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Abstract
Transmission of drug-resistant pathogens presents an almost-universal challenge for fight-

ing infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the

absence of drugs for considerable time. It is generally believed that differential TDRM-per-

sistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo
epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare.

Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleo-

tide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals

with TDRM at baseline were included. Persistence of TDRM was quantified via reversion

rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were

estimated in the genetic background in which they occurred using a previously published

and validated machine-learning algorithm (based on in vitro replicative capacities) and were

included in the survival models as explanatory variables.

In 857 sequential samples from 168 treatment-naïve patients, 17 TDRMwere analyzed.

RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V)

to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (in-

crease by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs

into the average fitness cost of a given mutation and the deviation from the average fitness

cost of a mutation in a given genetic background, we found that both components were signifi-

cantly associated with reversion-rates.
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Our results show that the substantial variations of TDRM persistence in the absence of

drugs are associated with fitness-cost differences both among mutations and among differ-

ent genetic backgrounds for the same mutation.

Author Summary

The evolution of resistance is a universal challenge in antimicrobial chemotherapy. A key
driver of resistance is that drug resistance mutations often persist even in the absence of
drugs and despite the fact that resistance mutations are often associated with reduced
pathogen replication (“fitness costs”). Such persistence may occur because fitness costs are
low, especially if they are compensated by additional mutations in their “genetic back-
ground”. Here we assessed the role of fitness-cost and the genetic background for resis-
tance in a real-world epidemiological setting by studying the persistence behavior of
transmitted antiretroviral resistance mutations of HIV. This persistence behavior was as-
sociated with the predicted fitness cost of a given resistance mutation in the particular ge-
netic background in which it occurred. We found that persistence behavior varied strongly
across both mutation types and genetic backgrounds and that persistence was significantly
associated with predicted fitness costs. In particular we found that even mutations of the
same type tended to persist longer if they occurred in a genetic background where they
caused weak fitness costs. Overall our results underline the variability of persistence behav-
ior as well as the important role of fitness costs and the genetic background in the evolu-
tion of antimicrobial resistance.

Introduction
Drug-resistant pathogens represent one of the major public health and clinical challenges in in-
fectious diseases (http://www.who.int/drugresistance/en/). It is an almost universal observation
that as soon as a chemotherapeutic agent against a given pathogen is introduced, resistant
pathogen strains emerge, which reduce the clinical benefits conferred by that agent. One crucial
obstacle in curbing drug resistance is that once it has emerged it often persists even in the ab-
sence of drug pressure. The central concept here is pathogen fitness: whereas the resistant path-
ogen has a very strong advantage over the sensitive one in the presence of drug pressure, its
disadvantages in the absence of treatment are typically weaker and can be compensated by
other mechanisms such as compensatory mutations or selection at linked loci. Despite this key
role of pathogen fitness for a conceptual understanding of the spread and persistence of drug
resistance, real-world epidemiological examples documenting its role are rare. An ideal oppor-
tunity to assess this role of fitness is provided by the dynamics of antiretroviral resistance in
HIV-1.

In the case of HIV, combinations of modern anti-retroviral treatment (ART) have successfully
reduced the morbidity and mortality of HIV-1 infected individuals [1]. Though drug resistance
prevalence has been shown to decrease or to stabilize in various industrialized countries due to
successful ART, it still remains a major concern jeopardizing treatment success [2,3].

Transmission of a drug-resistant virus has been observed in most countries where ART is
available [4–10]. After transmission, viruses with transmitted drug resistance mutations
(TDRM) persist either as the dominant species or as minority variants, which are difficult to
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detect by population sequencing techniques [11–17]. Consequently, patients harboring TDRM
have a higher chance to fail their first-line therapy [12,18–20].

Several studies have illustrated that the persistence time of individual TDRM in the absence
of drug pressure exhibits substantial variance [11,13,15,17,21,22]. Persistence times have been
suggested to be associated with fitness costs [18], which are typically measured as the reduction
of replicative capacity of the virus caused by a given mutation [21]. It is generally assumed that
transmitted drug-resistant viruses revert more rapidly to wild-type viruses if the fitness is re-
duced to a larger extent by the TDRM (high fitness cost) because then reversion of TDRM con-
fers correspondingly high fitness gains [23]. Several studies have measured the fitness of some
specific TDRM using phenotypic replicative capacity assays [6,17,21]. However, evidence for
the impact of such fitness costs on the dynamics of TDRM at an in vivo and epidemiological
level is largely lacking. Here, we aimed to determine the persistence times of TDRM in an epi-
demiological approach in vivo and to determine whether these persistence times depend on the
fitness costs of TDRM.

Methods

Study population
The SHCS is a prospective, nationwide, clinic-based study including a biobank. The SHCS is
very representative of the HIV epidemiology in Switzerland; it includes at least 53% of all HIV
cases ever diagnosed in Switzerland, 72% of all patients receiving ART, and 69% of the nation-
wide registered AIDS cases [24,25]. Since 1996, the SHCS includes approximately 85% of the
newly diagnosed HIV infected individuals in Switzerland. This number was obtained when we
compared the estimated numbers of newly diagnosed HIV cases published by the Swiss Federal
Office of Public Health to the numbers of patients enrolled in the SHCS annually since 1996.
Genotypic resistance data stem from routine clinical testing and from systematic retrospective
sequencing before routine genotyping was introduced (over 11000 sequences were retrospec-
tively generated). Genotyping is performed by four laboratories in Switzerland authorized by
the Federal Office of Public Health. All laboratories perform population-based sequencing of
the full protease gene and at least codons 28–225 of the reverse transcriptase gene using com-
mercial assays such as Viroseq Vs.1 PE Biosystems; Virsoseq Vs. 2, Abbott AG; VircoTYPE
HIV-1 Assay, Virco Lab or in-house methods [4] and has participated in the yearly quality con-
trol evaluation by the Agence Nationale de la Recherche du SIDA(ANRS) since 2002. All se-
quences are stored the SHCS drug-resistance database using SmartGene’s Integrated Dababase
Network System (SmartGene, Zug, Switzerland, IDNS version 3.6.3) [12]. For details on the se-
quencing procedure, see [12]. To increase coverage, we have systematically selected all treat-
ment-naïve individuals carrying TDRM and retrieved their sequential plasma samples before
therapy from the SHCS biobank.

For this study we considered genotypic resistance test (GRT) performed for a patient when
being treatment-naïve. All sequential GRTs were included for individuals having� 2 GRTs
and harboring TDRM at baseline before ever starting any antiretroviral therapy.

TDRMwas defined according to theWHO surveillance list of transmitted HIV drug resis-
tance [11]. We studied mutations to the major three drug classes: nucleoside and nucleotide ana-
logue reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs), and nonnucleoside
reverse transcriptase inhibitors (NNRTIs). Additionally, we excluded 17 potential super-infec-
tions based on phylogenetic distance and the lack of phylogenetic clustering. Finally, since
TDRM in HIV-1 CTL epitopes can disrupt binding to the HLA allele and such CTL-escape may
essentially influence the reversion dynamics, we screened the list of optimal HIV-1 CTL epitopes
(according to the Los Alamos HIV database, http://www.hiv.lanl.gov/content/immunology/pdf/
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2013/optimal_ctl_article.pdf) for epitopes containing TDRM and excluded from our analysis
those mutations that disrupted binding to the epitope according to NetMHCcons (http://www.
cbs.dtu.dk/services/NetMHCcons/).

Ethics statement
The SHCS, enrolling HIV-infected adults aged� 16 years old, has been approved by ethics
committees of all participating institutions. The data collection was anonymous and written in-
formed consent was obtained from all participants [24].

Survival analysis
Our goal was to assess systematically the persistence of TDRM in the absence of drug pressure.
In particular we considered the persistence across different mutations and viral genetic back-
grounds (for a given mutation occurring in a given virus, the viral genetic background is given
by the entire amino acid sequence in which this mutation is observed). To allow inter-patient
comparisons we included TDRM that were present in at least five individuals at baseline.

We quantified the persistence via calculating reversion rates of individual TDRMs. Rever-
sion of a TDRM was defined as an event at which a TDRM becomes undetectable by popula-
tion sequencing assays. In other words, a TDRM has reversed when the HIV variant carrying
that TDRM has decreased to the level below the detection limit of population sequencing as-
says (*20–30% [26]). Therefore, reversion is not necessarily always to wild type. We fitted our
data with an interval-censored survival model using exponential waiting times. We chose an
interval-censored model because the data did not allow to determine the exact time point of re-
version; instead a GRT not detecting a given resistance mutation preceded by a GRT with that
mutation informs that the reversion event must have occurred in the time interval between
those two tests.

Our results were expressed with 95% CI and two-sided p-values with p<0�05 being statisti-
cally significant. We analyzed our data with Stata 13.1 SE (StataCorp, Texas, USA).

Estimation of fitness costs of TDRM
We estimated fitness costs based on a previously published approach to predict HIV replicative
fitness from amino acid sequences [27]. This approach uses a machine-learning algorithm
(ridge regression) trained on>70000 data points, each consisting of a pol-amino-acid sequence
and an in vitro replicative capacity. Specifically, the algorithm predicts replicative capacity
(pRC) from an amino acid sequence by a quadratic fitness model of the form

pRCðxÞ ¼
X

ij

Mijxixj

where xi denotes the presence (1) or absence (0) of a given mutation i andMij the epistatic ef-
fects (i<j) and the main effects (i = j) characterizing the fitness landscape. These coefficients
were derived in [27] by fitting the model to the>70000 data points. Since the number of pa-
rameters of the above model exceeds the number of data points, this model was fitted using an
approach based on ridge regression. In essence, in this approach the data set was split into a
“training”, “training-test”, and “true-test” data set. Then assuming a given penalty weight for
model parameters, the model parameters are determined such that for the “training” data set,
the sum of squared residuals plus the sum of squares of parameters times the penalty weight
are minimized. In this specific case the approach was modified to a generalized linear ridge re-
gression to take the non-normal error structure into account. The model was evaluated on the
“test-training” data set, and the penalty weight was determined such that the predictive power
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on the “test-training” test was optimized. This final model was then evaluated on the “true-
test” data set (which was used neither in deriving the model parameters nor in determining the
penalty weight). Details on the method and validation on in vitro and clinical data can be
found in [27] and [28]. Using this model, we estimated the fitness cost of a mutation in a given
genetic background as follows. If A denotes the partial pol-amino-acid sequence (first 404
amino acid used in the reference [27]) with a given resistance mutationm and A’ the same
amino acid sequence but with the mutation reverted to its wild-type allele, then the fitness cost
of the mutationm in the background A can be estimated as

cðm;AÞ ¼ pRCðAÞ � pRCðA0Þ:

A negative fitness cost was set to zero.
The impact of this fitness cost was assessed in univariable and multivariable versions of the

interval-censored model. The multivariable models were adjusted for whether a given TDRM
was present as a mixture with another amino acid at this position. Specifically, this was consid-
ered to be the case if the nucleotide sequence coding for this mutation contained at least one
ambiguous nucleotide that affects the amino acid encoded.

Results

Study population
From 7920 treatment-naïve patients enrolled in the SHCS fromMay 1995 to February 2013,
we could identify 987 sequential GRTs from 197 patients, who had� 2 GRT while being treat-
ment-naïve and presented with� 1 TDRM at baseline. See S1 Table for all types and numbers
of mutations and reversions observed from these 197 patients. The criterion that a given muta-
tion must have been present in at least 5 individuals at baseline reduced the number of sequen-
tial GRTs and patients to 857 and 168, respectively.

From our studied population most individuals were male (80%), white (87.5%), and infected
with subtype-B viruses (81.5%; Table 1). The median (IQR) number of GRT performed per
person was 7 (4, 11) and the median (IQR) of test interval was 193 (170, 243) days. Baseline
CD4 count was relatively high (494 [347, 656]), suggesting that patients were tested relatively
early on after infection. 60.1% of patients had a single mutation detected at their first GRT. De-
tailed patient characteristics were shown in Table 1.

Reversion rate of individual TDRM varies
In total, 21 TDRM were analyzed. One mutation (190A of NNRTI) was excluded because we
observed no reversion at all from the studied patients and three mutations (101E, 181C, 210W)
were further excluded because they were located in the HLA epitopes (see Methods). Thus we
could obtain reversion rates for 17 TDRM (Fig. 1). Among them, 10 were mutations associated
with resistance to NRTI, 6 to PI, and 1 to NNRTI. The quantified linear reversion rate showed
that persistence time varied strongly among mutations. Among three drug classes, NRTI muta-
tions showed the largest variability. Both the fastest and the slowest reversion rates, 174.0/100-
person-years [confidence interval = 51.4, 588.8] from 184V and 2.7/100-person-years [0.7,
10.9] from 215D, respectively, belonged to this drug class.

Predicted fitness cost is associated with TDRM persistence
We found that reversion rates were associated significantly with the predicted fitness costs of
resistance mutations (Fig. 2). Specifically, the survival analysis with predicted fitness cost as an
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explanatory variable yielded that reversion rates increased by a factor 1.6[1.3,2.0] (p<0.001) if
fitness is increased by one standard deviation. Thus predicted fitness has a considerable and
highly significant impact on reversion rates. Since this analysis included different fitness costs
of mutations, each in at least five patients, the observed effect of fitness can be caused by two
mechanisms: On the one hand, by overall differences in costs among mutations (“main ef-
fects”) and, on the other hand, by different costs of the same mutation in different backgrounds

Table 1. Basic characteristics of study population.

No. of patients (%) or Median (IQR)

Patients included 168

Age at baseline 35 (30.5, 40)

Gender

Male 133 (79.2)

Female 35 (20.8)

Ethnicity

White 147 (87.5)

Black 11 (6.5)

Others / Unknown 10 (6.0)

Transmission route

MSM (Male Homosexual) 83 (49.4)

Heterosexual 47 (28.0)

Intravenous drug users 33 (19.6)

Unknown 5 (3.0)

Subtype

B 137 (81.5)

Non-B 26 (15.5)

Non-classified 5 (3.0)

Viral load at baseline (log10 copies/ml) 1 4.4 (3.6, 4.9)

CD4 count at baseline (cells/mm3) 2 494 (347, 656)

No. of mutations at baseline

1 101 (60.1)

2 34 (20.2)

� 3 33 (19.6)

Mutations at baseline resistant to

NRTI 101 (60.1)

PI 51 (30.4)

NNRTI 47 (28.0)

No. of resistant classes 3 at baseline

1 142 (84.5)

2 21 (12.5)

3 5 (3.0)

Test interval in days 193 (170, 243)

Number of GRT performed 7 (4, 11)

1 within 30 days before / after the first resistance test, N = 151 (90%)

2 within 30 days before /after the first resistance test, N = 157 (93%)

3 having � 1 resistant mutations of a drug class

doi:10.1371/journal.ppat.1004722.t001
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(“epistatic effects”). In order to distinguish between these two effects, we further analyzed the
data with two alternative approaches:

In the first approach, we still used predicted fitness cost as the explanatory variable but ad-
justed for the identity of the resistance mutation (i.e. the type of resistance mutation was in-
cluded as a categorical variable). In this approach, the estimated effect of fitness corresponded
to the impact of fitness within a given type of mutation. Since this approach introduced 17 vari-
ables for 264 data points and 62 events (and hence carries the risk of over-parameterization),
we considered an alternative second approach, which only included two parameters. Specifical-
ly, we divided fitness cost into two components: the mean fitness cost of a mutation (across
backgrounds) and the residual fitness cost, which is given as the difference between the pre-
dicted fitness cost in a given background and the mean fitness cost. In the first approach, rever-
sion rate was increased by a factor 1.8[1.1,3.1] (p<0.001) if fitness cost was increased by one
standard deviation (after adjusting for type of mutation). In the second approach, both mean

Fig 1. Reversion rate of individual TDRM.Reversion rate was quantified via an interval-censored survival model using an exponential distribution. The
table below showed the number of reversion and total number observed at baseline for each TDRM. NRTI resistance mutations showed the largest variability
that included both the fastest (184V) and the slowest (215D) reverting TDRM.

doi:10.1371/journal.ppat.1004722.g001
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fitness cost and residual fitness cost increased the reversion rate significantly by a factor 1.7
[1.3, 2.1] (p<0.001) and 1.4[1.1,1.8] (p = 0.007) per standard deviation, respectively. Thus our
models predict that a typical difference in fitness cost among resistance mutations (i.e. one
standard deviation of the fitness costs observed in our data set), causes a 40%-80% increase in
the rate with which resistance mutations revert. Moreover, both approaches showed that both
types of fitness cost (different overall costs of drug resistance mutations, and different costs in
different backgrounds) are associated with higher reversion rates.

These multivariable models also showed that, as can be expected, reversion occurs much
faster if a given TDRM is present as a mixture (see Methods, Table 2).

Discussion
In this study we investigated the differential persistence behaviors of TDRM in the absence of
drug pressure and analyzed the association of the reversion rate with the predicted fitness cost

Fig 2. Impact of fitness cost on reversion rates. In unadjusted survival analysis (“fitness cost”), in survival analysis adjusted for type of mutation (“fitness
cost adj.”). Impact of mean fitness cost and residual fitness cost in univariable analysis (“uvar.”) and in multivariable analysis including both mean and
residual fitness cost (“mvar.”).

doi:10.1371/journal.ppat.1004722.g002

Table 2. Hazard ratios (HR) reported in univariable and multivariable models.

Univar. HR (95% CI) p Multivar. HR (95% CI) p

Mean fitness cost 1.31 (1.05,1.64) 0.015 1.65 (1.30,2.10) <0.001

Residual fitness cost 1.34 (1.08,1.66) 0.008 1.38 (1.09,1.75) 0.007

TDRM present as mixture 9.71 (5.87,16.1) <0.001 12.3 (7.22, 20.1) <0.001

doi:10.1371/journal.ppat.1004722.t002

Transmitted HIV-1 Drug Resistance Mutations and Fitness Costs.

PLOS Pathogens | DOI:10.1371/journal.ppat.1004722 March 23, 2015 8 / 13



of a given mutation. We used an interval-censored survival model to quantify the reversion
rate of each mutation that was at least harbored by five individuals at baseline. We observed
that the reversion rate of individual mutations varied substantially. Moreover, the reversion
rates were significantly associated with the differential fitness costs of the TDRM: We showed
that both the fitness-cost differences among mutations and among viral genetic backgrounds
for the same mutation contributed to the variation in reversion rates. Thus, the novelty of this
study is that we compared in total 17 TDRM from patients in a single cohort and could associ-
ate the persistence times with fitness costs of mutations predicted by a machine-learning
model. An additional strength of this study is the high frequency and the number of resistance
tests performed per patient.

Our results were consistent with most studies showing that M184V disappeared rapidly
[15,21,29] whereas most thymidine analogue associated mutations (TAMs: 41L, 67N, 70R,
215Y, 219Q) disappeared at a slower rate [21,29,30] with the exception of 70R and 215Y. It is
known however that 215Y has a high impact on fitness [21] and is rapidly replaced by interme-
diate 215S or atypical variants 215C/D [31]. Additionally, the fitness cost of 70R was shown to
be higher when combined with other mutations in vitro [21,24]. This could explain the ob-
served high reversion rate of 70R regardless of its low fitness cost because in our data set 7
from 11 patients harboring 70R had at least one other mutation. Our data showed that most
TDRM to PI reverted more rapidly, compared to NRTI mutations.

From a more general perspective our findings have important implications for understand-
ing the epidemic spread of drug-resistant pathogens. One of the general problems with drug re-
sistance is that it can be quickly selected by drug pressure, but upon transmission it reverts
only slowly if at all in the absence of drug pressure [32]. The intuition behind this is that drugs
cause an enormous reduction in the replicative capacity of wild-type virus and hence lead to a
strong relative fitness benefit for resistant mutants. By contrast, the fitness cost in the absence
of drugs is typically weak. Our results highlight the large variability in reversion rates and the
central role of fitness cost in governing the speed of reversion in the in vivo setting within the
SHCS. In particular, they show that the genetic background of a resistance mutation substan-
tially modulates the fitness cost and thereby the reversion rate of the mutation. This implies
heritable variation in the fitness cost of resistance and thereby the danger that such fitness
costs are reduced by evolutionary selection, i.e. mutations in genetic backgrounds causing
lower fitness cost will have larger chances to spread to other patients and hence may dominate
the population in the long run. Assessing the impact of the genetic background on reversion
rates is central for understanding the spread of antimicrobial resistance in general. For exam-
ple, theoretical models and in vitro evidence suggest a crucial role of compensatory mutations
in boosting antibiotic resistance for a broad range of bacterial pathogens [33]. However, real-
world epidemiological evidence for an impact of the genetic backgrounds found in natural
pathogen populations on reversion of resistance in patients is largely lacking. In this context
our approach offers a proof of principle for using machine learning approaches to bridge the
gap between epidemiological data on resistance reversion and in vitro fitness measurements
and thereby to address this crucial issue.

In the context of HIV epidemiology in Switzerland, such a scenario of mutation evolution
can be probably prevented by the good surveillance and the early treatment of HIV-infected in-
dividuals, implying that resistant strains have only limited opportunity to cause new infections
and hence to select backgrounds with lower fitness cost. By contrast, this scenario is a very real
danger in settings with poorer surveillance and hence ampler opportunities for resistant viruses
to spread. In those settings evolution might indeed successfully act on the variation of fitness
costs and lead in the long term to resistant viruses with a low fitness cost.

Transmitted HIV-1 Drug Resistance Mutations and Fitness Costs.
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Previous work [18] has assessed fitness costs of some antiretroviral resistance mutations in
vitro by site directed mutations (SDM). Since these studies did not consider the impact of dif-
ferent genetic backgrounds, we can only compare the average fitness cost of a mutation deter-
mined by our method with the fitness costs determined by SDM. This comparison reveals a
good qualitative but not perfect agreement to our estimates with SDM data (as summarized in
[18]). Estimates were available in both data sets for the RT mutations 184V, 70R, 41L, 103N,
and 215Y; in agreement with [18] we found a high fitness cost for 184V (1.8 standard devia-
tions above mean fitness cost = +1.8s.d) and a moderate fitness cost for 70R, 41L, and 103N
(+0.58 s.d., −0.16 s.d., and +0.48 s.d., respectively). In agreement with [18] we also found mod-
erate fitness costs for 210W and 181C (−0.85 s.d. and −0.69 s.d. respectively), which were ex-
cluded from our analysis because they lie in HLA epitopes and disrupt binding. The main
discrepancy was found for 215Y, where our methods predicted low fitness costs (−0.86 s.d.) in
contrast to the SDM data [18]. The fact that reversion rates are high for this mutation indicates
that our estimator has underestimated the real fitness cost of this mutation. This failure may be
also related to the complexity of the mutational pathways at this position, which may have
been oversimplified by our approach (in which we do not distinguish which amino acid a
TDRM reverts to). This deviation is also not surprising since the computational predictor un-
derlying our approach is not perfect (42% of deviance in in vitro fitness were explained in
[27]). Overall this comparison thus validates our method but also reveals that there is potential
for improvement and hence our approach should be best viewed as a proof of principle of
using machine-learning approaches in conjunction with in vitro fitness measurements to assess
reversion of TDRM in vivo.

This assessment of the fitness predictor is confirmed by considering the quality of fit of the
different models summarized in Fig. 2: Starting from an interval-censored survival model with-
out explanatory variables, adding the information of whether a given TDRM is present as a mix-
ture reduces the model deviance by 22%. Adding TDRM-fitness as an explanatory variable
reduces the model’s deviance by a further 9%. If we separate fitness cost into the mean fitness
cost of a given mutation type and the corresponding residual fitness cost (as in Fig. 2), this 9% re-
sults from a 6% of deviance-reduction explained by the mean fitness cost and 3% by the residual
fitness cost. This indicates an important role of fitness for TDRM reversion; especially given that,
firstly, the fitness predictor used here is not perfect (it explains 42% of deviance of in vitro repli-
cative capacity [27]) and that, secondly, being a mixture implies that a nucleotide has already
started to revert and hence the corresponding variable represents a very strong determinant of
reversion. Finally, these numbers suggest that the differential fitness-costs of the same mutation
in different genetic backgrounds contribute half as much to the population-level variability in re-
version than different fitness-costs of different mutations. Given the well-described and strong
differences in reversion rates across mutation types this therefore implies an important role of
the genetic background. However, these fractions of deviance explained by our predicted fitness
costs imply that reversion rates also depend on other factors not captured by in vitro replicative
capacity. This includes interactions between host-viral factors such as HLA escape. Even though
we excluded TDRMs known to mediate CTL escape (see Methods), it is likely that this does not
encompass all such escape mutations or more generally all mutations that affect the interaction
of a virus with a given patient’s immune system.

Our study had several limitations. One of the limitations of this study was the lack of infor-
mation before the first GRT was performed. More specifically, we could not determine how
long a TDRM had already persisted before the first GRT. We studied the reversion of TDRM
from the baseline GRT instead of the infection date of a patient because an exact infection date
was not known for most of the patients and because GRTs at infection time are typically not
available. This approach increased the sample size considerably in exchange for missing some
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TDRM that had reverted before the first GRT was performed. This could explain why K65R or
T215F, which are known to revert rapidly, were not identified in our study. The fast reverting
TDRM such as M184V were either missed or detected right after the infection by GRT, thus
the estimated reversion rates were not altered to a large extent and only the sample size may be
lower. Another limitation was that around 40% (67 / 168) of patients carried> 1 TDRM at
baseline. Although combinations of mutations could modulate the fitness costs substantially
[21], causing that a given mutation has varying fitness costs when having different genetic
backgrounds, the number of mutations detected at the first GRT was not found to be associated
with the reversion of TDRM [29]. Additionally we adjusted for different genetic backgrounds
including the residual fitness costs in our model and still found positive associations of rever-
sion rates with average fitness costs.

In conclusion, our study demonstrated that TDRM showed substantial variation in rever-
sion rates, which were positively associated with the fitness costs these mutations had in their
genetic background.
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