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Abstract: The Maillard reaction (MR), or non-enzymatic browning, involves reducing sugars reacting
with amino acids, peptides, or proteins when heated to produce an abundance of products that
contribute to sensory, nutritional, and functional qualities of the food system. One example of an
important functional quality of MR relates to antioxidant capacity, which has relevance to preserve
food quality and also to extend a potential role that may promote gastrointestinal health. The addition
of Alphacel (10%), a non-reactive polysaccharide, to MR reactants produced small significant (p < 0.05)
reductions in yield of soluble Maillard reaction products (MRPs), sugar loss, and color change of
products formed respectively, for reducing sugars. A similar effect was also noticed for different free-
radical scavenging capacity (p < 0.05), using chemical (e.g., 2,2-diphenyl-1-picrylhydrazyl (DPPH)),
Trolox equivalent antioxidant capacity (TEAC), and oxygen radical absorbance capacity (ORAC)
assays. An inflamed Caco-2 cell model revealed nitric oxide (NO) inhibitory activity for Glu-amino
acid MRPs, which contrasted the NO stimulatory activity obtained with Fru-amino acid MRPs,
especially when glycine was used as the amino acid. Pre-treating Caco-2 cells with Fru-glycine MRPs
protected against loss in trans-epithelial resistance (TEER) (p < 0.05) and reduced (p < 0.05) disruption
of Caco-2 intestinal epithelial tight-junction (TJ) protein cells when exposed to 7.5% ethanol. A
low molecular weight Fru-glycine (e.g., <1 kDa) fraction contributed to the protective effect, not
observed with the corresponding high molecular weight MRP fraction. The presence of Alphacel had
minimal effect on generating MRPs with relative modified protection against intestinal dysfunction
in cultured Caco-2 cells. Rather, different types of sugar–amino acid combinations used to generate
MRPs contributed more to mitigate injury in stress-induced Caco-2 cells. With the growing evidence
that MRPs have a wide range of bioactive activities, this study concludes that specificity of substrate
precursors that produce MRPs in heated foods is a critical factor for antioxidant and related cellular
functions that represent a healthy gut.

Keywords: Maillard reaction; radical scavenging; nitric oxide; transepithelial electrical resistance;
tight-junction proteins

1. Introduction

Many studies which have focused on understanding the Maillard reaction (MR), also
termed non-enzymatic browning, have relied on using relatively simple chemical models in
aqueous media with substrates possessing carbonyl groups from reducing sugars reacting
with free amino groups from amino acids, peptides, or even proteins, under controlled
conditions of temperature, pH, and water activity [1–4]. As such, variables that include
the type of reducing sugar (e.g., monosaccharide vs. disaccharide, pentose vs. hexose,
aldehyde vs. ketose) or type of amino acid are known to influence the rate of reaction and
the subsequent composition and functional capacity of Maillard end-products [2,3,5,6].
Whereas sugar type correlates with MRP reaction rates [1], amino acids such as glycine
and lysine exhibit the greatest free-radical scavenging capacity [2,3]. With temperature, the
duration and intensity of heating are critical factors to produce the thermal load necessary
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to influence the rate of MR and direction to generate specific products [7–9]; for example,
lesser browning due to lower heating temperatures corresponds to greater production of
intermediate aroma compounds generated from the reductone pathway [10]. In addition,
physical factors that are germane to the food matrix can influence the mobility of reactants
as well as heat transfer or phase changes, and thus impact the reaction rate which in turn
can influence the composition and possibly the derived function of complex MRPs [11].

Many simplified aqueous MR model reactions have lacked a defined matrix that could
potentially show the effect of influencing heat transfer kinetics on both the yield and related
composition and functional activity of MR products. MRPs that exhibit antioxidant activity
represents an important functional quality that is influenced by many variables, which
control the quality of heated sugar–amino acid [5,12,13] and sugar–protein [14,15] products.
Previous reports have identified early-stage MRPs with characteristic fluorescence charac-
ter that exhibit antioxidant activity [13,16], while others reported later browning pigments,
namely melanoidins, to exhibit both pro-oxidant chelating and free-radical scavenging
capacity [17–19]. Research conducted using cell-based model systems, such as the differen-
tiated intestinal Caco-2 cell, have confirmed MRP antioxidant activity observed in chemical
assays and also indicated a possible carry-over function to include anti-inflammatory and
functional properties that relate to intestinal cell viability [20–22]. To this end, the inter-
cellular junctional complex, referred to as tight junctions (TJ), which maintain membrane
integrity by operating as a seal between epithelial cells near the apical surface, is a vital
component of the Caco-2 cell intestinal barrier. Included in this complex structure are
proteins, zonula occludens (ZO) such as ZO-1, claudins that restrict paracellular diffusion
of toxicants, and pathogens [23,24]. The exposure of Caco-2 intestinal cells to pro-oxidants
will reduce transepithelial electrical resistance (TEER) and adversely affect TJ protein ex-
pression and localization [25–28]. Thus, the intestinal epithelial monolayer is considered
a critical first line defense barrier, and therefore dietary components that protect TJ and
abate potential intestinal barrier dysfunction are important to prevent systemic exposure
to food toxicants and pathogens.

The purpose of this study was to generate model MRPs using different sugar–amino
acid reactant types using a dry heating process. In addition, the effects of adding the
presence of a nonreactive matrix, such as Alphacel, on antioxidant and other related
bioactive functional capacities of derived MRPs were assessed using both chemical assays
and cultured differentiated Caco-2 cells.

2. Materials and Methods
2.1. Materials

Monosaccharide and sucrose sugars, L-lysine and L-glycine, were purchased from Sigma
(St. Louis, MO, USA). Alphacel Non-Nutritive Bulk, DPPH [2,2-diphenyl-1-picrylhydrazyl],
Trolox, and potassium persulfate were purchased from Sigma-Aldrich (Oakville, ON,
Canada) and 96-well plates from Sarstedt (Nümbrecht, Germany). ABTS [2, 2′-Azino-
bis-(3-ethylbenzothiazoneline-6-sulfonic acid)] was purchased from Sigma (St. Louis,
MO, USA). The ORAC assay required 2, 2-azobis (2-amidinopropane dihydrochloride
(AAPH) (Wako Chemical Inc., Richmond, VA, USA), fluorescein (Sigma, St. Louis, MO,
USA), and 96-well solid black polystyrene microplates (Corning™, Tewksbury MA. USA).
Caco-2 cells (HTB-37) were purchased from ATCC (American Type Culture Collection.
Manassas, VA., USA), as well as Minimum Essential Medium (MEM) (Sigma, St. Louis,
MO, USA). Fetal bovine serum (FBS) was from Invitrogen (Burlington, ON, Canada)
and antibiotics, penicillin, and streptomycin were from Sigma (St. Louis, MO, USA).
Translucent 24-well inserts were obtained from BD Biosciences (San Jose, CA, USA) and
TEER values were read from a Millicell® ERS volt-ohmmeter (Millipore, Bedford, MA,
USA). TJ primary antibodies to Claudin 4, occludin, ZO-1, and anti-glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) came from Abcam Inc. (Cambridge, MA, USA),
with the secondary antibody from Abcam Inc. as well. A Zeiss fluorescence microscope
(Carl Zeiss Microscopy GmbH, Jena, Germany) visualized cells and the Western blots
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were analyzed using a ChemiDocTM MP Imaging System (Bio-Rad Laboratories Ltd.,
Hercules, CA, USA).

2.2. Methods
2.2.1. MRP Sample Preparation

Reducing, including xylose (Xyl), glucose (Glu), fructose (Fru), and non-reducing
sugar sucrose (Suc), were mixed 1:1 (molar ratio) with glycine (Gly) or L-lysine (Lys)
respectively, in the presence and absence of 10% (w/w) Alphacel. Alphacel, a non-reactive
bulking agent, is derived from finely ground cellulose, and is easily incorporated with
other formulation components. It does not contribute to browning and is stable at the
temperatures used in the baking experiments. These qualities made it a useful constituent
for simulating food matrices for different MR precursors. Samples were mixed well and
placed in random positions on a cookie sheet in a pre-heated oven set at 150 ◦C for baking
for 20 and 40 min, respectively. Three replicates were prepared for each sugar–amino
acid mixture combination. After being baked, samples were cooled to room temperature,
added to distilled water, vortexed for 5 min, and centrifuged at 3000× g, for 30 min at
room temperature. Supernatants were filtered through Whatman filter paper (Grade 4,
Sigma-Aldrich, St. Louis, USA), and the residue was re-suspended and filtered again three
times to obtain a quantitative recovery of water-soluble components. Samples were then
lyophilized and stored at −80 ◦C until analysis. Dry mixtures were stored in desiccators at
4 ◦C until further analysis was required. The yield of each of the different MRPs recovered
from the individual sugar–amino acid mixtures was calculated from the dry weight of the
soluble fraction recovered [21].

2.2.2. Sugar Analysis

MRP crude samples were re-dissolved in E-Pure water and supernatants were adjusted
to 50% acetonitrile (Thermo Fisher Scientific, Waltham, MA, USA) for sugar analysis,
analyzed by high-performance liquid chromatography (HPLC), using an Agilent 1100 series
(Santa Clara, California, USA), equipped with a Agilent, 5 µm, 4.6 × 250 mm column and a
refractive index detector [21]. The mobile phase contained 75% acetonitrile and the flow
rate was 1.0 mL/min. Standard calibration curves of xylose, glucose, fructose, and sucrose
were built for quantitative analysis with a concentration range of 0.625–20 mg/mL. Ribose
was used as an internal standard.

2.2.3. Color Measurement in Soluble MRP Fraction

Color measurement was performed on a Hunter Labscan 600 spectrocolorimeter
(Hunter Associates Laboratory Inc., Reston, VA, USA). The instrument was calibrated with
standard black and white tiles, and parameters L* (luminosity or brightness: L* = 0 black
and L* = 100 white), a* (red–green axis: redness represents positive values and greenness
represents negative values), and b* (yellow–blue axis: yellowness represents positive
values and blueness represents negative values) were measured. The color difference
(∆E*) between freeze-dried water-soluble samples and a reference (same samples prepared
without heating treatment) was obtained using Equation (1):

∆E∗ =
√
(L∗ − L∗0)

2 +
(
a∗ − a∗0

)2
+
(
b∗ − b∗0

)2 (1)

where ∆E* = color difference, L*, a*, and b* are values of the processed sample, and L∗0 , a∗0 ,
and b∗0 are values of the reference sample, respectively. Three replicates of the same weight
were randomly collected from each sample and three measurements of L*, a*, and b* were
carried out on each replicate.
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2.2.4. Free-Radical Scavenging Activity Measurements
DPPH Assay

The DPPH radical scavenging activity of soluble MRPs required initial dilution with
distilled water and methanol [18]. Diluted MRP samples and Trolox standard solutions
were incubated with 20 µL of 1 mmol/L DPPH in 100% methanol in 96-well plates, shaken
for 10 min at room temperature, and absorption was measured using a spectrophotometer
(Multiskan Ascent, ThermoLab systems, Helsinki, Finland) at 519 nm. The inhibition of
DPPH free radical was calculated as in Equation (2):

%Inhibition =
Abscontrol −Abssample

Abscontrol −Absblank
× 100 (2)

where Abscontrol = absorbance of 0.1 mmol/L DPPH alone in methanol, Abssample = ab-
sorbance of 0.1 mmol/L DPPH + MRP sample in methanol, and Absblank = absorbance of
methanol solvent control in absence of DPPH or MRP.

TEAC Assay

The TEAC assay was performed using the ABTS radical cation (ABTS•+) prepared in
potassium persulfate [19]. Fresh ABTS•+ working solution was prepared for each assay to
obtain an absorbance of at least 0.4 at a 734 nm wavelength. The ABTS radical scavenging
capacity of MRP samples was measured for different concentrations (0–1.0 mg/mL) and
calculated as in Equation (3):

%Inhibition =

(
1−

Abssample

Abscontrol

)
× 100 (3)

The standard curve was linear between 0 and 25 mmol/L Trolox. Trolox equivalent
antioxidant capacity (TEAC) = slopesample/slopecontrol. Results were expressed in mmoL
Trolox equivalent (TE)/g sample.

ORAC Assay

The ORAC assay was conducted as described previously [18,19] using 96-well solid
black polystyrene microplates. Each plate was incubated at 37 ◦C for 15 min and 60 µL
AAPH (final concentrations 12 mmol/L) was added. Fluorescence readings (Excitation
wavelength = 485 nm, Emission wavelength = 527 nm) were continuously taken (0–60 min)
using a microplate reader (Fluoroskan Ascent FL, Thermo Labsystems, Helsinki, Finland).
Data transformation with the area under the curve was calculated to obtain the slope, as in
Equations (4) and (5):

AUC = 0.5 + ∑59
i=2

Ai
A1

+ 0.5× A60

A1
(4)

where A1 is the initial fluorescence reading and Ai is the fluorescence reading at time i.

ORAC =
slopesample

slopeTrolox
(5)

ORAC values were expressed as µmol Trolox equivalent/g sample.

2.2.5. Caco-2 Cell Culture Experiments

Caco-2 cells (HTB-37, ATCC) were cultured in complete Minimum Essential Medium
(MEM) containing Earle’s salts (Sigma, St. Louis, MO, USA), supplemented with 10% FBS
(Invitrogen, Burlington, ON, Canada) and 100 units/mL of penicillin and 100 µg/mL of
streptomycin (Sigma, St. Louis, MO, USA). Cells were cultured at 37 ◦C under a 5% CO2
atmosphere. Cell media were changed every 2–3 days and the cells were sub-cultured
weekly. Caco-2 cells from passages 21 to 37 were used for all experiments.
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MTT Assay

Caco-2 cell cytotoxicity was assessed in all experiments using the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay to assess metabolic activity with or without
MRP exposure. Specific MRP, along with a control, had 3 replications, and the control
only contained medium without MRP. Cells were grown in 96-well plants and MRPs were
removed after treatment and rinsed with phosphate-buffered saline (PBS), before being
incubated again with 100 µL of 0.5 mg/mL MTT for 4 h in the dark at 37 ◦C. Sodium
dodecyl sulfate (10% SDS) in HCL (0.1 M) was added to cells for 12 h to dissolve the
formazan crystal. Formazan absorbance was measured at 570 nm using a Multiskan Ascent
spectrophotometer (ThermoLabsystems Inc., Guelph Mills, PA, USA). Cell viability was
calculated according to Equation (6):

Viability (%) =
Abssample

Abs negative control
× 100 (6)

where Abssample = absorbance of MRP sample at 570 nm, and Abscontrol = absorbance of
control in the absence of MRP at 570 nm.

MRP Effect on Nitric Oxide (NO) Production in Caco-2 Cells

NO production was measured in Caco-2 cells seeded in 96-well plates (Sarstedt,
Nümbrecht, Germany) at a density of 105 cells/cm2 in complete MEM (100 µL), and grown
for 3 weeks prior to experiments to establish differentiation [9,21]. Caco-2 cells were
incubated with different sugar–amino acid MRPs for 24 h, and then following removal
of the media, were treated with 8000 U/mL INF-γ + 0.1 µg/mL PMA for 48 h. NO was
determined by measuring nitrite and nitrate (NO2

− + NO3
−) in the culture medium using

the Griess reagent (50 µL of 1% sulfanilamide in 5% phosphoric acid and 50 µL of 0.1%
N-(1-naphthyl)ethylenediamine dihydrochloride), after reduction of nitrate to nitrite by
nitrate reductase (Sigma, St. Louis, MO, USA), with changes in color measured on a
spectrophotometer (Multiskan Ascent, ThermoLabsystems, Finland) at 540 nm. Sodium
nitrate was used as the standard and the percent NO inhibition/stimulation was calculated
according to Equation (7):

NO Inhibition/Stimulation (%) =

(
NOstandard
NOsample

− NOstandard
NOblank

)
× 100 (7)

Caco-2 Epithelial Monolayer Resistance (TEER) of Crude and Fractionated MRPs

Recovery of high and low molecular weight MRPs was accomplished by multi-
step ultrafiltration under nitrogen (40 psi) and individual fractions (LMW = <1 KDa;
HMW = >1 KDa) were collected and freeze-dried. Caco-2 cells were seeded in 24-well
translucent, high-density polyethylene terephthalate membrane trans-well (0.40 µm pore
size, 0.3125 cm2 growth surface area) inserts (BD Biosciences, San Jose, CA, USA) at a
concentration of 2.5 × 105/cm2 and incubated for 21 days to establish differentiation.
Monolayer integrity was checked initially using 100 µM of Lucifer yellow applied to the
apical side of the insert. Lucifer yellow transported to the basolateral side was quantified
with a luminometer at Ex/Em = 425 nm/350 nm (Fluoroskan Ascent, Helsinki.). Caco-2
cells were treated with MRPs for 1 h prior to exposure to 7.5% ethanol for another 1 h
thereafter. Previous work established that 7.5% ethanol was effective at inducing changes in
epithelial monolayer resistance without affecting viability [25,26]. Specifically, a Millicell®

ERS voltammeter (Millipore Ltd., Etobicoke, Ontario, Canada) was used to measure the
electrical resistance between apical and basolateral compartments. TEER values were
recorded as Ω.cm2. The TEER value was measured both before and after the transport ex-
periments to ensure the integrity of the monolayers. To check for repeatability, all transport
experiments were performed at least three times in duplicate assays. Relative TEER values
were determined according to Equation (8):
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Relative epithelial resistance (%)= (
TEER value for Caco-2 cells after incubation with 7.5% ethanol

TEER value for Caco-2 cells before incubation with 7.5% ethanol
)× 100 (8)

Visualization of Treated Tight-Junction Proteins

Caco-2 cells (1 × 105/cm2) were seeded on 8-well cover slips (Nunc Inc., Naperville,
IL, USA) and incubated for three weeks in 0.25 mL MEM, supplemented with 10% FBS
(Gibco, Carlsbad, CA, USA) and 100 units/mL of penicillin and 100 µg/mL of streptomycin
(Sigma). Twenty-one-day differentiated Caco-2 cells were pre-treated with MRP samples
for 60 min, and then sequentially incubated with 7.5% ethanol for another 60 min (scheme
shown in Figure 3A). The medium was replaced, and cells were washed three times using
ice-cold PBS, fixed in 300 µL of 2% paraformaldehyde for 20 min at room temperature,
and then washed again with ice-cold PBS. The Caco-2 cells were treated with 0.1% Triton
X-100 for 20 min, washed three times with ice-cold PBS, and treated to remove non-specific
binding using 3% bovine serum albumin (BSA) in PBST (PBS + 0.1% Tween 20) as the
blocking agent for 60 min. Cells were incubated with primary antibodies that included anti-
Claudin 4, anti-occludin, anti-ZO-1, and anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Abcam Inc., Cambridge, MA, USA) respectively, in blocking buffer at 4 ◦C in the
dark for 60 min [26]. Caco-2 cells were visualized with fluorescein isothiocyanate (FITC)-
conjugated Anti-IgG secondary antibody (Abcam Inc., Cambridge, MA, USA) for 60 min.
Coverslips were mounted with 0.4% n-propyl gallate in 90% glycerol and sealed. The
morphology of tight-junction proteins was observed using a Zeiss fluorescence microscope
(Carl Zeiss Microscopy GmbH, Jena, Germany).

Western Blotting of Tight-Junction Proteins

Total protein was extracted from Caco-2 cells using lysis buffer, and protein concentra-
tions were adjusted to a known concentration using Bradford reagent (Sigma, St. Louis, MO,
USA), before conducting electrophoresis. TJ proteins were resolved on 8% (for occludin and
ZO-1) and 15% (for Claudin-4) SDS–polyacrylamide mini-gels using a Mini-PROTEAN® II
Multiscreen Apparatus (Bio-Rad Laboratories, Hercules, CA, USA), and then transferred
to nitrocellulose membranes (0.2 µm; Bio-Rad). Non-specific binding was ensured using
5% BSA, and membranes were incubated with anti-human primary antibodies, including
anti-Claudin 4, anti-occludin, anti-ZO-1, and anti-GAPDH (Sigma, St. Louis, MO, USA) at
4 ◦C overnight in the dark. Membranes were washed three times with Tris-buffered Saline-
Tween (TBST) and incubated with secondary antibody, horseradish peroxidase-conjugated
anti-rabbit IgG (Invitrogen, Carlsbad, CA, USA), for 60 min. The membranes were washed
three times with TBST, reacted against a Western ECL substrate (Bio-Rad Laboratories
(Canada) Ltd., Mississauga, ON, Canada) for 5 min, and analyzed using the ChemiDocTM

MP Imaging System (Bio-Rad Laboratories Ltd., Hercules, CA, USA).

2.3. Statistical Analysis

Data were analyzed by one-way ANOVA, followed by Tukey’s HSD test. Correlations
determined using SPSS Statistics (v22.0 software, IBM, Armonk, NY, USA). Significant
differences were assessed at p < 0.05 for differences between treatment means and p < 0.01
for correlation analysis.

3. Results
3.1. Effect of Alphacel on MRP Sugar Recovery and Color

Alphacel, a non-reactive fiber, was used to simulate a matrix in simple dry sugar–
amino acid mixtures that were heated at 150 ◦C for 20 and 40 min, respectively. In general,
both the presence of Alphacel and the different types of reacting sugar and amino acids
in mixtures were factors that influenced the recovery of total soluble MRPs (Appendix A,
Table A1). The presence of Alphacel produced relatively small but significant losses
(p < 0.05) of the reducing sugar fructose, when heated for 20 min with lysine (Figure 1A)
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or glycine (Figure 1B). Glu-, when present with glycine, was lost at both temperatures.
Xylose, on the other hand, was completely lost regardless of the presence of Alphacel and
at both heating temperatures for both amino acids, lysine (A) and glycine (B). Fru-glycine
and Fru-lysine respectively, when heated in the presence of Alphacel, displayed the lowest
(p < 0.05) loss of reducing sugar after 20 min of heating. The non-reducing sugar, sucrose,
displayed markedly lower (p < 0.05) losses compared to the reducing sugar–amino acid
products. Proportional losses of sucrose were also relatively lower (p < 0.05) when reacted
with lysine compared to glycine, when in the presence of Alphacel.
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The L*-a*-b* color parameter measurements of water-soluble samples derived from
heated dry sugar–amino acid mixtures were used to calculate total color difference (∆E*), a
value that refers to the relative degree of browning produced in each model reaction system.
The presence of Alphacel in all sugar–amino acid mixtures produced lower (p < 0.05) ∆E*
values, after 20 min of heating (Table 1). The relative difference in ∆E* value was lower
when lysine was the amino acid used in the reaction with reducing sugars, indicating
a lower browning rate compared to glycine. All reducing sugar–amino acid mixtures
generated higher (p < 0.05) ∆E* values than sucrose–amino acid combinations, indicating
relatively greater browning attributed to MR than possibly caramelization, which may have
been the source of browning in the non-reducing sucrose. There was a positive correlation
for the ∆E* value and percentage of sugar lost in reactions with reducing sugars heated for
20 min (r = 0.764, p < 0.01) and 40 min (r = 0.862, p < 0.01) respectively, at 150 ◦C. A similar
correlation was not found with sucrose.

Table 1. Color change parameter, ∆E*, of water-soluble samples derived from sugar–amino acid
heated with and without 10% Alphacel in model MR systems 1.

Sample
20 min 40 min

(−) (+) (−) (+)

Glycine

Xylose 81.27 ± 0.87 ex 76.69 ± 0.41 dy 80.44 ± 0.21 cx 80.29 ± 0.07 cx

Fructose 79.87 ± 0.11 dx 73.23 ± 0.01 dy 80.71 ± 0.43 cx 81.64 ± 0.33 cx

Glucose 83.23 ± 0.50 ex 78.17 ± 0.78 ey 75.15 ± 1.48 cx 81.07 ± 1.61 cx

Sucrose 27.89 ± 0.33 ax 18.54 ± 0.35 ay 74.03 ± 0.81 cx 66.85 ± 0.98 cx

Lysine

Xylose 75.00 ± 0.49 dx 71.76 ± 1.36 dy 73.36 ± 0.34 cx 74.98 ± 1.56 cx

Fructose 55.39 ± 0.30 cx 46.36 ± 0.18 cy 74.55 ± 1.10 cx 69.24 ± 2.77 cx

Glucose 74.04 ± 1.16 dx 58.39 ± 1.01 cy 66.45 ± 1.21 bx 65.34 ± 0.29 bx

Sucrose 42.96 ± 2.52 bx 23.26 ± 0.37 by 47.47 ± 0.12 ax 46.14 ± 0.30 ax

1 MR = Maillard Reaction. Heated at 150 ◦C for 20 and 40 min. Values represent mean ± SD (n = 6). (−), (+)
represent sugar–amino acid model systems without (−) and with (+) 10% Alphacel, respectively. Superscripts a–d

in columns denote significant difference (p < 0.05) in reactants. x,y in rows denote significant difference (p < 0.05)
with the presence of Alphacel matrix.
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3.2. MRP Chemical-Based Free-Radical Scavenging Activity

The relative effects of different substrate reactants on different chemical antioxidant
activities, when reacted in the presence of Alphacel after 20 min of heating, are presented
in Table 2. Extending the heating time to 40 min did not markedly alter the activities
(Appendix A, Table A2). All reducing sugar–amino acid model MRPs displayed scavenging
activity toward stable DPPH and ABTS•+ radicals and AAPH-generated peroxyl radicals,
respectively (p < 0.05). The greatest scavenging activity was observed for Glu-amino acid
mixtures (p < 0.05), regardless of whether glycine or lysine was used, albeit the order of
antioxidant activity was different between sugars and dependent on the type of amino
acid present in some cases. For example, in glycine–sugar models, the relative free-radical
scavenging capacity followed a pattern of Glu > Fru ≈ Xyl >> Suc (p < 0.05); whereas,
when lysine was used, the pattern was Glu ≈ Xyl > Fru >> Suc (p < 0.05). The presence
of Alphacel in each of the heated reaction mixtures containing reducing sugars decreased
(p < 0.05) the radical scavenging activity of soluble MRPs, in all chemical assays used herein.
In contrast, the non-reducing sucrose displayed relatively very low free-radical scavenging
activity in all three assays (p < 0.05).

Table 2. Antioxidant activities of 20 min baked sugar–amino acid model systems 1.

Samples

Assays 2

DPPH
(% Inhibition)

TEAC
(mmol TE Per g Sample)

ORAC
(µmol TE Per g Sample)

(−) 3 (+) (−) (+) (−) (+)

Glycine

Xylose 43.20 ± 1.80 cx 34.61 ± 2.22 by 0.39 ± 0.02 bx 0.27 ± 0.03 by 304 ± 28 bx 275 ± 29 by

Fructose 47.89 ± 2.64 cx 38.13 ± 2.18 cy 0.35 ± 0.02 bx 0.27 ± 0.01 by 510 ± 27 cx 412 ± 20 cy

Glucose 57.76 ± 3.32 dx 43.12 ± 2.71 dy 0.48 ± 0.02 cx 0.36 ± 0.03 cy 562 ± 29 cx 439 ± 28 cy

Sucrose 4.83 ± 0.31 ax 4.96 ± 0.84 ax 0.01 ± 0.00 ax 0.01 ± 0.00 ax 4.60 ± 0.98 ax 4.5 ± 1.2 ax

Lysine

Xylose 48.90 ± 3.39 cx 36.60 ± 2.03 cy 0.37 ± 0.01 bx 0.23 ± 0.01 by 382 ± 26 bx 309 ± 18 by

Fructose 38.68 ± 1.19 bx 27.12 ± 1.11 by 0.28 ± 0.02 bx 0.19 ± 0.01 by 365 ± 23 bx 277 ± 23 by

Glucose 50.56 ± 3.07 dx 38.31 ± 2.62 cy 0.39 ± 0.01 bx 0.30 ± 0.01 bx 416 ± 37 cx 335 ± 42 by

Sucrose 5.83 ± 0.52 ax 5.72 ± 0.39 ax 0.02 ± 0.00 ax 0.02 ± 0.00 ax 13.8 ± 3.2 ax 14.9 ± 2.7 ax

1 Value represents mean ± SD (n = 3), significant differences were analyzed with ANOVA with Tukey’s HSD test. Superscripts a–c denote
significant differences (p < 0.05) in columns. x,y denote significant differences (p < 0.05) in rows. Samples heated at 150 ◦C for 20 min.
2 DPPH represents DPPH radical scavenging antioxidant capacity, values are expressed as % inhibition. TEAC represents Trolox equivalent
antioxidant capacity, values expressed as mmol Trolox equivalents (TE)/g samples. ORAC represents oxygen radical absorption capacity,
values expressed as µmol TE per g samples. 3 (−) without Alphacel matrix, (+) with Alphacel matrix.

3.3. MRP and NO Production in Differentiated Caco-2 Cells

Soluble products recovered from different sugar–amino acid mixtures heated for
20 min at 150 ◦C were tested in 21-day differentiated INF-γ + PMA pre-treated Caco-2
cells to determine relative affinity to control NO production (Figure 2A). The type of sugar–
amino acid combination used to produce MRPs had an effect on NO production in Caco-2
cells, whereas no effect was observed when Alphacel was present. Heated Glu-lysine
MRPs displayed inhibition of NO induction in cells that were relatively greater than the
Glu-glycine MRPs (p < 0.05). In contrast, Xyl-amino acid and Fru-amino acid mixtures
promoted NO synthesis, with relatively greater stimulation (p < 0.05) occurring for the
Fru-glycine MRP mixture. Extending the heating time to 40 min did not change the relative
pattern of MR-induced NO responses in Caco-2 cells, albeit absolute values were slightly
increased (Figure 2B). Pre-treating cells with heated non-reducing, sucrose–amino acid
mixtures, produced only a small inhibitory effect on INF-γ + PMA-induced NO production.
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3.4. Effects of MRPs on Caco-2 Cell Viability and Paracellular Permeability

The MTT assay was used to assess the viability of Caco-2 cells when exposed to MRPs
and alcohol. The MTT assay employs tetrazolium salts to measure the mitochondrial
metabolic rate of cultured cells to reduce MTT to an insoluble purple formazan product,
and by doing so, indirectly reflects the viable cell numbers. Mitochondria generate reactive
oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated
changes in the cellular redox state. The presence of MRPs at concentrations employed
herein were not cytotoxic (MTT values > 90%). Low recovery (5–8%) of Lucifer yellow from
the basolateral side of Caco-2 culture also confirmed the integrity of monolayers when
exposed to MRPs. The TEER values were also not affected by MRP treatment, confirming
the permeability integrity of monolayers. The addition of 7.5% ethanol, however, produced
a notable change in cell membrane function, as shown by a significant (p < 0.05) reduction in
the TEER value from the blank; however, the reduction in TEER corresponded to relatively
high MTT values that ranged from 88% to 90%. Pre-treating Caco-2 cells with soluble
MRPs produced from 20 min of heating, prior to exposing cells to ethanol, produced large
variability on measured TEER values (Figure 3A). In general, only Fru-amino acid mixtures
produced significant (p < 0.05) compensation for the reduced TEER value observed in
cells treated with alcohol, almost approaching initial levels observed with the non-alcohol-
treated cells (p < 0.05). This was particularly the case with Fru-glycine MRPs, which
protected Caco-2 cell TEER values from alcohol exposure to a greater extent than their
Fru-lysine counterpart (p < 0.05).

Further fractionation of the bulk Fru-glycine-derived MRPs into low and high molecu-
lar weight components respectively, revealed that the observed protection from ethanol
exposure was attributed only to the low molecular weight fraction (LMW) (Figure 3B).
Protection obtained from the LMW fraction was significantly greater (p < 0.05) than that
obtained from the high molecular weight Fru-glycine fraction and corresponded to what
was observed with the bulk MRP.

3.5. Effects of MRPs on Caco-2 Cell TEER Values and TJ Membrane Proteins

The results obtained with cells that were treated with 7.5% alcohol to reduce the
intestinal TEER value also produced alterations with integral tight-junction (TJ) membrane
proteins that included Claudin 4, occludin, and ZO-1. These proteins are anchored to
the actin-based cytoskeleton and are important for regulating paracellular movement of
hydrophilic compounds. The Fru-glycine amino acid MRPs which exhibited the greatest
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relative degree of protection towards intestinal TEER values when exposed to 7.5% alcohol
also had visual evidence for an affinity to protect TJ proteins. For example, immunoflu-
orescence staining enabled visualization of Claudin 4, occludin, and ZO-1 proteins, as
continuous bands present at intercellular borders in the untreated Caco-2 monolayers
(Figure 4). The incubation of cells with 7.5% ethanol dislocated all three TJ proteins from
peri-junctional cellular borders, producing visible openings between adjacent cells. Incubat-
ing Caco-2 cells with Fru-glycine MRPs prior to alcohol treatment reduced the dislocation
of Claudin 4, occludin, and ZO-1, and to some extent, the peri-junctional gap between cells.
These findings support the observations made with TEER values on cells exposed to oxida-
tive stress induced by 7.5% ethanol. Confirmation of this finding using electrophoresis to
visualize changes in TJ proteins showed that the LMW fraction recovered from Glu-glycine
MRP was uniquely active for this protection (Figure 5A). A semi-quantitative analysis of
the electrophoresis protein separations confirmed this effect (Figure 5B).
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4. Discussion

The Maillard reaction represents a complex series of reactions in heated foods that
initiate when a carbonyl group from a reducing sugar reacts with an amine from available
amino acids or peptides. The kinetics of the reaction are facilitated by heat. Reaction rates
as are the distribution of specific products that contribute to flavor (e.g., aromas from early
to intermediate stage), texture, and color (e.g., products from late stage) qualities [29–31].
In addition, strategies for generating MRPs for food preservation [31–33] have been based
on reports of antioxidant activity [12,20,34,35]. There has also been interest in the observed
health benefits of MRPs attributed to possible carry-over anti-inflammatory effects associ-
ated with gut health [22,36–39]. Due to the chemical complexity of the MR, many studies
have relied on using simple aqueous sugar–amino acid model systems to understand the
conditions that control the reaction rate and bioactivity of generated products [34,35,38–40].
Although great success has been achieved using this approach to further our overall un-
derstanding of MR, the absence of a matrix precludes extrapolating results that concern
the influence of heat transfer kinetics to produce MRPs in food systems [11]. This study
attempted to compare the significance of including a non-reactive matrix along with testing
effects of different sugar and amino acid reactants on the quantity and quantity of differ-
ent model MRPs generated using dry heat. To assess bioactivity, attention was directed
at monitoring differences in antioxidant activity using chemical tests and differentiated
Caco-2 cells to measure specific intestinal functionalities.

The activation energies for the Maillard reaction activation energy cover a wide
range of 23–238 kJ/mol [41], and are dependent on reaction conditions. For example, an
activation energy of 170 kJ/mol reported using a sugar–whey protein mixture varies greatly
from what is required to bake cookies (e.g., 10.6 kJ/mol) [42]. In the present study, the
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addition of Alphacel with different reactants appeared to reduce to the rate of the Maillard
browning during heating according to observed recovery of soluble browning products,
along with relative sugar losses and color changes. The relevance of having Alphacel
present during the reaction was specific to the types of sugar and amino acid reactants
used to generate MRPs during 20 min of heating. In fact, sugar type was previously shown
to contribute relatively more to MR browning than the type of amino acid [21]. Differences
in specific melting points for individual sugars [43] and the relative extent of electrophilic
carbonyl groups [44] are reasons for the high contribution and specificity of sugars to
initiate browning and the production of polymeric late-reaction melanoidin products.
In the present study, the addition of Alphacel to different sugar–amino acid mixtures
reduced the relative magnitude of sugar losses, particularly for fructose and glucose. The
presence of a matrix to either absorb thermal energy, or to hinder energy transfer in the
medium uniformly, could explain the notable differences in losses of hexose sugars and
the generation of MRPs. Only a small change in sucrose loss and color formation was
observed for the non-reducing sucrose–amino acid mixture, regardless of the presence or
absence of a matrix. The browning observed with sucrose likely occurred as a result of
caramelization attributed to the high heating conditions used, or possibly the initiation of
MR after hydrolysis of sucrose to elemental reducing sugars, glucose and fructose, which
then reacted with amino acids to generate MRPs.

The chemical antioxidant assays employed herein to assess free-radical scavenging
activity of MRPs have been categorized as hydrogen atom transfer (HAT) for the ORAC
assay and electron transfer (ET), which describes both the TEAC and DPPH assays, respec-
tively [45]. The presence of Alphacel in sugar–amino acid mixtures produced a small but
significant effect on the free-radical scavenging capacities of different MRP products. A
temporal pattern of MRP-generated free-radical scavenging properties has been reported
previously using similar model systems, but in the absence of a non-reactive matrix, results
were attributed to specific early to intermediate MRP products associated with thermolysis
of Amadori (aldo)- and Heyns (keto)- (intermediate products [46–48]), and also heterocyclic
products derived at later stages of the reaction [45,49]. Although the type of reducing
sugar has often been the focus for explaining the relative extent of free-radical scavenging,
lysine has been regarded as a primary amino acid for this outcome in aqueous model
systems [50,51]. Reports have also shown that Glu-lysine MRPs exhibit peroxyl radical
scavenging from the chemical ORAC assay, which corresponds to Caco-2 intestinal in-
tercellular antioxidant capacity [5]. It is noteworthy, however, that others observed that
glycine produced higher ABTS scavenging activity and melanoidin content, compared
to lysine from different bread formulations [2]; and moreover, can accelerate browning
when added to a cysteine-xylose reaction [52]. These results suggest that the impact of
differences in the food matrix and MR component composition can affect the rate of MR
and influence specific products formed, which vary in antioxidant activity. The fact that
sucrose displayed markedly lower free-radical scavenging activity regardless of the amino
acid type, and the presence of Alphacel, indicates that our findings pertain mainly to
non-reducing sugar–amino acid involvement in generating functional MRPs.

The differentiated inflamed Caco-2 enterocyte model used herein characterized the
effect of different crude and fractionated MRPs on nitric oxide production [21,22,53]. The
model requires pre-exposure of cells to MRP for 24 h to mitigate a subsequent INF-γ + PMA-
stimulated inducible nitric oxide synthase (iNOS) response, without interfering with cell
viability. Validation of this assay using aminoguanidine and pyrrolidine dithiocarbamate
inhibitors of iNOS and monitoring cytokine responses in Caco-2 cells has been reported [22].
In the present study, the presence of Alphacel along with different sugar–amino acids to
generate different MRPs within 20 min of heating produced no differences in MRP-induced
Caco-2 cell NO production. Extending the heating time of the same reactants to 40 min
did not dramatically change the magnitude of MRP-induced effects on NO production.
Moreover, regardless of the presence of Alphacel, or difference in heating time in this
study to generate MPRs’ production, the type of reducing sugar was the primary factor for
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evoking a simultaneous effect on NO production in cytokine-treated cells. A lesser effect
was observed using lysine or glycine respectively, to generate different MRPs. Inhibiting
the IFN-γ-PMA cytokine induced NO production in Caco-2 cells with Glu-lysine- and
Glu-glycine-generated MRPs pre-treatment, which confirmed the results of our former
study, that used similar baking temperature and times to generate bioactive MRPs [21].
However, in direct contrast was the observation that MRPs derived from heated Fru-amino
acid mixtures synergistically stimulated NO production in cytokine-treated Caco-2 cells.
A lesser stimulation was also observed with the Xyl-lysine MRP. Advanced glycation
end-products produced in other studies demonstrated activity to activate nuclear factor
Kappa-B in macrophages and induce NO release [54]. Hence, the type of sugar and amino
acid used to generate MRPs should be particularly relevant for generating NO production
in inflamed Caco-2 cells. In the present study, enhanced stimulation of NO in INF-γ +
PMA-induced Caco-2 cells, that were pretreated with Fru-glycine MRPs, did not result in
Caco-2 cell cytotoxicity, thus NO concentrations reached by stimulation were not toxic to
the cells.

The activity of NO to induce or abate dysfunction of intestinal cell barrier and function
depends on the cellular concentration. At low levels, NO can mitigate oxidative stress by
reducing free-radical and metal-catalyzed lipid peroxidation, and serve to trigger signal
transduction mechanisms that control gene expression of antioxidant enzymes [55,56]. Al-
ternatively, excess NO production can lead to generation of reactive peroxynitrate radicals,
which degrade cytoskeletal proteins, leading to epithelial dysfunction. Using the Caco-2
cell model to monitor changes on the intestinal epithelial barrier [24,26], the pre-treatment
with MRPs derived only from Fru-glycine MRPs conferred a significant protective effect
when the epithelial cells are subjected to acute alcohol treatment. Ethoxy radicals produced
from alcohol evoke an oxidation and reduction imbalance that disrupts barrier function
in Caco-2 epithelial cells [23]. Recent studies have reviewed the important capacity of
bioactive food components, such as polyphenols and probiotic fermentation products,
to maintain, or increase, TEER in order to protect against a loss in intestinal permeabil-
ity [57,58]. The capacity for Fru-glycine MRPs to protect against alcohol-induced lowering
of TEER values and reduce disruption of the cytoskeleton (e.g., expression of tight-junction
protein) was shown for the first time in this study. Taken together with the free-radical scav-
enging activity and affinity to synergistically stimulate NO in cytokine-treated intestinal
cells, MRPs derived specifically from Fru-glycine reactants were shown to have a potential
important role to protect epithelial function from oxidative stress, which was not observed
previously by other bioactive MRPs.

A common outcome of many different in vitro cell-based model studies, that focused
on numerous bioactivities observed for both crude Glu- and Fru- MRP mixtures, identified
a small molecular weight component(s) that elicited activity [21,50,59–61]. A similar
observation was made herein, where a LMW (e.g., <1 kDa) fraction recovered from the
bulk Fru-glycine MRP was attributed to the protection observed in the TEER value and TJ
protein dislocation, induced by alcohol in differentiated Caco-2 cells. Albeit challenging,
further studies are required to attempt to isolate and characterize this and possibly other
individual active components of Fru-glycine MRPs that display this capacity.

5. Conclusions

This study adds to our understanding on how generation of MRPs can vary depending
on the presence of a definable matrix, and moreover, the different types of reactant sugars
and amino acids used as precursors in the reaction. The inclusion of Alphacel as a non-
reactive matrix contributed only to a small reduction in MRP yield, but produced significant
changes in antioxidant activities, thereby suggesting that either absorbance or hindrance
of energy transfer attributed to a matrix can to some extent influence the quality of MRPs
recovered under conditions used in this study. Future studies will be necessary to determine
to what extent Alphacel changed the composition of different MRP products when present
during heating. Varying the type of reducing sugar produced the greatest influence on
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both yield and specific functionality of MRPs formed by dry heat. A LMW component
recovered from crude Fru-glycine MRP produced unique protection for Caco-2 cells’ TEER
value, and was for the first time shown to be related to a capacity to stabilize TJ proteins
under conditions of acute oxidative stress. This is another example of a specific bioactivity
for LMW components isolated previously from crude MRPs. The next challenge in MR
research will be to isolate and characterize additional LMW components of MRPs that have
relevance to food sources commonly consumed and which may also contribute directly to
health gut.

Funding: Financial support for the work came from NSERC-Discovery grants (RGPIN 38349 and
04885) to D.D.K. Biosafety approval (B18-0203-A002) was obtained from UBC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is contained within the article.

Acknowledgments: The author wishes to acknowledge Xiumin Chen and Yongting Chen for labo-
ratory assistance and data collection, respectively, and Amelie Huiying Zhang and Kaiwen Mu for
editorial and visualization assistance.

Conflicts of Interest: The author declares that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

ABTS, 2,2′-Azino-bis-(3-ethylbenzothiazoneline-6-sulfonic acid); AAPH, 2,2′-azobis(2-amidino-propane)
dihydrochloride; DPPH, 2,2-diphenyl-1-picrylhydrazyl; FBS, fetal bovine serum; FITC, fluorescein
isothiocyanate; Fru-glycine, fructose-glycine; Fru-lys, fructose-lysine; Glu-glycine, glucose-glycine;
HMW, high molecular weight Maillard reaction products; GAPDH, glyceraldehyde 3-phosphate de-
hydrogenase; LMW, low molecular weight Maillard reaction products; MTT, 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide; MR, Maillard reaction; NO, nitric oxide; ORAC, oxygen radical
absorbance capacity; PBS, phosphate-buffered saline; TEAC, Trolox equivalent antioxidant capacity;
TEER, transepithelial electrical resistance; TJ, tight junction; Xyl-glycine, xylose-glycine; Xyl-lysine,
xylose-lysine; ZO-1, zonula occluden-1.

Appendix A

Table A1. Yield (%w/w) of water-soluble reactants following sugar–amino acid heated with and
without 10% Alphacel in model MR systems 1.

Sample
20 min 40 min

(+) (−) (+) (−)

Glycine

Xylose 49.48 ± 0.06 bx 47.30 ± 0.02 bx 36.23 ± 0.06 bx 36.12 ± 0.02 bx

Fructose 38.53 ± 0.05 ax 33.53 ± 0.09 ay 27.67 ± 0.0 ax 22.57 ± 0.07ay

Glucose 65.73 ± 0.08 dx 55.52 ± 0.05 cy 45.81 ± 0.01 cx 43.02 ± 0.04 cy

Sucrose 86.78 ± 0.08 cx 82.05 ± 0.07 dy 86.47 ± 0.08 dx 80.87 ± 0.07 dy

Lysine

Xylose 41.89 ± 0.03 ax 42.65 ± 0.05 ax 33.64 ± 0.02 ax 35.29 ± 0.12 ax

Fructose 43.76 ± 0.03 ax 40.44 ± 0.04 ax 40.08 ± 0.02 ax 37.30 ± 0.03 ay

Glucose 77.21 ± 0.18 bx 70.64 ± 0.0 by 73.97 ± 0.02 bx 70.34 ± 0.02 by

Sucrose 98.63 ± 0.06 cx 76.48 ± 0.02 by 98.52 ± 0.06 cx 76.25 ± 0.02 by

1 MR: Maillard Reaction, heated at 150 ◦C. Values represent mean ± SD (n = 6). (+), (−) represent sugar–amino
acid model systems without (−) and with (+) 10% Alphacel, respectively. Samples were heated for 20 and 40 min
at 150 ◦C. Yield refers to the presence of both unreacted solutes and generation of water-soluble MRP. a–d Means
in columns with different superscript letters denote significant differences (p < 0.05) in reactants. x,y Means in
rows with different letters denote significant differences (p < 0.05) with the presence of Alphacel matrix.
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Table A2. Antioxidant activities of baked sugar–amino acid model systems 1.

Samples

Assays 2

DPPH
(% Inhibition)

TEAC
(mg/mL Trolox Equivalent)

ORAC
(µmol/Trolox Per g Samples)

(−) 3 (+) (−) (+) (−) (+)

Glycine

Xylose 36.76 ± 7.41 bx 35.41 ± 8.23 bx 0.33 ± 0.03 bx 0.32 ± 0.01 bx 369 ± 23 bx 273 ± 26 by

Fructose 44.34 ± 5.23 cx 44.21 ± 3.78 cx 0.40 ± 0.02 bx 0.33 ± 0.0 bx 512 ± 28 cx 434 ± 21 cy

Glucose 27.45 ± 2.62 bx 26.41 ± 2.91 bx 0.39 ± 0.02 bx 0.37 ± 0.03 bx 555 ± 26 cx 424 ± 28 cy

Sucrose 4.32 ± 0.81 ax 4.27 ± 0.65 ax 0.02 ± 0.00 ax 0.01 ± 0.0 ax 5.44 ± 0.9 ax 4.83 ± 1.2 ax

Lysine

Xylose 27.53 ± 4.19 bx 26.75 ± 3.68 bx 0.23 ± 0.01 bx 0.23 ± 0.01 by 377 ± 27 bx 355 ± 16 bx

Fructose 39.36 ± 6.29 c 38.74 ± 4.89 c 0.40 ± 0.02 bx 0.193 ± 0.0 by 354 ± 27 bx 296 ± 29 bx

Glucose 24.31 ± 3.67 bx 23.73 ± 3.22 bx 0.35 ± 0.01 bx 0.31 ± 0.0 bx 419 ± 34 bx 355 ± 38 by

Sucrose 5.76 ± 0.42 ax 5.31 ± 0.41 ax 0.03 ± 0.0 ax 0.02 ± 0.0 ax 12.8 ± 3.3 ax 14.0 ± 2.9 ax

1 Value represents mean ± SD (n = 3), significant differences were analyzed with ANOVA with Tukey’s HSD test. Superscripts a–c denote
significant differences (p < 0.05) in columns. x,y Denote significant differences (p < 0.05) in rows. Samples heated for 40 min at 150 ◦C. 2

DPPH represents DPPH radical scavenging antioxidant capacity, values are expressed as % inhibition. TEAC represents Trolox equivalent
antioxidant capacity, values expressed as mg/mL Trolox equivalents/g samples. ORAC represents oxygen radical absorption capacity,
values expressed as µmol/Trolox per g samples. 3 (−) without Alphacel matrix, (+) with Alphacel matrix.
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