φ = 0.5).

rh γDPD Shear Rate ηin
[µm] [nNm−1s] [s−1] [mPas]

0.5 3.0 27 4.4
0.5 3.0 68 4.3

0.3 3.0 36 5.7
0.3 3.0 64 5.8

0.2 1.5 57 4.4
0.2 1.5 113 4.4

Table 6. Decrease in effective viscosity of particle suspension ηin with respect to the decreasing
volume fraction φ. Here γDPD = 3 nNm−1s, radii given in µm.

Viscosity [mPas]
φ rh = 0.2 rh = 0.3 rh = 0.5

0.5 7.8 5.8 4.3
0.485 6.3 4.8 3.6
0.45 4.7 3.9 3.0

Table 7. Parameters of the inner particle suspension for RBC that result in appropriate effective
viscosity ηin.

φ rh γDPD ηin
[−] [µm] [nNm−1s] [mPas]

0.5 0.2 2.5 6.0
0.5 0.3 3.4 6.0

0.485 0.2 2.75 6.0
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Figure 5. Viscosity for various particle radii and γDPD (color coded) at φ = 0.5 (solid lines) and
φ = 0.485 (dotted lines) in parallel plates computational experiment. For γDPD = 0 (two gray lines
that overlap) we used the soft-sphere interaction between the spherical particles. Data available in
Table A5. The circles represent viscosity values from the drag force computational experiment with
rh = 0.5 µm. Solid circles correspond to φ = 0.5 and empty circles to φ = 0.485. Two grey circles
almost overlap.

6. Model Validation

The primary motivation for using inner soft particles was to enable viscosity contrast in
red blood cell model. Therefore, we next consider the following computational experiments
with red blood cells with inner particle suspension: the gold standard optical tweezers
experiment; both the stretching part to observe the elastic response of the membrane and
the dynamic release part to observe the viscous response during relaxation.

6.1. Optical Tweezers-Stretching

We performed the computational stretching experiments similar to [49]. The elastic
parameters of the RBC model and other details of the computational experiments were set
according to recommendations from [18]. The final axial and transversal diameters of RBC
with dissipative particles stretched with the applied force 0.192 nN (φ = 0.485 and φ = 0.5)
were 14.2–14.25 µm and 4.28–4.54 µm, respectively. Data for other stretching forces are
available in Table A6. For all stretching forces the diameters were within the biological
data range. This was expected, as this is a static experiment and the particles have larger
impact on the dynamics.

6.2. Optical Tweezers-Release

For the dynamical part of the optical tweezers computational experiment, we released
the stretched cells and let them relax back to the original biconcave discoid shape. Similarly
to [49,50], during the release we calculate the ratio

(λ2 − 1)(λ2
max + 1)

(λ2 + 1)(λ2
max − 1)

, (7)

where λ = da/dt, da is the axial diameter, dt is the transversal diameter and λmax represents
the maximum deformation just before the release. In order to compare the return of the

cell to the relaxed state, we fitted each time series (7) with an exponential curve e−
t

tc with
characteristic time-constant tc. The results are shown in Figure 6.
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Figure 6. Relaxation of stretched RBC (Fstretch = 0.192 nN) to discoid shape. Dotted lines correspond
to simulations with particles, solid lines represent exponential fit, either to experimental data (orange)
or to simulation data (gray, black and red). φ = 0 stands for simulation without inner particles.

The grey line represents the relaxation of a simulated cell without dissipative particles
(φ = 0) with time constant tφ=0

c = 0.003 s. The orange line represents data from biological
experiment [50]. While the ranges given in the literature vary, the fastest release times
shown here correspond to tbio

c = 0.1 s. The two dotted lines correspond to computational
experiments with particles: black with φ = 0.485 and red with φ = 0.5. We see that the
larger particle-volume fraction slows the return to relaxed shape more. The respective solid
lines represent the exponential fit with tφ=0.485

c = 0.015 s and tφ=0.5
c = 0.05 s.

Although the relaxation time of the presented model is lower than time from the
biological experiment, we see a significant shift towards the biological data compared
to the previous model. Already in [50] the authors attribute the slow relaxation time
to the viscosity of the RBC membrane. We expect that introducing phenomenological
viscosity to membrane particles would further prolong the relaxation time towards the
values measured in the biological experiment.

7. Discussion

In the present work, we have developed an RBC model that accounts for non-trivial
viscosity ratio. We have analyzed the suspensions of dissipative particles that increase the
viscosity of the suspending medium in two computational experiments: the parallel plate
experiment and drag force experiment. The results of both overlapped and gave us the
parameters of soft particle suspension that gives the desired inner cell viscosity. Using
these parameters we have filled the membrane model of RBC with DPs and we tested
this model. First we performed a static validation test—stretching of an RBC. Then we
showed that inclusion of dissipative particles significantly reduced the discrepancy of the
membrane RBC model in the computational release experiment. The relaxation time tc
was increased from 0.003 s for the membrane model to 0.05 s for RBC model with inner
particles, almost reaching biological RBC value of 0.1 s.

7.1. Model Limitations

Adding DPD particles has improved the performance of the model and achieved a
slower relaxation of RBC to its original discoid shape. However, there are still possible
improvements and limitations to the extent of its use.

We expect that introducing phenomenological viscosity to the membrane would slow
down the relaxation time in the release experiment even further and thus achieve even
better agreement with the biological data. The main limitations of our approach lie in the
added computational complexity. The use of DPD particles requires using meshes with a
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larger number of nodes. This increases the computational time and thus this approach is
less appropriate for modeling dense RBC suspensions.

The computational complexity is also the reason for performing drag force experi-
ments only with small sized simulation boxes. We have assumed that since we achieved
comparable results in the drag force experiment and the shear flow between two plates
experiment, the results would be comparable also when using smaller particles in the drag
force experiment. We estimated the effect of boundaries in a smaller box using simulations
without DPD suspension and this allowed us to remove the effect from the simulation with
DPD suspension. However, a more precise validation would have been achieved with the
larger simulation box which would require at least an 8-fold increase in computational
time. In our opinion the precision gain would not justify the computational time.

7.2. Novelty

The use of LBM for the inner and outer fluid and dissipative particles only for in-
creasing the inner viscosity (as opposed to full DPD) leverages the LBM fixed lattice that
is naturally suitable for parallelization and decreases computational time. The increase
in inner viscosity is thus an emerging property without the need to solve equations to
track the inner points at individual timesteps or detect them anew using ray-casting or
similar methods.

The newly developed model proves to be more accurate while maintaining the com-
putational complexity.
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Appendix A

Table A1. Simulation parameters, fluid.

LBM Grid [µm] Time Step [µs] Viscosity [mPas] Density [kg/m3]

1 0.05 1.2 1
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Table A2. Simulation parameters, elastic parameters of RBC in Sections 6.1 and 6.2 and sphere
in Section 5.2.2.

RBC Sphere

ks [µN/m] 0.009 2
kb [Nm] 0.007 2

kal [µN/m] 0.09 2
kag [µN/m] 0.9 2
kv [N/m2] 0.9 2

no. of nodes 1002 304
mean edge length [µm] 0.4 0.66

Table A3. Simulation parameters, conservative interaction in the particle suspension.

Soft-Sphere Hat

a n Fmax

0.00032 1.5 0.6

Table A4. Simulation parameters, interaction of the particle suspension with the membrane. Outer in-
teraction of suspension in the drag force experiment. Inner interaction of particle suspension with cell
membrane from the inside, both drag force Section 5.2.2 and RBC experiments Sections 6.1 and 6.2.

Interaction a* n* c∗sof t [µm]

inner 0.02 1.5 2rh
outer 0.128 1.5 1.25rh

Table A5. Effective viscosity of particle suspensions in shear flow between parallel plates. The vis-
cosity of the underlying fluid was 1.2 mPas. For γDPD = 0 we used the soft-sphere interaction.

φ rh [µm] γDPD [nNm−1s] Shear Rate [s−1] ηin [mPas]

0.5 0.5 0 53 1.4
0.5 0.3 0 70 1.4
0.5 0.2 0 83 1.5

0.5 0.5 1.5 86 2.8
0.5 0.3 1.5 71 3.5
0.5 0.2 1.5 57 4.4

0.5 0.5 3 68 4.3
0.5 0.3 3 64 5.8
0.5 0.2 3 65 7.8

0.485 0.5 0 53 1.4
0.485 0.3 0 70 1.4
0.485 0.2 0 85 1.5

0.485 0.5 1.5 77 2.5
0.485 0.3 1.5 84 3.2
0.485 0.2 1.5 98 4.1

0.485 0.5 3 53 3.6
0.485 0.3 3 56 4.8
0.485 0.2 3 56 6.3

0.45 0.5 3 65 3.0
0.45 0.3 3 70 3.9
0.45 0.2 3 64 4.7
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Table A6. Final axial da and transversal dt diameters in optical tweezers stretching experiment at
volume fraction φ = 0.5.

Fstretch [nN] da [µm] dt [µm]

0 7.82 7.82
0.016 8.65 7.35
0.031 9.38 6.90
0.047 10.27 6.38
0.068 11.07 5.97
0.088 11.70 5.59
0.109 12.40 5.26
0.13 12.95 5.05
0.15 13.24 4.87
0.172 13.64 4.71
0.192 13.98 4.60
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