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Imputed whole-genome sequence (WGS) has been proposed to improve

genome-wide association studies (GWAS), since all causative mutations

responsible for phenotypic variation are expected to be present in the data.

This approach was applied on a large number of purebred (PB) and crossbred

(CB) pigs for 18 pork color traits to evaluate the impact of using imputed WGS

relative to medium-density marker panels. The traits included Minolta A*, B*,

and L* for fat (FCOL), quadriceps femoris muscle (QFCOL), thawed loin muscle

(TMCOL), fresh ham gluteus medius (GMCOL), ham iliopsoas muscle (ICOL),

and longissimus dorsi muscle on the fresh loin (FMCOL). Sequence variants

were imputed from a medium-density marker panel (61K for CBs and 50K for

PBs) in all genotyped pigs using BeagleV5.0. We obtained high imputation

accuracy (average of 0.97 for PBs and 0.91 for CBs). GWAS were conducted for

three datasets: 954 CBs and 891 PBs, and the combined CBs and PBs. For most

traits, no significant associations were detected, regardless of panel density or

population type. However, quantitative trait loci (QTL) regions were only found

for a few traits including TMCOL Minolta A* and GMCOL Minolta B* (CBs),

FMCOL Minolta B*, FMCOL Minolta L*, and ICOL Minolta B* (PBs) and FMCOL

Minolta A*, FMCOL Minolta B*, GMCOL Minolta B*, and ICOL Minolta B*

(Combined dataset). More QTL regions were identified with WGS (n = 58)

relative to medium-density marker panels (n = 22). Most of the QTL were linked

to previously reported QTLs or candidate genes that have been previously

reported to be associated with meat quality, pH and pork color; e.g., VIL1,

PRKAG3, TTLL4, and SLC11A1, USP37. CTDSP1 gene on SSC15 has not been

previously associated with meat color traits in pigs. The findings suggest any

added value of WGSwas only for detecting novel QTL regions when the sample

size is sufficiently large as with the Combined dataset in this study. The

percentage of phenotypic variance explained by the most significant SNPs

also increased with WGS compared with medium-density panels. The results

provide additional insights into identification of a number of candidate regions

and genes for pork color traits in different pig populations.
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Introduction

Pork color is a key effective indicator for meat quality traits

and freshness, since it has been shown that there is a moderate to

high association between some of the pork color traits and other

meat quality traits such as drip loss (e.g., genetic correlation of

0.55 ± 0.24 and 0.42 ± 0.19 between drip loss and LoinMinolta L*

and Loin Minolta A*, respectively) and ultimate pH (genetic

correlation of -0.37 ± 0.16) (Miar et al., 2014). Therefore, pork

color is an important factor which influences consumer decisions

for purchasing pork (Glitsch, 2000). Moreover, Miar et al. (2014)

showed that pork color traits had moderate to high heritability,

ranging from 0.10 ± 0.05 to 0.38 ± 0.06 (average = 0.25). This

shows that in addition to the environmental factors, genetic

factors control pork color. Hence, genetic improvement of pork

color, which is economically important for the swine industry, is

possible in pig breeding programs. Understanding the complex

genetic mechanisms underlying pork color traits, which can be

done by detection of new genomic regions associated with these

traits, is a necessity for the genetic improvement of these traits.

Genome-wide association studies (GWAS) using a part of the

data1 in the current study, have identified several regions

associated with pork color traits (Zhang et al., 2015; Yang

et al., 2017). Five genomic regions on Sus scrofa chromosomes

(SSC) 1, 5, 9, 15, 16 and the X chromosome were identified

(Zhang et al., 2015). The region on SSC15 spanning 133–134 Mb

explained 3.51%–17.06% of genetic variance for five

measurements of pH and color (Zhang et al., 2020). Yang

et al. (2017) identified 20 genomic regions associated with

18 pork color traits. Three of the genomic regions (on

32–36 Mbp of SSC1 for quadriceps femoris muscle (QFCOL)

Minolta A*, 130–134 Mbp of SSC15 for three traits (QFCOL

Minolta A* and B*, thawed loin muscle (TMCOL) Minolta B*),

and a region on SSC16) associated with three pork color traits

identified by Zhang et al. (2015) were also detected by Yang et al.

(2017).

To date, most GWAS have used medium-to high-density

marker panels to detect the genomic regions associated with

carcass and meat quality traits. Use of whole-genome sequence

(WGS) is expected to improve identification of associated regions

(in terms of both distinct and extended candidate regions and

identifying novel genomic regions), because most of the causative

variants are expected to be withinWGS. The causative SNPs have

low MAF (rare variants) and their variance is expected to be

captured using WGS. According to simulations, using WGS data

for GWAS, the precision of mapping for rare variants increased

considerably, which supports the efficiency of WGS in detecting

and fine-mapping of low frequency variants simultaneously (Wu

et al., 2017). Identification of such variants can increase the utility

of genomic selection (GS) for traits such as pork quality by

increasing selection accuracy, particularly in multi-population or

across population genetic evaluations as used in most

commercial pig production which uses crossbreeding and

ultimately accelerating genetic gain (Kizilkaya et al., 2014). A

disadvantage of using WGS for genetic analyses is the cost of

sequencing. Even though the costs of WGS are decreasing, it is

still too expensive to sequence at sufficient coverage the

thousands of animals required for accurately detecting the

genomic regions associated with complex quantitative traits

such as pork color traits. A promising alternative is to

sequence influential founder animals with the highest genetic

contribution to the target population (so-called “reference

population”) and to impute the sequence of the remaining

animals from low density genotypes (so-called “target

population”) (Meuwissen and Goddard, 2010a; b). A cost-

effective sequencing alternative to obtain large-scale genomic

information is low-pass whole-genome sequence in which 1x

coverage or less of a target genome is sequenced. Low-pass

sequencing combined with imputation has been proposed as

an alternative to genotyping arrays for improving both

quantitative trait loci (QTL) detection through a GWAS (Li

et al., 2021) and genomic prediction accuracy (Snelling et al.,

2020).

Through imputation, based on WGS, the missing variants in

the target population can be predicted by use of linkage and

segregation analysis. Imputation accuracy is an important factor

for more accurate detection of associated regions. Bouwman et al.

(2018) assessed the accuracy of imputation from a 70K SNP

panel to WGS, from a 660K SNP panel to WGS, and a two-step

procedure from 70K to 660K to WGS, using three imputation

programs including Beagle 4.1 (Browning et al., 2018), Minimac3

(Das et al., 2016), and FImpute (Sargolzaei et al., 2014). They

showed that using a small reference set of 168 sequenced pigs,

imputation from 660K was more accurate than imputation from

70K directly to WGS. Their two-step procedure (from 70K to

660K to WGS) resulted in the lowest imputation accuracy. They

also showed that Beagle 4.1 outperformed Minimac3. In their

study, FImpute performed less well compared with other

imputation programs. A useful strategy to reduce imputation

error rate is to filter SNPs based on their imputation accuracy

prior to analysis.

The use of imputed WGS has been more common in GWAS

for pig traits in recent years (Li et al., 2017; Yan et al., 2017; Yan

1 Only our CB animals with 61K single nucleotide polymorphisms (SNP)
panel were used by Zhang et al. (2015) and Yang et al. (2017). Both
authors used the same pork color traits as in the present study.
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et al., 2018; Van den Berg et al., 2019; Wu et al., 2019; Yang et al.,

2021). Van den Berg et al. (2019) showed that using the imputed

WGS, the detected QTLs increased with increasing SNP density.

They found that compared to 80K and 660K genotypes, using

imputed WGS led to the identification of 48.9 and 64.4% more

QTL regions, for Landrace and Large White pigs, respectively,

and the most significant SNPs in the QTL regions explained a

higher proportion of phenotypic variance. Wu et al. (2019)

detected 113 and 18 SNPs associated with farrowing interval

of different parities in two pig populations using imputed

sequence variants. Also, Yan et al. (2017) identified a QTL

associated with lumbar number in Sutai pigs using imputed

WGS. Nevertheless, to the best of our knowledge, few studies

have investigated using imputed WGS for GWAS for meat and

carcass quality traits in both purebred and crossbred pigs.

We performed GWAS for 18 meat color traits including

Minolta L*, A*, and B* for fat (FCOL), quadriceps femoris muscle

(QFCOL), thawed loin muscle (TMCOL), fresh ham gluteus

medius (GMCOL), ham iliopsoas muscle (ICOL), and

longissimus dorsi muscle on the fresh loin (FMCOL).

Analyses were conducted for two datasets: 9542 crossbred pigs

(CBs) and 8913 purebred pigs (PBs). Sequence variants, called

across the 60 sequenced pigs, were imputed from a medium-

density marker panel (61K for CBs and 50K for PBs) in all

genotyped pigs. We applied a single marker association analysis

and accounted for polygenic effects through the genomic

relationship matrix for each dataset. The main objectives of

the study were therefore: 1) to assess the imputation accuracy

from 61K CBs and 50K PBs to WGS using a small reference

population of 60 sequenced pigs, and 2) to investigate whether

the use of WGS detected more associated regions compared with

lower density SNP panels. Furthermore, we performed GWAS on

combined CBs and PBs to assess whether or not the power of

GWAS increased with increasing population size. Finally, we

identified potential candidate genes within the associated regions

and described the biological roles of the most interesting regions

through functional analyses.

Materials and methods

Data

Phenotypes
This study was performed using the data provided by

Hendrix Genetics (Hypor Inc., Regina, SK, Canada).

Phenotypes of 18 meat color traits were available for

1,037 commercial crossbred pigs (524 female and 513 male

CBs, mostly from three-way cross between Duroc boars and

Landrace-Yorkshire sows, and 76 were from F1 hybrid sows

(Landrace-Yorkshire)). Also, phenotypes of 15 meat color traits

were available for 891 purebred Duroc females. The list of the

18 meat color traits and their abbreviations are given in Table 1.

Number of individuals in the pedigree were 4,420 and 5,260 for

CBs and PBs, respectively. The combined PB and CB pedigree

was made by defining the genetic groups in ASReml program

V4.0 (Gilmour et al., 2015), as the animals from PBs and CBs

were considered to belong to different genetic groups. Thus, the

combined pedigree comprised 6,419 individuals including the

genetic groups. The details on how the pork color phenotypes

were measured in the six locations of the pork have been

described in Yang et al. (2017).

Genotypes

Of the 1,037 crossbred individuals that had phenotypic records,

941-954 individuals (depending on the trait) had both phenotypes

and genotypes with a custom 61K (61,565 SNPs)4 Illumina SNP

panel (Table 2). Genotyping of CBs was performed by Delta

Genomics (Edmonton, AB, Canada) using Illumina

PorcineSNP60 V2 Genotyping Beadchip according to the

Illumina Infinium Assay (Illumina, Inc., San Diego, CA,

United States). Of the 891 purebred Duroc females that had

phenotypic records, 873-891 individuals (depending on the trait)

had both phenotypes and genotypes with a custom 50K

(50,703 SNPs) Illumina SNP panel (Table 2). Genotyping of

purebred pigs was performed by Neogen Corporation -

GeneSeek operations (Lincoln, Nebraska, NE, United States).

Based on the “proportion of genetic diversity” approach (Druet

et al., 2014), 60 Duroc boars were identified as key ancestors of the

PB population and DNA of these boars was used for sequencing.

Moreover, for 17 of the 891 purebred Duroc sows, genotypes from

the 660K SNP panel including 659,692 SNPs were available. We

used this set of individuals to assess potential increase in imputation

accuracy when using a two-step procedure. The two-step procedure

was from 50K to 660K to WGS, while in the one-step approach the

imputation was conducted from 50K to WGS directly.

Collection of deoxyribonucleic acid
samples, deoxyribonucleic acid
extraction, library preparation and next-
generation sequencing

Genomic DNA extraction from blood and tissue was carried

out using the Qiagen DNeasy extraction protocol (Qiagen,

2 The number of phenotypes vary per trait, ranging from 941 to 954 (See
Methods).

3 The number of phenotypes vary per trait, ranging from 873 to 891.
4 When we mentioned a medium-density SNP panel throughout the

manuscript, we meant 61K and 50K SNP panels.
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TABLE 1 List of pork color traits and their abbreviations.

Number Trait abbreviation Trait description

1 FCOLA Fat Minolta A*

2 FCOLB Fat Minolta B*

3 FCOLL Fat Minolta L*

4 QFCOLA Quadriceps femoris muscle Minolta A*

5 QFCOLB Quadriceps femoris muscle Minolta B*

6 QFCOLL Quadriceps femoris muscle Minolta L*

7 FMCOLA Fresh marbling color A* - longissimus dorsi

8 FMCOLB Fresh marbling color B* - longissimus dorsi

9 FMCOLL Fresh marbling color L* - longissimus dorsi

10 TMCOLA Thawed loin muscle Minolta A*

11 TMCOLB Thawed loin muscle Minolta B*

12 TMCOLL Thawed loin muscle Minolta L*

13 GMCOLA Ham gluteus medius Minolta A*

14 GMCOLB Ham gluteus medius Minolta B*

15 GMCOLL Ham gluteus medius Minolta L*

16 ICOLA Ham iliopsoas Minolta A*

17 ICOLB Ham iliopsoas Minolta B*

18 ICOLL Ham iliopsoas Minolta L*

TABLE 2 The descriptive statistics for 18 pork color traits: number of animals per trait (N), means, SD, minimum (Min.), andmaximum (Max.) values for
different datasets (CB, PB, and Combined dataset).

CB PB Combined dataset

Trait N Mean SD Min Max N Mean SD Min Max N Mean SD Min Max

FCOLA 941a 3.71 1.13 0.70 7.90 873 2.84 1.34 -0.40 7.30 1844 3.38 1.52 −0.40 19.20

FCOLB 953 18.31 1.48 11.70 24.40 885 10.84 1.75 6.00 17.20 1844 14.70 4.08 3.80 24.40

FCOLL 953 75.29 1.63 66.60 79.80 891 78.96 2.40 64.00 84.60 1844 77.06 2.74 64.00 84.60

QFCOLA 953 4.82 1.60 0.70 11.30 881 2.39 1.37 -1.00 6.70 1844 3.68 1.96 -1.00 13.40

QFCOLB 953 13.61 1.57 9.60 18.70 885 8.27 1.35 4.70 12.10 1844 11.04 3.04 4.70 18.70

QFCOLL 953 49.42 3.46 39.10 62.10 881 53.23 3.37 42.10 65.50 1844 51.27 4.04 36.50 68.90

FMCOLA 953 6.07 1.47 2.00 11.48 891 4.58 1.12 1.08 8.75 1844 5.35 1.51 1.08 11.48

FMCOLB 953 14.91 1.69 10.38 21.90 891 9.38 1.24 5.95 13.90 1844 12.24 3.14 5.95 21.90

FMCOLL 953 48.46 2.64 39.88 60.50 891 48.15 2.53 41.43 55.73 1844 48.31 2.59 39.88 60.50

TMCOLA 950 7.65 1.19 3.39 11.39 - - - - - - - - - -

TMCOLB 950 2.70 1.29 -1.54 7.48 - - - - - - - - - -

TMCOLL 950 44.26 3.11 31.99 55.88 - - - - - - - - - -

GMCOLA 953 6.74 1.20 2.40 10.70 891 5.46 1.27 1.20 9.60 1844 6.12 1.39 1.20 10.70

GMCOLB 953 13.63 1.11 9.60 17.30 891 8.91 1.13 5.40 12.70 1844 11.35 2.61 5.40 17.30

GMCOLL 953 45.31 2.45 38.00 54.20 891 47.50 2.65 39.30 57.20 1844 46.37 2.77 38.00 57.20

ICOLA 953 19.30 1.73 12.00 24.10 891 15.97 2.17 8.80 23.00 1844 17.69 2.59 1.60 24.10

ICOLB 953 13.61 1.57 9.60 18.70 891 11.33 1.50 5.50 15.80 1844 12.51 1.91 5.50 18.70

ICOLL 953 42.54 2.86 35.10 51.80 891 44.04 3.08 34.70 55.60 1844 43.26 3.06 34.70 55.60

aThe total number of PBs, with both phenotypes and genotypes were 891. However, for these traits, there were extreme phenotypic records which were removed in the analyses to check if

the GWAS, results would improve. Due to little changes in GWAS, results for PBs, those removed individuals were added to the analyses of combined CBs, and PBs. CB, crossbred; PB,

purebred; N, number of animals; SD, standard deviation; Min, minimum; Max, maximum.
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Mississauga, ON) by Delta genomics. Extracted DNA was

quantified using the Qubit dsDNA HS Assay (Life

Technologies, Burlington, ON). 100ng to 1ug of gDNA was

sheared using the Covaris S2 focused sonicator (Covaris Inc.)

to achieve a fragment size ranging from 300 to 400bp. Sheared

DNA fragments were used for library preparation according to

respective library preparation protocol that were compatible with

Illumina next generation sequencing platform. Quality check and

library preparations were done by NEOGEN Canada

(Edmonton, AB, Canada). Sequencing was done by McGill

University and Génome Québec Innovation Centre (Montréal,

Québec, Canada). Libraries were normalized and pooled and

then denatured in 0.05N NaOH and neutralized using

HT1 buffer. ExAMP was added to the mix following the

manufacturer’s instructions. The pool was loaded at 200pM

on a Illumina cBot and the flowcell was run on a HiSeq X for

2 × 151 cycles (paired-end mode). A phiX library was used as a

control and mixed with libraries at 1% level. The Illumina HiSeq

Control Software was HCS HD 3.4.0.38, and the real-time

analysis program was RTA v. 2.7.7. Program

bcl2fastq2 v2.20 was then used to de-multiplex samples and

generate fastq reads.

Sequence depth, read trimming,
alignment, and variant calling

Sequence reads trimming and adapter clipping was

performed using Trimmomatic algorithm 0.38 (Bolger et al.,

2014). The average sequence coverage was computed using depth

in VCFTOOLS (Danecek et al., 2011) and was 21.75 across the

60 sequenced animals (Supplementary Table S1). Sequence reads

alignment was conducted using the current pig reference genome

(Sus scrofa 11.1 (https://uswest.ensembl.org/Sus_scrofa/Info/

Index), www.ensembl.org/biomart/martview) with BWA mem

(BWA 0.7.17) using the default parameters (Li and Durbin,

2009). The alignment SAM files were converted to BAM

format using Samtools-0.1.19 (Li et al., 2009). Next, BAM files

were sorted and indexed by Samtools 1.8 (Li et al., 2009).

Potential PCR duplicates were removed by tool

MarkDuplicates from Picard v2.18.2 (http://broadinstitute.

github.io/picard/). Variants (SNPs and insertion-deletions

(INDELs)) were called using GenomeAnalysisToolKit-3.8-1-0

(GATK) (McKenna et al., 2010). Tool HaplotypeCaller was

used for variant calling. Default parameter settings of

HaplotypeCaller were used for variant calling, except for the

following parameters: minimum base quality required to

consider a base for calling equal to 20 and the minimum

phred-scaled confidence threshold for variant calling equal to

20. Base quality recalibration was performed according to GATK

best practices guidelines using tools BaseRecalibrator and

PrintReads (McKenna et al., 2010; van der Auwera et al.,

2013). Finally, BAM files were pooled for variant calling. In

the 60 Duroc males, the total numbers of SNPs and INDELs

called were more than 19 and more than five million,

respectively.

Quality control of called sequenced
variants

During variant calling, the variants were filtered using

parameters recommended by GATK Best Practices (DePristo

et al., 2011). Some other filters were applied to choose

sequencing variants for GWAS analyses. Due to the

complexity of imputation for INDELS, we only used SNPs

as variants in this study. The following filters were applied to

SNPs before subsequent analyses. A SNP was excluded with:

the strand bias p-value < 0.01 calculated with Fischer’s exact

test, two or more alternative alleles, a MAF <0.025, missing

observation of the alternative allele on either the forward or

reverse reads, being located within 4 bp of each other, being

located within 5 bp of an INDEL, a mapping quality (MQ)

score of <40, a phred score <20, a read depth (DP) of less than

10% of median or more than median plus 3 standard deviation

of read depth, a quality depth (QD) < 5. We also removed sex

chromosomes. After filtering, 11, 946, 148 SNPs on autosomes

(SSC1 to SSC18) remained for the 60 animals across the

whole-genome (Table 3).

Quality control of 50K, 61K, and 660K SNP
panel

Quality control of the 50K (for 891 PBs), 61K (for 954 CBs)

and 660K (for 17 PBs) were as follows: SNPs were excluded if

they were duplicated, if they had a MAF <0.01. Furthermore,

SNPs with genotype call rate <0.95 and SNPs with unknownmap

positions were removed. The quality control of genotypes was

done for each trait separately, because the number of animals

with both genotypes and phenotypes differ among the pork color

traits. The numbers of SNPs after these exclusions are indicated

in Table 4.

Imputation to whole-genome sequence

Beagle V5.0 (Browning et al., 2018) was used for imputation

of 61K genotypes of CBs, 50K genotypes of PBs, and 660K

genotypes of 17 purebred Duroc sows to the WGS

(60 sequenced pigs). Default parameter settings of Beagle

V5.0 were used, except for number of iterations for genotype

phasing (default value was 12, but we used 25), and for effective

population size (default value was 1,000,000 which is appropriate

for a large population such as the human population, but we used

100 for our pig populations which helps with accurate
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imputation of small populations (Browning et al., 2018)).

Pedigree information was not used for imputation.

Evaluation of imputation accuracy is needed particularly for SNPs

with lowminor allele frequency (MAF) which are abundant inWGS.

Evaluation of imputation accuracy was done in two ways. The first

measure of imputation accuracy per SNPwas obtained from the allelic

DR2 generated by Beagle, which is defined as the squared correlation

between the expected dose (i.e., P (AB) + 2*P(BB)) and the true dose

(Browning et al., 2018). Second, we were interested in imputation

accuracy per pig (animal-specific imputation accuracy). True and

imputed genotypes are needed to evaluate animal-specific imputation

accuracy. Of the 60 sequenced pigs, 61K genotypes were available for

55 individuals which were used for assessing the animal-specific

imputation accuracy using leave-one-out cross validation.

Imputation accuracy was defined as the correlation between true

and the most likely imputed genotypes. The leave-one-out cross

validation analyses were performed using both Beagle V5.0 and

FImpute (Sargolzaei et al., 2014) to compare the performance of

the two programs. Due to large computation time, animal-specific

imputation accuracy was assessed with the data for SSC18 only. For

FImpute, the default values on all parameters were used, except for the

error rate threshold to find progeny-parent mismatches, shrink factor

for sliding windows, and amount of overlap for sliding windows. The

values used for progeny-parent mismatches, shrink factor, and

amount of overlap for sliding windows were 0.03, 0.15, and 0.65,

respectively.

To assess whether a two-step imputation strategy would

improve imputation accuracy compared with a one-step

imputation strategy, particularly for low MAF SNPs

(Kreiner-Møller et al., 2014; Lent et al., 2016; Bouwman

et al., 2018), we performed imputation, using Beagle

V5.0 only, from 50K SNP panel to WGS with 60 Duroc

boars (one-step imputation strategy) and from 50K SNP

panel to 660K SNP panel to WGS with 60 Duroc boars

(two-step imputation strategy).

Quality control of imputed genotypes

Imputed genotypes were filtered based on the imputation

reliability (allelic DR2) produced by Beagle (Table 4). The

chosen cut-off threshold for filtrations of allelic DR2 was 0.8.

TABLE 3 Total number of SNPs, chromosome length, and average imputation accuracy (allelic DR2) per chromosome after filtrations, and before and
after imputation filtration criteria (allelic DR2) in crossbreds (CBs) and purebreds (PBs).

CB PB

Before filtering on
allelic DR2

After filtering allelic
DR2 > 0.8 on CBs

Before filtering on
allelic DR2

After filtering allelic
DR2 > 0.8 on PBs

Chromosome Length
(Mb)

Total number of
SNPs

Mean
allelic DR2

Total number of
SNPs

Mean
allelic DR2

Total number of
SNPs

Mean
allelic DR2

Total number of
SNPs

Mean
allelic DR2

SSC1 274 945,428 0.83 641,461 0.92 945,428 0.91 831,268 0.98

SSC2 152 791,977 0.81 509,047 0.92 791,977 0.88 668,474 0.97

SSC3 133 660,517 0.80 402,300 0.91 660,517 0.90 572,923 0.97

SSC4 131 740,467 0.84 517,636 0.92 740,467 0.92 669,685 0.97

SSC5 105 544,278 0.77 285,211 0.90 544,278 0.89 466,844 0.96

SSC6 171 824,770 0.79 475,917 0.91 824,770 0.89 696,109 0.96

SSC7 122 679,812 0.81 432,486 0.91 679,812 0.91 596,197 0.97

SSC8 139 866,293 0.81 534,659 0.91 866,293 0.92 774,027 0.97

SSC9 140 728,874 0.79 435,857 0.91 728,874 0.90 626,371 0.97

SSC10 69 579,468 0.79 341,971 0.90 579,468 0.88 483,451 0.95

SSC11 79 529,008 0.79 311,109 0.91 529,008 0.90 465,485 0.96

SSC12 62 429,775 0.79 244,130 0.90 429,775 0.88 359,175 0.95

SSC13 208 872,065 0.82 564,990 0.91 872,065 0.92 781,689 0.97

SSC14 142 755,463 0.81 480,616 0.92 755,463 0.91 660,825 0.97

SSC15 140 708,954 0.82 463,330 0.91 708,954 0.92 636,278 0.97

SSC16 80 523,910 0.80 320,423 0.91 523,910 0.91 465,914 0.96

SSC17 63 459,174 0.77 254,861 0.91 459,174 0.89 384,099 0.96

SSC18 56 305,915 0.79 177,266 0.92 305,915 0.91 270,808 0.97

Total/
Average

126 11,946,148 0.80 7,393,270 0.91 11,946,148 0.90 10,409,622 0.97

CB, crossbred; PB, purebred; SNP, single nucleotide polymorphism; Mb, megabyte; SSC, sus scrofa.
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The reason for adapting a cut-off threshold of 0.8 was to

achieve a balance between the average imputation reliability

and the number of excluded SNPs. Consequently, of the

11,946,148 SNPs used for imputation, after exclusion of

SNPs with imputation reliability less than 0.8,

7,393,270 and 10, 409, 622 SNPs remained for further

analyses for CBs and PBs, respectively (Table 3).

Variance component estimates

Variance components, additive genetic variance (σ2A) and

residual variance (σ2E), were estimated via the restricted

maximum likelihood (REML) using ASReml program V4.0

(Gilmour et al., 2015) using a best linear unbiased prediction

(BLUP) animal model as follows:

y � 1μ + Xb + Zaa + e (1)

where y is the vector of phenotypic records, 1 is a vector of

ones, μ is overall mean of phenotypic records, b is a vector of

fixed class effects (the significant fixed effects for each trait is

given in Table 5), X is a design matrix corresponding to the fixed

effects, a is a vector of breeding values considered as random

effects, Za is an incidence matrix that related phenotypic records

to breeding values, and e is a vector of random residual effects. It

is assumed that a ~ N(0,Aσ2a) and e ~ N(0, Iσ2e) where σ2a and
σ2e are the additive genetic and residual variances, respectively,

and A is the numerator relationship matrix based on pedigree.

Moreover, a narrow-sense heritability (h2) was calculated as the

division of the additive genetic variance by the total phenotypic

variance as shown in Table 6. Standard errors of the variance

components were also estimated by ASReml.

When the CBs and PBs were combined for variance

component estimations, the heterogeneous genetic and

residual variances were fitted in the model. Since CBs

contained both males and females individuals, while PBs

contained only female individuals, first an animal model

was fitted to check the difference between the residual

variances in CB and PBs as well as the difference between

the residual variances between the male and female

individuals. For all traits, the residual variances were

different between the two populations as well as between

the two sexes. Then, the first model was expanded to check

if there was a difference between the genetic variances between

the two populations (CBs versus PBs).

TABLE 4 Number of individuals and SNPs used for GWAS after quality control for different datasets (61K genotypes of CBs, 50K genotypes of PBs, and
Combined dataset).

CB PB Combined dataset

Trait 61K N Imputed WGS 50K N Imputed WGS 61K + 50K N Imputed WGS

FCOLA 44,098 941a 7,376,594 35,775 873a 10,094,644 29,349 1,844 10,331,074

FCOLB 44,068 953 7,376,594 35,799 885a 10,090,482 29,349 1,844 10,331,074

FCOLL 44,068 953 7,377,298 35,782 879a 10,096,911 29,349 1,844 10,331,074

QFCOLA 44,070 953 7,376,594 35,801 882a 10,095,407 29,349 1,844 10,331,074

QFCOLB 44,068 953 7,376,594 35,809 885a 10,097,161 29,349 1,844 10,331,074

QFCOLL 44,068 953 7,376,594 35,809 881a 10,097,982 29,349 1,844 10,331,074

FMCOLA 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

FMCOLB 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

FMCOLL 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

TMCOLA 44,103 950 7,377,387 - - - - - -

TMCOLB 44,103 950 7,377,387 - - - - - -

TMCOLL 44,103 950 7,377,387 - - - - - -

GMCOLA 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

GMCOLB 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

GMCOLL 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

ICOLA 44,070 953 7,376,594 35,809 891 10,099,416 29,349 1,844 10,331,074

ICOLB 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

ICOLL 44,070 953 7,376,594 35,809 891 10,099,578 29,349 1,844 10,331,074

Min 44,068 950 7,376,594 35,775 891 10,090,482 29,349 1,844 10,331,074

Max 44,103 954 7,377,387 35,809 891 10,099,578 29,349 1,844 10,331,074

aThe total number of PBs, with both phenotypes and genotypes were 891. However, for these traits, there were extreme phenotypic records which were removed in the analyses to check if

the GWAS, results would improve. Due to little changes in GWAS, results for PBs, those removed individuals were added to the analyses of combined CBs, and PBs. CB, crossbred; PB,

purebred; WGS, whole-genome sequence; N, number of animals.

Frontiers in Genetics frontiersin.org07

Heidaritabar et al. 10.3389/fgene.2022.1022681

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1022681


For parameter estimation, the data size presented in Table 2

was used, which ranges from 941 (FCOLA) to 954 (QFCOLB) for

CBs, from 873 (FCOLA) to 891 for most of the traits. For

Combined dataset, the total number of individuals was

1,844 for all traits. Relevant fixed effects fitted in the mixed

model analysis for the 18 color traits are in Table 5.

Genome-wide association analyses

The model used for GWAS was a single-marker mixed linear

associationmodel (MLMA,mixed linear model based association

analysis) implemented in GCTA version 1.92.1beta6 (Yang et al.,

2011; Yang et al., 2014). The statistical model was as follows:

ŷ � 1μ + Zu + g + e (2)

Where ŷ was the vector of phenotypic records corrected for

fixed effects (only significant fixed effects was used for correcting

each trait, See Table 5). u was the additive effect (fixed effect) of

the candidate SNP to be tested for association, Z was a vector

containing the SNP genotype indicator variable coded as 0 (AA),

1 (AB), and 2 (BB). g was a vector of random polygenetic effects,

and ewas a vector of random residual effects. It was assumed that

g ~ N(0,Gσ2g) and e ~ N(0, Iσ2e), where σ2g and σ2e were the

genetic and residual variances, respectively. G was the genomic

relationship matrix based on genotypes, constructed using

GCTA software tool (Yang et al., 2011). GWAS was done

using both medium-density panels and WGS data.

Significance testing

The significance threshold of SNP effects was assessed by

using a false discovery rate (FDR) of 0.1 (Benjamini and

Hochberg, 1995). Such threshold is needed to reduce the

number of unacceptable false positives due to multiple

testing. To account for population structure, the GWAS

p-values for each trait were corrected for their corresponding

genomic inflation factor (here called lambda) (Yang et al.,

2011). Lambda was used for evaluating the bias. Lambda

values for each data panel (medium-density and WGS) were

computed as the median of the observed chi squared test

statistics divided by the expected median of the

corresponding chi squared distribution assuming 1 degree of

freedom. p-values were used to compute the chi square test

statistics. Moreover, quantile-quantile (qq) plot for each trait

was used to evaluate the inflation of p-values by comparing the

genome wide distribution of -log10 of the p-values with the

TABLE 5 Significance of the fixed effects (sex, slaughter date, room, pen, birth year-month, and population) included in themixedmodel for different
datasets (CB, PB, and Combined dataset) for the pork color traits.

CB PB Combined dataset

Trait Sex Slaughter
date

Room Pen Birth
year-
month

Slaughter
date

Room Pen Birth
year-
month

Sex Slaughter
date

Room Pen Birth
year-
month

population

FCOLA ** *** NS ** NS * NS NS * *** *** NS NS NS **

FCOLB *** *** NS NS NS *** NS NS *** *** *** NS NS NS ***

FCOLL *** NS NS *** *** NS * NS *** * *** NS NS NS ***

QFCOLA NS NS NS NS *** NS NS NS *** NS *** NS NS NS ***

QFCOLB NS *** NS NS *** NS *** ** *** NS *** NS NS NS ***

QFCOLL NS ** NS NS NS NS NS * NS NS *** NS * NS ***

FMCOLA *** NS ** NS *** NS NS NS *** *** *** NS NS NS ***

FMCOLB * NS NS NS *** *** NS NS *** ** *** NS NS NS ***

FMCOLL NS *** NS NS * NS NS NS *** NS *** NS NS ** NS

TMCOLA *** *** NS NS *** - - - - - - - - - -

TMCOLB * *** NS NS *** - - - - - - - - - -

TMCOLL NS *** NS NS *** - - - - - - - - - -

GMCOLA NS *** * NS NS *** NS NS *** *** *** ** NS NS *

GMCOLB NS *** NS NS *** *** NS NS NS * *** NS NS NS ***

GMCOLL NS *** NS * * *** NS NS NS * *** NS NS NS ***

ICOLA NS *** NS ** *** *** NS NS *** * *** NS NS NS ***

ICOLB NS *** NS NS NS *** NS NS NS NS *** NS NS NS ***

ICOLL NS *** NS NS NS NS *** NS *** *** *** * NS NS ***

CB, crossbred; PB, purebred; NS: non-significant. ***p < 0.01; **p < 0.05; *p < 0.1.
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expected median of the corresponding chi squared distribution

assuming a degree of freedom of one.

Linkage disequilibrium decay

LD decay pattern between pairwise SNPs (imputed sequence)

was evaluated for both CBs and PBs. The pairwise LD values (r2,

defined as the correlation between alleles of two SNPs harbored

at different loci (Hill & Robertson, 1968) between SNP pairs were

computed for SNPs located within 2000 Kb windows and shorter

(Figure 1). Due to large computation time, LD analyses were only

done for SSC1.

Quantitative trait loci definition

For all traits, we defined the quantitative trait loci (QTL)

regions according to the definition described by van den Berg

et al. (2019) as follows. First, the SNPs on each chromosome were

TABLE 6 Variance component estimates (additive and residual variances), and estimates of total heritability for 18 pork color traits for different
datasets (CB, PB, and Combined dataset).

CB PB Combined dataset

Trait σ2A (se) σ2E (se) h2 (se) σ2A (se) σ2E (se) h2 (se) σ2A (se) σ2E (se) h2 (se)

CB PB CB PB CB PB

FCOLA 0.37 (0.12) 1.07
(0.10)

0.26
(0.08)

0.33 (0.18) 2.39 (0.19) 0.12 (0.06) 0.33
(0.11)

0.32
(0.17)

1.03
(0.11)

2.15
(0.22)

0.24
(0.08)

0.13
(0.07)

FCOLB 0.41 (0.10) 0.64
(0.07)

0.39
(0.08)

0.48 (0.18) 1.61 (0.16) 0.23 (0.08) 0.39
(0.10)

0.39
(0.15)

0.57
(0.08)

1.46
(0.17)

0.40
(0.09)

0.21
(0.08)

FCOLL 0.54 (0.30) 1.52
(0.19)

0.26
(0.13)

0.56 (0.35) 4.84 (0.37) 0.10 (0.06) 0.43
(0.15)

0.66
(0.36)

1.4 (0.15) 4.23
(0.42)

0.23
(0.08)

0.13
(0.07)

QFCOLA 1.00 (0.23) 1.31
(0.16)

0.43
(0.08)

0.72 (0.22) 1.55 (0.18) 0.32 (0.09) 0.85
(0.21)

0.77
(0.22)

1.37
(0.17)

1.51
(0.26)

0.38
(0.08)

0.34
(0.09)

QFCOLB 0.46 (0.16) 1.55
(0.13)

0.23
(0.07)

0.12 (0.10) 1.59 (0.12) 0.07 (0.06) 0.47
(0.15)

0.10
(0.09)

1.56
(0.16)

1.56
(0.21)

0.23
(0.07)

0.06
(0.06)

QFCOLL 4.35 (1.04) 7.68
(0.79)

0.36
(0.08)

1.19 (0.81) 12.09 (0.91) 0.09 (0.06) 5.07
(1.13)

1.30
(0.83)

8.30
(0.98)

14.32
(1.34)

0.38
(0.07)

0.08
(0.05)

FMCOLA 0.86 (0.19) 0.94
(0.13)

0.48
(0.09)

0.46 (0.13) 0.77 (0.10) 0.38 (0.09) 0.67
(0.17)

0.44
(0.12)

1.06
(0.14)

0.81
(0.17)

0.39
(0.08)

0.35
(0.10)

FMCOLB 0.52 (0.15) 1.14
(0.11)

0.31
(0.08)

0.20 (0.09) 0.92 (0.09) 0.18 (0.08) 0.46
(0.15)

0.16
(0.08)

1.18
(0.13)

1.07
(0.16)

0.28
(0.08)

0.13
(0.07)

FMCOLL 2.73 (0.63) 2.70
(0.41)

0.50
(0.09)

1.06 (0.45) 4.30 (0.41) 0.20 (0.08) 3.65
(0.75)

1.08
(0.46)

2.47
(0.52)

4.35
(0.61)

0.60
(0.09)

0.20
(0.08)

TMCOLA 0.62 (0.13) 0.48
(0.08)

0.57
(0.09)

- - - - - - - - -

TMCOLB 0.34 (0.09) 0.72
(0.07)

0.32
(0.08)

- - - - - - - - -

TMCOLL 1.89 (0.53) 4.28
(0.41)

0.31
(0.08)

- - - - - - - - -

GMCOLA 0.63 (0.14) 0.72
(0.09)

0.47
(0.08)

0.67 (0.17) 0.88 (0.13) 0.43 (0.10) 0.61
(0.14)

0.58
(0.16)

0.77
(0.11)

0.99
(0.17)

0.44
(0.08)

0.37
(0.10)

GMCOLB 0.20 (0.07) 0.78
(0.06)

0.20
(0.06)

0.29 (0.09) 0.69 (0.08) 0.29 (0.09) 0.17
(0.06)

0.29
(0.09)

0.85
(0.07)

0.86
(0.12)

0.17
(0.06)

0.25
(0.08)

GMCOLL 1.53 (0.44) 3.98
(0.36)

0.28
(0.07)

2.00 (0.62) 4.43 (0.51) 0.31 (0.09) 1.47
(0.42)

2.08
(0.63)

4.16
(0.42)

4.75
(0.71)

0.26
(0.07)

0.31
(0.09)

ICOLA 0.79 (0.21) 1.77
(0.16)

0.31
(0.07)

0.95 (0.38) 3.40 (0.34) 0.22 (0.08) 0.57
(0.18)

1.07
(0.39)

1.71
(0.17)

3.01
(0.41)

0.25
(0.07)

0.26
(0.09)

ICOLB 0.44 (0.15) 1.55
(0.13)

0.22
(0.07)

0.19 (0.12) 1.62 (0.12) 0.10 (0.06) 0.45
(0.15)

0.26
(0.14)

1.57
(0.15)

1.62
(0.22)

0.22
(0.07)

0.14
(0.07)

ICOLL 2.61 (0.62) 3.53
(0.43)

0.43
(0.08)

1.29 (0.61) 6.81 (0.60) 0.16 (0.07) 2.37
(0.60)

1.11
(0.57)

3.31
(0.47)

6.16
(0.76)

0.42
(0.09)

0.15
(0.08)

CB, crossbred; PB, purebred; σ2A, additive genetic variance; σ
2
E, residual variance; h

2, narrow-sense heritability; se: standard error.
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ranked based on their -log10 p-values. Secondly, starting with the

SNPs with the largest -log10 p-value, all significant SNPs that

exceeded the FDR of 0.1 and surrounding SNPs within a 0.5 Mb

region to the left and right of the SNP were assigned to that QTL

region. These two steps were repeated until all significant SNPs

were assigned to a QTL region. A distance of 0.5 Mb was chosen

as the average LD of commercial pig lines decreases to less than

0.3 (Figure 1) when the SNPs are more than 0.5 Mb apart.

Variance explained by significant variants

The percentage of phenotypic variance explained by each

SNP was estimated as: 2*p*q*a2

phenotypic variance, where p and q are the allele

frequencies of major and minor alleles, and a is the estimated

allele substitution effect. It should be noted that for the

Combined dataset, the average of phenotype variance of

crossbreds and purebreds was used for computation of

variance explained.

Post-genome-wide association studies
analyses

After GWAS, candidate gene identification and functional

annotation for the significant SNPs were obtained using

Ensemble annotation of Sus scrofa 11.1 (https://www.ensembl.

org/info/data/biomart/). Genomic regions associated with the

pork color traits were identified using a 1 Mb window (up- and

down-stream of significant peak). The ClueGo plug-in (Bindea

et al., 2009) and Cytoscape program (Shannon et al., 2003) were

used to group and visualize the genes according to the biological

processes in which they are involved in. The ClueGO plug-in uses

both Gene Ontology (GO) terms and KEGG/BioCarta pathways

to develop a GO/pathway network. Furthermore, ClueGO

calculates enrichment and depletion tests for groups of genes

based on the hypergeometric distribution and corrects the

p-values for multiple testing. The Sus scrofa database (http://

ftp.ensembl.org/pub/current_fasta/sus_scrofa/dna/) was used in

pathway and biological processes investigation. We selected the

5th to the 10th levels of the GO hierarchy and a kappa score of 0.4

(Bindea et al., 2009). When no biological functions or pathways

were found, these parameters were relaxed to be less stringent.

Results

Total number of pigs used for GWAS, and the descriptive

statistics for 18 pork color traits including the minimum,

maximum, mean and standard deviation of traits for different

datasets (CB, PB and combined CBs and PBs5) are in Table 2.

Because of the quality control during and after variant calling on

WGS, not all SNPs on the 61K, 660K, and 50K SNP panels were

present in the WGS, i.e., for the CBs, 26,585 SNPs of the 61K

SNPs and 430,404 SNPs of the 660K SNPs were present, and for

the PBs, 34,733 SNPs of the 50K SNPs were present in the WGS.

FIGURE 1
Linkage disequilibrium (LD, r2) decay for SSC1 of CBs and PBs as a function of inter-SNP distance. Physical (genetic) distance is measured in base
pair (bp).

5 Through the manuscript, we call the combination of CBs and PBs as
Combined dataset.
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Population structure

Supplementary Figure S1 demonstrates (Supplementary

Figure S1) population structure among the CBs (n = 954) and

PBs (n = 891) populations, which was computed in Plink using

the principal component analysis (PCA) procedure. The

common SNPs between 61K and 50K (~30K) were used for

plotting. The blue color shows the PB animals and the red color

shows CB pigs. The CB individuals are dispersed across the plot.

Minor allele frequency distribution

The distribution of MAF from the 61K and 50K SNP panels

were uniform, whereas the distribution of MAF from WGS was

U-shaped with a substantial proportion of SNPs with small MAF

values (approximately 19% of SNPs had aMAF lower than 0.025)

(Supplementary Figure S2A). MAF distribution of sequence

SNPs used for downstream analyses, after excluding the

MAF <0.025, is given in Supplementary Figure S2B. Average

MAF across the 28 autosomes before excluding MAF <0.025 was
0.28. After filtration of MAF with 0.025 cut-off threshold, the

average MAF was 0.33.

Evaluation of accuracy of imputation

The average allelic DR2 from the 61K and 50K SNP panels to

sequence imputation before any filtration was 0.80 and 0.90 across all

chromosomes, for CBs and PBs, respectively (Table 3). After filtration

of allelic DR2< 0.8, the average allelic DR2 from the 61K and 50K SNP

panels to sequence imputation across all chromosomes was 0.91 for

CBs and 0.97 for PBs (Table 3). The number of SNPs before and after

allelic DR2
filtration is given in Table 3. Beagle DR2 varied between the

CBs and PBs and also among the 18 chromosomes. For CBs, the

smallest and largest Beagle DR2 were obtained for SSC5 (0.77) and

SSC4 (0.84), respectively. For PBs, the smallest Beagle DR2 were

obtained for SSC2 and SSC12 (0.88) and the largest Beagle DR2 were

obtained for SSC4, 8, 13, and 15 (0.92). Across all chromosomes, the

average allelic DR2 was larger for PBs than CBs.

The distribution of allelic DR2 against MAF for CBs and PBs

are shown in Figure 2. As expected, the imputation accuracy was

lower for SNPs with lower MAF, and increased with MAF. The

most pronounced increase in imputation accuracy was for MAF

from the 0.01 to 0.10 for CBs and from 0.01 to 0.05 for PBs

(Figure 2). For MAF larger than 0.10 for CBs and 0.05 for PBs,

Beagle allelic DR2 reached a plateau at about 0.15 for both CBs

and PBs. When we performed filtration on Beagle allelic DR2,

most SNPs with a very lowMAF (<0.01) were removed. Also, the

average imputation accuracy was higher for PBs compared with

CBs, which is most likely due to the higher genetic relationships

between the sequenced pigs (60 Duroc males) and the PBs

(Duroc females) compared with CBs. Moreover, CBs receive

alleles from two other purebred parental lines and these lines are

not represented in the reference panel for imputation.

The average animal-specific imputation reliability across the

55 sequenced PBs (only 55 individuals were both genotyped and

sequenced) for SSC18 was 0.94 using Beagle V5.0 and 0.91 using

FImpute (Supplementary Figure S3). Since the imputation

accuracies produced by Beagle V5.0 were larger than FImpute

for all analyses, be it only slightly, we used the imputed data from

Beagle V5.0 in all subsequent analyses.

Two-step imputation accuracy

For all chromosomes, the mean imputation accuracy (Beagle

allelic DR2) was higher (0.90) for one-step imputation approach

compared with the two-step imputation approach (0.85)

(Supplementary Figure S4). After filtering Beagle allelic DR2 <
0.8, the mean imputation for the two-step approach was slightly

larger than those obtained from the one-step procedure

(Supplementary Figure S4). Figure 3 compares the imputation

accuracy (Beagle allelic DR2 > 0.8) in one-step (50K toWGS) and

two-step imputation (50K to 660K to WGS) procedures, which

are plotted against MAF. As shown, the imputation accuracy of

low MAF SNPs (MAF <0.02) remains challenging. The average

allelic DR2 across the genome was 0.996 for one-step approach

and 0.985 for two-step approach. Due to very small difference in

imputation accuracies between the two approaches, we

performed the GWAS analyses only for the imputed variants

from the one-step method.

Variance component estimates

Variance components and heritability estimates obtained

from different datasets (CBs, PBs, and Combined dataset) for

each color trait are in Table 6. Generally, the heritability estimates

were low to high across the 18 meat color traits, and ranged from

0.20 ± 0.06 (GMCOLB) to 0.57 ± 0.09 (TMCOLA) for CBs, from

0.07 ± 0.06 (QFCOLB) to 0.43 (0.10) (GMCOLA) for PBs. When

the Combined dataset was used, since the heterogeneous genetic

and residual variances were fitted in the model, the heritability

for CBs and PBs were estimated by the model separately and the

heritabilities ranged from 0.17 ± 0.06 for GMCOLB to 0.60 ±

0.09 for FMCOLL in CBs and from 0.08 ± 0.05 for QFCOLL to

0.37 (0.10) GMCOLA in PBs.

Genome-wide association studies for pork
color traits

Putative family stratifications were accounted for the GWAS

analyses by incorporating the full genomic covariance among

animals. Lambda ranged from 0.77 for ICOLB in Combined
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dataset (61K CBs plus 50K PBs) to 1.00 for FMCOLB in

sequenced PBs, and the mean lambda across all traits was

0.91 (results not shown), suggesting that any potential bias

and any major effect of population stratification was taken

into account in the GWAS analyses. For all traits for which

the QTL regions were found and for all datasets (CBs, PBs, and

Combined dataset), lambda increased slightly as SNP density

increased (Table 7). This shows that the inflation of p-values is

lower when WGS data was used compared with the medium-

density SNP panel.

For most color traits (16 color traits for CBs, 12 color

traits for PBs, and 11 color traits for Combined dataset), zero

associated regions were detected at FDR of 0.1. Total number

of significant SNPs, number of QTL regions, FDR threshold,

and genomic inflation factor values are given in Table 7.

Generally, more QTL were detected for traits of PBs than

those of CBs at FDR = 0.1. However, when we used a more

relaxed FDR threshold >0.1 and up to 0.4, suggestive

significant SNPs were detected for some traits in different

datasets, i.e., for FCOLA (PBs), FCOLL (PBs), QFCOLA

(CBs, PBs, and Combined dataset), FMOCLA (CBs and

PBs), FMOCLB (CBs), FMCOLL (Combined dataset),

GMCOLA (PBs and Combined dataset), GMCOLB (PBs),

GMCOLL (CBs), and ICOLB (PBs) (results not shown). For

CBs, significant SNPs were identified for TMCOLA and

GMCOLB (Table 7; Figure 4), and for PBs, the associated

SNPs were found only for FMCOLB, FMCOLL, and ICOLB

(Table 7; Figure 5). For the Combined dataset, we found the

associated variants for more traits including FMCOLA,

FMOCLB, GMCOLB, and ICOLB (Table 7; Figure 6).

For all traits and using the medium-density panels, 22 QTL

regions containing 71 significant SNPs at a genome-wide FDR of

0.1 were detected, whereas 58 QTL regions comprising

16,261 significant SNPs were detected at the same significance

level using WGS data (Table 7; Figures 4–6). The twenty two

regions detected by medium-density panels overlaped with those

detected by WGS. The number of QTL regions (2 using 61K and

2 using WGS) and significant SNPs (3 using 61K and 579 using

WGS) were lowest for CBs using both SNP panel densities (61K

and WGS), while the number of QTL regions (11 using 50K and

37 using WGS) and significant SNPs (11,352 using WGS) were

highest when the Combined dataset was used for GWAS for both

panel densities, except for the number of significant SNPs

detected by PBs using 50K data which was highest (41 SNPs)

compared with CBs (3 SNPs) and combined data (27 SNPs)

(Table 7).

FIGURE 2
Boxplot showing the imputation accuracy (allelic DR2) to whole-genome sequence (WGS) versusminor allele frequency (MAF) for CBs and PBs.
The x-axis represents different classes of MAF (ranging from 0.01 to 0.5, with the steps of 0.01), and y-axis shows the imputation accuracies. The red
and black dots are the mean and median of imputation accuracies across individuals in each MAF class.
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Generally, the number of QTL regions increased with

increasing panel density mainly for PBs and the Combined

dataset, and did not change for CBs. For instance, for

GMCOLB, the number of detected QTL region was only 1,

regardless of what SNP density (61K or WGS) were used. For

PBs, the additional QTL regions were located on SSC2 at

142.79–144.77 Mb and on SSC8 at 34 Mb, for FMCOLB, and

on SSC10 at 38.13–38.29 Mb for FMCOLL (Table 8). Of all the

new detected QTLs by WGS in PBs, the strongest new significant

QTL was identified on SSC10 for FMCOLL (Figure 5). For the

Combined dataset, the novel QTL regions identified by WGS

compared with the medium-density SNP panel are given in

Table 8 (also see Figure 6). Of all the new detected QTLs by

WGS, the strongest new significant QTLs were identified on

SSC1 for FMCOLA. Moreover, the total number of associated

SNPs increased by increasing SNP density from 61K or 50K to

WGS (Table 7; Figures 4–6). For example, it increased from 3 to

579 for CBs, from 41 to 4,330 for PBs, and from 27 to 11,352 for

the Combined dataset.

For all datasets (CBs, PBs, and Combined dataset) and for all

SNP panel densities (61K, 50K, and WGS), the majority of the

significant SNPs were on SSC15 (Figures 4–6). For WGS, most of

the significant SNPs were on SSC15 (93.17%), following by SSC5

(2.44%), and SSC2 (2.43%). The genomic location of the peak on

SSC15 (across the traits) was between 119.57 and 122.50 Mb and

between 119.56 and 123.56 for medium-density SNP panel and

WGS, respectively. The position of the majority of SNPs within

this window was the same between the medium-density and

WGS data. For medium-density SNP panels, of the 71 significant

SNPs, almost all of the significant SNPs were on SSC15 (~88%),

except for 9 significant SNPs. Those 9 SNPs were: five SNPs

detected by PBs for FMCOLL on SSC2 at 147.22–150.43 Mb,

1 SNP detected by the combined data for FMCOLA on SSC1 at

164.72 Mb, 1 SNP detected by the combined data for GMCOLB

on SSC2 at 144.95 Mb, and finally 2 SNPs detected by PBs for

TMCOLA on SSC5 at 9.41–9.44 Mb. Based on these results, using

the medium-density SNP panels, only a few new QTL regions

and SNPs were detected by Combined dataset compared with

BPs and CBs. However, using WGS data, many more new QTL

regions and SNPs were detected by only Combined dataset, and

not detected by PBs and CBs, suggesting that increasing both the

sample size and SNP density together improves identification of

associated genomic regions.

Besides the increase of the number ofQTL regions withWGS, the

percentage of the phenotypic variance explained by the most

significant SNPs also increased by WGS compared with medium-

FIGURE 3
Boxplot showing the imputation accuracy (allelic DR2) to whole-genome sequence (WGS) versusminor allele frequency (MAF) for PBs using a
one-step imputation procedure from 50K to WGS (A) and a two-step imputation procedure, from 50K to 660K to WGS (B). The x-axis represents
different classes of MAF (ranging from 0.01 to 0.5, with the steps of 0.01), and y-axis shows the imputation accuracies. The red and black dots are the
mean and median of imputation accuracies across individuals in each MAF class. Average DR2 across the genome is 0.966 and 0.985 for the
one-step and two-step imputation procedure, respectively.
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density panels (Figure 7). Figure 7 shows the distribution of the

percentage of phenotypic variance explained by the most significant

SNPs identified using both WGS and medium-density panels (50K)

for three pork color traits (FMCOLB, FMCOLL, and ICOLB) in PBs.

For these three traits, the number of SNPs that explained more than

two percent of phenotypic variance increased from 5 to 299 for

FMCOLB and from 0 to 321 for FMCOLL, and from 8 to 263 for

ICOLB, when WGS was used for GWAS compared with using 50K

TABLE 7 Descriptive statistics of results of the GWAS for the pork colors with detected associated regions in at least one of the datasets at FDR >0.1
(CBs, PBs, Combined dataset) using different SNP densities and imputed whole-genome sequence (WGS).

CB

61K WGS

Trait Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

TMCOLA 2 1 5.29 0.88 396 1 5.27 0.86

GMCOLB 1 1 6.09 0.90 183 1 5.68 0.91

Total number of
QTL/significant
SNPs

3 2 - - 579 2 - -

PB

50K WGS

Trait Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

FMCOLB 6 1 4.99 0.98 1,363 5 4.86 1.00

FMCOLL 16 6 4.36 0.91 2,034 12 4.70 0.94

ICOLB 19 2 4.27 0.96 933 2 4.98 0.98

Total number of
QTL/significant
SNPs

41 9 - - 4,330 19 - -

Combined Dataset

61K + 50K WGS

Trait Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

Number of
significant
SNPs

Number of
QTL
regions

Threshold Genomic
inflation
factor

FMCOLA 6 4 4.98 0.90 2,773 9 4.57 0.95

FMCOLB 5 2 4.90 0.93 2,645 12 4.60 0.96

GMCOLB 8 3 4.61 0.87 2,593 9 4.60 0.97

ICOLB 8 2 4.57 0.77 3,341 7 4.49 0.85

Total number of
QTL/significant
SNPs

27 11 - - 11,352 37 - -

Total number of
QTL/significant
SNPs for all datasets
(CBs, PBs, Combined
dataset)

71 22 - - 16,261 58 - -

CB, crossbred; PB, purebred; SNP, single nucleotide polymorphism; WGS, whole-genome sequence; QTL, quantitative trait loci.
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FIGURE 4
Associated regions detected byGWAS for crossbred pigs. Manhattan plots for: (A) TMCOLA and (B)GMCOLB using a 61Kmedium-density panel
(top Figure) and WGS (bottom Figure). The -log10 p-values of single-SNP association along the entire genome are plotted against the genomic
position of SNPs along the 18 autosome chromosomes. The SNPs associated with the corresponding traits exceeded the significance threshold at
false discovery rate (FDR) of 0.1, having significant effects.

FIGURE 5
Associated regions detected by GWAS for purebred pigs. Manhattan plots for: (A) FMCOLB, (B) FMCOLL, and (C) ICOLB using a 50K medium-
density panel (top Figure) and WGS (bottom Figure). The -log10 p-values of single-SNP association along the entire genome are plotted against the
genomic position of SNPs along the 18 autosome chromosomes. The SNPs associated with the corresponding traits exceeded the significance
threshold at false discovery rate (FDR) of 0.1, having significant effects.
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FIGURE 6
Associated regions detected by GWAS for combined crossbred and purebred pigs. Manhattan plots for: (A) FMCOLA (B) FMCOLB (C)GMCOLB,
and (D) ICOLB using a combined (61K + 50K) medium-density panel (top Figure) and WGS (bottom Figure). The -log10 p-values of single-SNP
association along the entire genome are plotted against the genomic position of SNPs along the 18 autosome chromosomes. The SNPs associated
with the corresponding traits exceeded the significance threshold at false discovery rate (FDR) of 0.1, having significant effects.

TABLE 8 Novel genomic regions detected by WGS in PB pigs and in Combined dataset (combined CBs and PBs).

Trait Number of QTL regions and their genomic region in mega base pairs (Mb)

PB

FMCOLB 2 QTL regions on SSC2 (142.79 and 144.77–144.77). 1 QTL region on SSC8 (34 Mb)

FMCOLL 1 QTL region on SSC10 (38.12–38.28)

Combined dataset

FMCOLA 1 QTL region on SSC2 (134.56–134.74). 1 QTL region on SSC13 (194.82–194.82). 1 QTL region on SSC14 (44.85–45.02)

FMCOLB 3 QTL regions on SSC2 (142.79, 144.77–144.81, and 148.00). 3 QTL regions on SSC6 (19.22–19.26, 57.29–57.30, and 32.18–32.22).
1 QTL region on SSC7 (23.73–23.85). 1 QTL region on SSC13 (24.73–24.74)

GMCOLB 2 QTL regions on SSC2 (144.89–144.95 and 149.09–149.12). 2 QTL regions on SSC6 (57.25 and 52.57–52.62). 1 QTL region on
SSC9 (119.68–119.69). 1 QTL region on SSC13 (195.48)

ICOLB 1 QTL region on SSC6 (73.97–74.05). 1 QTL region on SSC16 (22.84)

PB, purebred; SNP, QTL, quantitative trait loci; Mb, megabyte; SSC, sus scrofa.
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for GWAS. The threshold 2% was chosen, because the maximum

percentage of variance explained by the significant SNPs that exceed

the FDR of 0.1 were ~3% and we therefore chose an arbitrary

threshold lower than 3%.

Candidate genes identified by functional
analysis

Candidate genes (and their functions) located on significant

regions and/or nearby regions identified by WGS for meat color

traits in different populations (crossbreds (CBs), purebreds

(PBs), combined CBs and PBs) are given in Table 9. Since

most of the significant SNPs for most traits are located on

SSC15, for simplicity only the results of the functional

analyses on SNPs detected on SSC15 are explained. For all

traits, the significant SNPs span a region from 119.56 to

123.56 Mb on SSC15. The genes on this region are in Table 9.

Many of these genes such as PRKAG3 have been previously

reported by Zhang et al. (2015) to be associated with pork pH and

color. Some of the genes located on this region including CNOT9,

PRKAG3, CDK5R2, VIL1, TTLL4, CTDSP1, SLC11A1,

ZFAND2B, USP37, RNF25, STK36, FEV, WNT6, IHH,

WNT10A, NHEJ1, TMBIM1 are involved in the regulation of

protein phosphorylation processes, proteolysis, intracellular

transduction, and negative regulation of cell communication.

In addition, CATIP and ARPC2, VIL1 and BCS1L are involved in

actin filament organization. There is evidence in the literature

that meat color stability is inversely related to the

phosphorylation of sarcoplasmic proteins (Mato et al., 2019;

Li et al., 2020). An example of visualized gene network for the

genes on SSC15 of ICOLB (region: 119.5–122.5 Mb) which shows

the involved biological process is given in Supplementary

Figure S5.

Discussion

In this study, we first assessed the imputation accuracy to

WGS for two pig populations; CBs and PBs, using a small

reference population of 60 sequenced PB key ancestors

(Duroc males). Then, using the imputed WGS, we

investigated whether the use of WGS data in a GWAS for

pork color traits will improve the identification of the

associated regions with respect to the extended QTL regions

and/or detection of novel QTL regions in a sequenced-based

GWAS relative to a medium-density SNP panel. The superiority

of WGS over SNP panels is because of the existence of causal

FIGURE 7
Distribution of the percentage of phenotypic variance explained by the most significant SNPs identified using different SNP densities (WGS (top
row) and medium-density panels (bottom row)) for pork color traits (FMCOLB, FMCOLL, and ICOLB) in PBs.
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variants (rare variants responsible for phenotype variation) and

rare variants with low LD with the SNPs on a medium-density

panel (which most have moderate MAF), as the variance

explained by these causal and rare variants can be better

captured by WGS. Moreover, due to the relatively small size

of our CB and PB populations (lower than 1,000 individuals per

population), the Combined dataset was used in a GWAS, to

assess whether enlarging the sample size will improve the

potential advantage of WGS and enhance the power of

detecting QTLs. Our imputation results showed a relatively

high imputation accuracy obtained by Beagle V5.0 for both

PBs (0.97) and CBs (0.91) after filtering the less accurate

imputed genotypes (<0.8). Of the 18 pork colors, using

different datasets, the genetic associations were identified only

for a few traits (Table 7; Figures 4–6), and we did not detect any

associated regions for most traits, regardless of panel density and

dataset. WGS detected additional novel genomic regions for a few

traits and with larger sample size (Combined dataset) (Table 8),

the added value of WGS was more for detecting novel regions

compared with SNP panel arrays. In the following sections, first,

the factors influencing imputation accuracies are discussed, and

then, the impact of using WGS data on GWAS results are

discussed in detail.

Factors influencing imputation accuracy

Several factors influence the accuracy of imputation. These

include the size of the reference population, the level of genetic

relationship between the reference and validation population

TABLE 9 Candidate genes located on significant regions and/or nearby regions identified by whole-genome sequence (WGS) for meat color traits in
different populations (crossbreds (CBs), purebreds (PBs), combined CBs and PBs).

Trait Chromosomea Physical position
(Mb)b

Candidate genes (gene functions)

CB TMCOLA SSC5 115.3–117.4 FBX O 7, TIMP3, PWP1, RAC2, EIF3D, KCTD17 (Negative regulation of protein
phosphorylation), cellular metal ion homeostasis (KCTD17, PVALB), Apolipoprotein L3-
like, RBFOX2, FBX O 7

GMCOLB SSC15 120.6–120.9 CATIP, ARPC2, VIL1 (Actin filament organization), CNOT9, PLCD4, PRKAG3, DNAJB2,
ZFAND2B, CNPPD1, INHA, CDK5R2, STK16, TTLL4, USP37, CTDSP1, SLC11A1

PB FMCOLB SSC2 142.7–144.7 ARHGAP26 (MAPK cascade and protein transport)

SSC15 120.1–120.9 ARPC2, CATIP, BCS1L, VIL1 (Actin filament polymerization), PRKAG3, TTLL4, CTDSP1,
USP37, SLC11A1 (Protein modification processes and protein phosphorylation)

FMCOLL SSC15 120.1–122.5 The same genes as previously described for FMCOLB.

ICOLB SSC15 119.5–122.5 CNOT9,PRKAG3,CDK5R2,VIL1,TTLL4, CTDSP1, SLC11A1, ZFAND2B, USP37, RNF25,
STK36, FEV, WNT6, IHH, WNT10A,NHEJ1, MBIM1 (Regulation of protein
phosphorylation processes, proteolysis, intracellular transduction, and negative regulation of
cell communication), CATIP and ARPC2, VIL1, BCS1L (actin filament organization)

Combined
dataset

FMCOLA SSC1 163.9–166.8 MEGF11, U2, DIS3L, TIPIN, SCARNA14, MAP2K1, SNAPC5, RPL4, SNORD18, ZWILCH,
LCTL, SMAD3, SMAD6, AAGAB, IQCH, C15orf61, MAP2K5, SKOR1, U6, PIAS1, CALML4,
CLN6, FEM1B, ITGA11, and COR O 2B (positive regulation of proteolysis, negative
regulation of cell cycle, and regulation of transforming growth factor beta receptor signaling
pathway)

SSC15 120.1–120.9 The same genes as previously described for FMCOLB (purebreds)

FMCOLB SSC15 120-123.5 The same genes as previously described for FMCOLB (purebreds)

GMCOLB SSC2 144.7–150.9 nuclear receptor subfamily 3 group C member 1 (NR3C1), phosphodiesterase 6A (PDE6A),
serine peptidase inhibitor, Kazal type 6 (SPINK6), ARHGAP26

SSC6 52.57–59.13 Zinc finger protein 836-like, zinc finger protein 347 gene, NLR family pyrin domain
containing 7, PRK2, STRN4

SSC15 119.98–120.92 PNKD, CNOT9, PLCD4, TMBIM1, zinc finger protein 142 and SLC11A1, TNS1, RUFY4,
ARPC2, GPBAR1, AAMP, CATIP, CTDSP1, VIL1, USP37, BCS1L, RNF25, STK36, TTLL4,
CYP27A1, PRKAG3, WNT6 and WNT10A

ICOLB SSC6 73.93–74.04 kazrin, periplakin interacting protein (KAZN) gene

SSC15 119.55–120.92 The same genes as previously described for GMCOLB (Combined dataset)

SSC16 22.59 WDR70

bThis is the physical position in Mb and their nearby regions where the candidate regions were found (See Materials and Methods).
aIf a significant region was not reported, no genes were found in that region. CB, crossbred; PB, purebred; Mb, megabyte; SSC, sus scrofa.
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(Hickey et al., 2011; Heidaritabar et al., 2015), MAF of the SNPs

to be imputed (Heidaritabar et al., 2015; Bouwman et al., 2018),

the program used for imputation (Bouwman et al., 2018;

Bolormaa et al., 2019), and the density of validation

population (Heidaritabar et al., 2015). The biggest challenge

when imputing to WGS data is the imputation of the rare

variants with low frequency. Figure S2 shows that of

approximately 12 million called SNPs on SSC1 to SSC18,

about 28% have a frequency less than 0.05 (Supplementary

Figure S2). Due to the existence of this large proportion of

rare SNPs, it is crucial to impute these variants as accurately

as possible. To achieve the highest possible imputation accuracy

for rare SNPs, several things can be done including careful

selection of the reference individuals, appropriate imputation

programs (Calus et al., 2014; Bouwman et al., 2018), and

sequencing a sufficient number of animals, (Calus et al.,

2014). The 60 Duroc males we chose for sequencing were key

ancestors and jointly captured the maximum proportion of

genetic variation present among the PBs. This is most likely

reason that we achieved relatively high average imputation

accuracies (average across all chromosomes and across all

MAF) for both CBs (0.80) and PBs (0.90) (Table 3).

Moreover, for low MAF SNPs (≤0.05), the average imputation

accuracy ranged from 0.35 (when MAF was 0.01) to 0.65 (when

MAF was 0.05) in CBs, and ranged from 0.5 to 0.9 in PBs, when

MAF was 0.01 and 0.05 respectively (Figure 2). Even though the

panel density of PBs is lower than CBs (50K versus 61K), PBs

imputation accuracies are higher, which is likely due to the larger

genetic relationships between the 60 reference sequenced pigs

and the female PBs in the validation, as both population are

Duroc and results in sharing more and longer haplotypes

between the two populations (Hickey et al., 2011), while the

CB population include the three-way cross between Duroc boars

and Landrace-Yorkshire sows, and therefore, there is lower

genetic relationship between the 60 Duroc boars and the CB

population. Several studies have investigated the imputation of

low MAF SNPs when imputing to the WGS in different species

such as dairy cattle (van Binsbergen., 2017), beef cattle (Froberg

Brøndum et al., 2014), pigs (Yan et al., 2017; Bouwman et al.,

2018; Ros-Freixedes et al., 2019), sheep (Bolormaa et al., 2019),

and found a poor imputation accuracy for low MAF SNPs. For

example, Ros-Freixedes et al. (2019) reported imputation

accuracy of 0.79 for MAF between 0.005 and 0.028 (n =

2,111), and 0.93 for MAF above 0.028 (n = 25,968) with

simulated data, and for accuracy ranging from 0.51 (n =

11,312) for MAF <0.001 to 0.93 (n = 89,701) for

MAF ≥0.028 in pigs. Even though Ros-Freixedes et al. (2019)

used a much larger reference population compared to the

60 individuals in our study, our imputation accuracy from

PBs for low MAF SNPs are similar to the values reported by

them. Also, Bouwman et al. (2018) used three different

imputation programs, and found imputation accuracy ranging

from 0.5 to ~0.83 for SNPs with MAF lower than 0.05, when

168 sequenced pigs were used for imputation. Our imputation

accuracy for low MAF SNPs from CBs are within the range

reported by Bouwman et al. (2018) (0.35–0.65). Of note is that

our measure of imputation accuracy is allelic DR2, which is

reliability, whereas the measure reported by Bouwman et al.

(2018) and Ros-Freixedes et al. (2019) is the correlation between

the true genotypes and imputed dosages. Meaning that with

conversion of the allelic DR2 to correlations, our imputation

accuracy becomes even higher (r = 0.59 to 0.81 for CBs and r =

0.71 to 0.94 for PBs). This suggests that the overall performance

of Beagle V5.0 for imputation of low MAF SNPs was good, even

with a small reference population size and small genetic

relationship between the CBs and PBs. However, to be more

certain about the performance of Beagle V5.0 compared with

other imputation programs, we compared imputation accuracies

from Beagle V5.0 and FImpute in a leave-one-out cross

validation approach (Supplementary Figure S3). The average

animal-specific imputation accuracy across 55 pigs was

slightly higher for Beagle (0.94) than FImpute (0.91).

Increasing the size of the reference population was more

beneficial for imputing rare SNPs compared with more common

SNPs for both imputation to theWGS in cattle (van Binsbergen et al.,

2014), and imputation from low-to medium-density SNP panel

(60K) in layer chickens (Heidaritabar et al., 2015). This is because

with a larger reference population, the probability that multiple

copies of alleles are present for correct haplotype construction

increases and this in turn increases the quality of imputation of

low-frequency SNPs. For dairy cattle, it was proposed to sequence not

more than 500 individuals, as more than this number only slightly

improved the accuracy of imputation accuracy. However, it is

generally hard to determine exactly how many more sequenced

individuals are required as the reference, and which level of genetic

relationship to the validation population is required for minimizing

the imputation error rate (Meuwissen et al., 2013). Based on our

results, it seems that the low number of sequenced animals, when

carefully selected, is only a limiting factor for imputation of lowMAF

SNPs, as we still obtained reasonable imputation reliabilities for high

MAF SNPs. In our analyses, we excluded many of those low MAF

SNPs (~20%) with low accuracy of imputation (Supplementary

Figure S2), meaning that some of the causative mutations

contributing to the genetic variation of a complex trait may have

been removed during the filtration ofMAF. If enlarging the reference

population is not possible due to high costs of sequencing, an

alternative to retaining the low MAF SNPs (potential causative

mutations) is to use dosage scores instead of genotypes for

downstream analyses such as GWAS, or genomic predictions.

Van den Berg et al. (2019) compared the GWAS results of using

genotypes with those of dosage scores and found an improvement of

QTL detection (56.7 and 26.9% additional QTL regions for their two

studied lines), because dosage scores coded as any real value between

0 and 2 accounted for uncertainty of imputation, and therefore all

SNPs were used in their analysis. They also found that the most

significant SNPs in the QTL regions explained more of the
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phenotypic variance when using dosage scores compared to using

genotypes (Van den Berg et al., 2019).

Genome-wide association studies using
purebred pigs, crossbred pigs and
Combined dataset

We did a GWAS for 18 pork color traits in CBs, PBs, and

combined data using both SNP panel arrays and WGS and

investigated whether the WGS can improve the power of

GWAS compared to the medium-density SNP panels. Of the

18 pork colors, using different datasets, we did not detect any

associated regions for most traits, regardless of panel density (see

Results). The QTL regions were identified (with FDR of 0.1) only

for a few traits including TMCOLA and GMCOLB (CBs),

FMCOLB, FMCOLL, and ICOLB (PBs) and FMCOLA,

FMCOLB, GMCOLB, and ICOLB (Combined dataset).

Generally, we identified more QTL regions with WGS (n =

58) compared with medium-density SNP panels (n = 22).

Most of the identified QTL regions with all genotype densities

were also reported in other GWAS studies that used the same

color traits (Zhang et al., 2015; Yang et al., 2017). The most

significant QTL region reported by Zhang et al. (2015) was

located on SSC15 spanning 133–134 Mb which explained

3.51%–17.06% of genetic variance for five measurements of

pH and some color traits (Minolta color A* and B* for fresh

ham and color B* measured on thawed loin muscle). This region

is very close to previously reported gene PRKAG3 controlling

both meat pH and color in pigs. Our results are consistent with

results of Zhang et al. (2015) and Yang et al. (2017), as this

region6 on SSC15 was identified by both densities and the three

datasets. In the present study, for both WGS and medium-

density panels and for most traits, most of the significant

SNPs were on SSC15 at 119.57 and 122.50 Mb for WGS and

at 119.56 and 123.56 for medium-density SNP panel (see

Results). The percentage of phenotypic variance explained by

the most significant SNP on SSC15 for different pork color traits

and different density panels are shown in Table 10. It should be

noted that in the present study, the percentage of variance

explained is not cumulative, because variants were tested one

at a time (See model 2) in Materials and Methods). Thus, the

estimated SNP effects of surrounding variants were not

independent due to LD. For all traits where the genomic

region on SSC15 was significant, the variance explained by the

most significant SNP was higher for WGS compared with

medium density panels. The added value of WGS for

improving the power of GWAS (with respect to the number

of identified QTL) have been shown in several species including

dairy cattle (Daetwyler et al., 2014; van den Berg et al., 2019), beef

cattle (Zhang et al., 2015; Wang et al., 2020), pig (Yan et al.,

TABLE 10 Percentage of phenotypic variance explained by the most significant SNP on SSC15 for the pork color traits at different panel densities and
different populations.

Trait Population Panel density Physical position (Mb) Percentage of phenotypic
variance explained

GMCOLB CB WGS 120.72 1.82

GMCOLB CB 61K 120.71 1.67

FMCOLB PB WGS 120.42 3.05

FMCOLB PB 50K 120.80 2.17

FMCOLL PB WGS 120.86 2.37

FMCOLL PB 50K 120.80 1.89

ICOLB PB WGS 120.67 2.59

ICOLB PB 50K 120.86 2.37

FMCOLA Combined CB and PB WGS 120.19 1.16

FMCOLA Combined CB and PB Medium-density 120.80 1.05

FMCOLB Combined CB and PB WGS 120.42 2.06

FMCOLB Combined CB and PB Medium-density 120.80 1.29

GMCOLB Combined CB and PB WGS 120.66 1.27

GMCOLB Combined CB and PB Medium-density 120.21 1.05

ICOLB Combined CB and PB WGS 120.67 1.57

ICOLB Combined CB and PB Medium-density 120.70 1.15

CB, crossbred; PB, purebred; Mb, megabyte; WGS, whole-genome sequence. Combined CB and PB means combining crossbred and purebred populations, Physical position (Mb) means

genomic position in Megabyte,

6 Zhang et al. (2015) and Yang et al. (2014) used the Sscrofa 10.2, while
we used Sscrofa 11.1. The region 133–134 Mb on SSC15 on Sscrofa
10.2 is the same region on 120–121 Mb on Sscrofa 11.1.
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2017), human (The 1000 Genomes Project Consortium. 2010;

Höglund et al., 2019), and tomato (Van Binsbergen et al., 2014).

A general speculation for more power of GWAS in denser

genome coverage with (WGS) is the presence of causative

SNPs and SNPs with higher LD within the data, which

improves the power for identification of SNPs with small effects.

When the combined dataset was used for GWAS, many more

QTL regions (11 for medium-density panels and 37 for WGS) were

identified, suggesting that the added value of WGS was more for

detecting novel regions compared with medium-density SNP panels

in larger samples. This could be because with the larger sample size,

the effect of causativemutations on polygenic quantitative traitsmight

be estimated more accurately. Also, for the Combined dataset, we

filtered the imputed genotypes based on the allelic DR2, meaning that

some of the imputed SNPs excluded inCBs analyses (3,016,352 SNPs)

due to imputation accuracy less than 0.8 were included in the

Combined dataset GWAS analysis, and yet the power of GWAS

improved. This shows that the imputation error rate is not really a

limiting factor for GWAS. Similar results are shown by Van

Binsbergen et al. (2014) where they found that despite their

relatively low imputation accuracy (average correlation of

0.34 between true genotypes and allele dosage) in tomato WGS

data, the power of a GWAS can still be improved. They reported

that more significant SNPs (>65 SNPs in 9 regions) were found in the
GWAS using the imputed WGS compared to using the low-density

SNP arrays (no significant SNPs). They argued that as long as the

squared imputation accuracy (allelic DR2 in our study) is higher than

the expected LD between the SNPs on the lower density panel (50K

and 61K in our study) and the SNPs in the WGS data, imputation is

advantageous, as more information is still added by imputation (Van

Binsbergen et al., 2014). Average LD between the imputed sequenced

SNPs located within 2Mb windows and shorter (on SSC1) was

0.31 and 0.40 for CBs and PBs, respectively, which is lower than the

average squared imputation accuracy, which is 0.91 and 0.97 for the

corresponding populations (see Table 3). This may explain why the

imputed sequence data improved the QTL detection through a

GWAS. Moreover, van den Berg et al. (2019) found that although

their imputation from 80K to 660K to WGS in pig populations

resulted in poor imputation accuracy (Beagle allelic DR2 in their study

ranged from 0.39 to 0.49 and from 0.83 to 0.93, before and after

variant filtrations), they still found that using imputedWGS instead of

a lower density SNP panel increased the number of detected QTL

(48.9 and 64.4% more for their different lines) and the estimated

proportion of phenotypic variance explained by these QTL (van den

Berg et al., 2019). Also, Heidaritabar et al. (2015) found that the

average allelic DR2 (before quality control) from the 60K SNP panel to

WGS imputation in layers was 0.64, but they still observed an increase

of prediction accuracy of 1% using WGS compared with 60K for

number of eggs. All these results show that most likely the accuracy of

the imputed genotypes is not a limiting factor forGWASand genomic

predictions.

Functional analyses

We detected several candidate genes for the color traits in

CBs, PBs and Combined dataset. For most color traits, a region

spanning from 119.5 to 123.5 Mb on SSC15 was consistently

detected. Some of the genes located on this region including:

ciliogenesis-associated TTC17-interacting protein (CATIP), villin-

1 (VIL1), protein kinase AMP-activated non-catalytic subunit

gamma 3 (PRKAG3), tubulin tyrosine ligase like 4 (TTLL4),

ubiquitin specific peptidase 37 (USP37), CTD small

phosphatase 1 (CTDSP1) and solute carrier family 11 member

1 (SLC11A1) were consistently detected for all color traits

reported here, hence they were considered the best candidates’

genes in the QTL region for the color traits. Genes such as VIL1,

PRKAG3, TTLL4, and SLC11A1, USP37 have been previously

reported to be associated with meat quality, pH and color

(Ciobanu et al., 2001; Uimari and Sironen, 2014; Zhang et al.,

2015; Verardo et al., 2017). Although CTDSP1 gene has not been

previously associated with meat color traits in pigs, it has been

found to be associated with meat color Minolta L* traits in

Nellore cattle (Marin-Garzon et al., 2021). The genes reported in

this study are involved in actin filament organization, regulation

of protein phosphorylation processes, proteolysis, and

intracellular transduction. There is evidence in the literature

that meat color stability is inversely related to the

phosphorylation of sarcoplasmic proteins such as myoglobin

(Mato et al., 2019; Li et al., 2021). Meat color is determined

by myoglobin concentration as well as the relative content of

oxymyoglobin, deoxymyoglobin and metmyoglobin (Zhang

et al., 2015; Li et al., 2021). Studies have shown that

myoglobin phosphorylation may lead to changes in its

secondary structure, therefore reducing myoglobin stability

and increasing its autoxidation rate, which further accelerated

the accumulation of metmyoglobin (Zhang et al., 2015). Further

exploration of these genes and protein phosphorylation pathway

will improve our understanding on genetic factors affecting meat

quality hence leading to strategies to improve color in pork.

Conclusion

Use of purebred and crossbred populations genotyped by

medium-density panels resulted in relatively high imputation

accuracy (0.97 for purebreds and 0.91 for crossbreds after

variants quality control) to WGS. Additional QTL regions

were detected when using the WGS data compared with a

medium-density SNP panels. The performance of WGS

relative to the medium-density panels is best when the sample

size is the largest (combining cross- and purebreds), suggesting

that sample size is a limiting factor to capitalize on the added

value of WGS in a GWAS.
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to WGS) and two-step imputation approach before any filtration (A) and
after filtering Beagle allelic DR2 > 0.8 (B).
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