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Abstract

Histones undergo numerous covalent modifications that play important roles in regulating gene expression. Previous
investigations have focused on the effects of histone modifications on gene promoters, whereas efforts to unravel their
effects on transcribed regions have lagged behind. To elucidate the effects of histone modification on transcribed regions,
we constructed a quantitative model, which we suggest can predict the variation of gene expression more faithfully than
the model constructed on promoters. Moreover, motivated by the fact that exon spicing is functionally coupled to
transcription, we also devised a quantitative model to predict alternative exon expression using histone modifications on
exons. This model was found to be general across different exon types and even cell types. Furthermore, an interaction
network linking histone modifications to alternative exon expression was constructed using partial correlations. The
network indicated that gene expression and specific histone modifications (H3K36me3 and H4K20me1) could directly
influence the exon expression, while other modifications could act in an additive way to account for the stability and
robustness. In addition, our results suggest that combinations of histone modifications contribute to exon splicing in a
redundant and cumulative fashion. To conclude, this study provides a better understanding of the effects of histone
modifications on gene transcribed regions.
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Introduction

The expression of eukaryotic protein-coding genes is very

complex. Transcription is carried out by RNA polymerase II

(RNAPII), generating a primary RNA transcript (pre-mRNA).

This must undergo a series of modifications to become a mature

messenger RNA. These modifications include the addition of a 7-

methyl guanosine cap at the 59 end, 39 end formation by cleavage

and polyadenylation, and RNA splicing.

The eukaryotic genome is packaged in the form of nucleosomes,

which are the basis of the chromatin structure. The histone

components of the nucleosome undergo multiple post-translational

covalent modifications including acetylation, methylation, phos-

phorylation and ubiquitination [1–2]. Chromatin packaging

imposes an obstacle for protein binding to DNA as well as the

processing and elongation of RNA polymerases [3–4]. Histone

modifications can alter chromatin structure and act alone or

jointly to facilitate numerous biological functions by changing the

charge of the nucleosome particle, and/or by recruiting non-

histone protein effectors [5]. Many types of histone modifications

have been described, leading to the ‘histone code hypothesis’:

specific combinations of histone modifications can result in distinct

downstream effects [6–7]. However, others have proposed that

histone modifications specify functions in cumulative rather than

synergistic ways [8–10].

Links between gene expression and histone modifications have

been established. Extensive studies show that histone acetylations

are associated with gene activation [11–13]. Additionally, specific

histone methylations such as H3K4me3 occur around the

transcription start sites (TSS) of expressed genes and are associated

with transcription initiation [14–15]. In particular, a recent study

demonstrated that the histone modification levels in the promoter

region are quantitatively correlated with the expression of the

corresponding gene [16–17]. Many such studies focused on the

effects of histone modifications on promoters, but investigations of

the effects of such modifications along the transcribed region

lagged behind. Gradually accumulated evidence suggests that

histone modifications along the transcribed region might facilitate

transcription elongation by RNAPII [18–21], which is also an

essential step in gene regulation [22]. For example, H3K36me3,

which accumulates toward the 39 ends of genes, could regulate

transcription elongation by enabling dynamic changes in chroma-

tin compaction; H4K20me1 is also a marker of transcription

elongation owing to its enrichment on the transcribed regions of

active genes and sensitivity to specific elongation inhibitors.

Furthermore, increasing evidence suggests that splicing is tightly

coupled to transcription elongation. Pre-mRNA is spliced while it

is still tethered to the DNA by RNAPII [23–25]. RNAPII can

recruit many RNA splicing factors via its C-terminal domain

(CTD) [23,26–27]; the phosphorylated CTD of RNAPII interacts

with the histone-lysine N-methyltransferase SETD2 [28]. Tran-

scription elongation accompanies chromatin remodeling, which is

frequently associated with histone modifications. Several chroma-

tin remodelers have been shown to affect splicing by interacting

with splicing factors and influencing the accumulation of RNAPII

[29–30]. These facts suggest the possibility that histone modifica-

tions on transcribed regions might help regulate pre-mRNA

splicing. In particular, a recent study has revealed that specific
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histone modification H3K36me3 could interact with polypyrimi-

dine tract–binding protein (PTB) to regulate alternative splicing

[31]. These facts elucidate the importance of histone modifications

on transcribed regions, but the corresponding effect is still little

understood.

In this paper, by analysis of genome-wide ChIP-seq datasets of

histone modifications and the RNA-seq dataset in three human

somatic cells, we derived a quantitative model for predicting gene

expression using histone modifications on transcribed regions.

Additionally, a quantitative model for predicting exon expression

values was constructed using histone modification levels on

constitutive and alternative exons, and this model was found to

be general across different exon types and even different cell types.

Furthermore, a network based on partial correlation analysis was

constructed among histone modifications and exon expression.

This method identified the histone modifications that contribute

directly to exon inclusion with the transcription effect regressed

away. The results implied that two specific histone modifications

could directly influence exon expression, while other modifications

could act in an additive way to account for the stability and

robustness. We also studied the combinatorial effects of histone

modifications, and investigated to what extent the histone code

hypothesis is valid for splicing.

Results

Histone Modifications Along Transcribed Regions of
Genes are Predictive for Gene Expression
Preliminary studies have indicated that histone modifications

around promoters are predictive for expression of the correspond-

ing gene [16–17]. Therefore, we examined whether there is a

quantitative correlation between histone modifications along gene

transcribed regions and the associated gene expression. The

genome-wide ChIP-seq datasets of 38 histone modifications in

human CD4+ T cells [32–33] and the RNA-seq dataset [34] were

derived; the histone modification levels on gene transcribed

regions and corresponding gene expression values were estimated

(details are described in the Methods section). A simple linear

regression model was used to relate the gene expression value to

the histone modification levels, and the performance of the model

was assessed by determining the Pearson correlation coefficients

between predicted and measured expression. More sophisticated

procedures have been applied to optimize the prediction, for

example, in [16], different pseudo-counts were employed for the

logarithmic transformations of different histone modifications to

maximize their correlation with gene expression; alternatively,

SVM regression [17] was used to improve linear regression.

However, in this study only simpler procedures were borrowed to

more clearly demonstrate and elucidate the quantitative relation-

ship.

In Figure 1A, the Pearson correlation coefficient is 0.92 (p-

value of t-test ,2.2e-16), suggesting that histone modification

levels along the transcribed regions were also strongly correlated

with the gene expression values. Detailed information about the

regression model can be found in Table S1. In addition, we

shuffled the input order of histone modifications to ensure that

none was in the right place, and then predicted gene expression;

the Pearson correlation coefficients between predicted and

measured expression values were all lower than 0.2. To

compare the predictive power between transcribed regions and

promoters, we repeated the experiments described in [16]. The

Pearson correlation using the promoter model is 0.81

(Figure 1B), lower than that using the transcribed region model.

Moreover, the comparison was repeated using ChIP-seq and

RNA-seq datasets from two other cell types, the CD36+ T cell

[35–36] and the H1 cell line [37] (Figure S1). In the CD36+ T

cell, the Pearson correlation coefficients are 0.77 for the

promoter model and 0.91 for the transcribed region model; in

the H1 cell line, the Pearson correlation coefficients are 0.78 for

the promoter model and 0.92 for the transcribed region model.

These facts are consistent with our observations in the CD4+ T

cell, suggesting that the histone modifications on transcribed

regions might predict gene expression more faithfully.

In the model for transcribed regions, many histone modifi-

cations have significant regression coefficients (p-value corrected

by Benjamini method [38],0.001), and H3K36me3,

H4K20me1 and RNAPII have the largest positive regression

coefficients. The coefficients of the linear model could reveal the

importance of histone modifications; that is, modifications with

large positive coefficients probably function as activators while

those with large negative coefficients probably correspond to

suppressors. Accordingly, H3K36me3 and H4K20me1 along the

transcribed regions could be crucial in regulating gene

expression. Consistently, previous studies have observed that

H3K36me3 and H4K20me1 are enriched along transcribed

regions, and have indicated that these modifications could

regulate RNAPII-catalyzed transcription elongation by enabling

dynamic changes in chromatin compaction or collaborating with

specific elongation inhibitors [18–21].

Histone Modifications Along Exons are Predictive for
Exon Expression
Splicing is functionally coupled to transcription [24,39–41],

raising the possibility that histone modifications might also

contribute to the exon splicing. Having established a good

quantitative correlation between gene expression values and

histone modification levels on transcribed regions, we next asked

whether there is also a correlation between exon expression values

and histone modification levels along exons in transcribed regions.

The constitutive exons were first investigated, which are

common to all mRNA transcripts for a given gene. A linear

regression model and ten-fold cross-validation were employed

again to characterize and confirm the quantitative relationship.

Here, the explanatory variable is the exon expression value and

the independent variables are the histone modification levels and

RNAPII levels of the associated exons. As illustrated in Figure 1C,

the Pearson correlation coefficient is 0.82 (p-value of t-test ,2.2e-

16). Further information about the regression can be found in

Table S1.

Ideally, the constitutive exon is an indicator of gene transcrip-

tion, and the expression levels of constitutive exons tend to be the

same as the expression of the entire gene transcript. Thus, the

above quantitative correlation is actually a correlation between

histone modifications along constitutive exons and associated gene

expression. Alternative splicing selectively includes or excludes

RNA sequences, enabling individual genes to yield different

transcripts [42]. If histone modifications were related to the

splicing process, we would also expect to find a quantitative

correlation between histone modifications along alternative exons

and associated exon expression. To address this possibility, we

considered the cassette exons (i.e. exons totally included or

skipped). The exons with negative inclusion values were regarded

as alternative splicing exons in the considered cell line (for details,

see Methods). Linear regression and ten-fold cross-validation were

employed to characterize and confirm the quantitative relation-

ship. The good agreement illustrated in Figure 1D (r = 0.71, p-

value of t-test ,2.2e-16) suggests that the levels of histone

modification along the alternative splicing exons are also well
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correlated with the expression values of the corresponding exons.

In this linear regression model, H3K36me3 and H4K20me1 have

the highest regression coefficients, suggesting a heavy influence of

these two histone modifications in governing the exon expression

levels. Consistently, recent studies have demonstrated significantly

more H3K36me3 and H4K20me1 on exons than introns [43–44],

and H3K36me3 has been validated as a regulator of alternative

splicing [31].

Since exon expression is highly correlated with its associated

gene expression, we needed to exclude the possibility that we were

still modeling the correlation between gene expression and histone

modifications. Therefore, the model for gene expression was used

to predict the expression of cassette exons based on the histone

modification levels on cassette exons. The accuracy was 0.63,

which is about 12% lower than the model for cassette exons. This

suggests that the relationship between histone modifications and

gene expression could be different from that between histone

modifications and exon expression.

The Quantitative Correlation between Histone
Modifications and Exon Expression is General
Given the good quantitative correlations above, we next

investigated whether this correlation is general. Firstly, the linear

regression models constructed have demonstrated that histone

modifications are quantitatively correlated with the expression of

both constitutive and alternative exons. Furthermore, we assessed

whether such quantitative correlations are shared by both kinds of

exons. A linear regression model from constitutive exons was built

and used to predict the expression of alternative exons (exon

inclusion value ,0). As illustrated in Figure 2A, the predicted and

measured values are highly correlated (r = 0.71, p-value of t-test

,2.2e-16 for alternative exons). In addition, the model from

constitutive exons was used to predict the expression of exons

whose exon inclusion values are less than 20.2, 20.4 and 20.5.

The Pearson correlation coefficients were 0.69, 0.67 and 0.65,

respectively (p-value of t-test ,2.2e-16). These good agreements

implied that the quantitative relationship between histone

modification levels and exon expression values may be general

and not limited to a specific kind of exon.

Figure 1. The quantitative correlation between histone modifications, gene expression and exon expression. The x axis represents the
measured value of gene expression or exon expression. The y axis represents the predicted value by the linear regression model using the histone
modification levels as input. (A-B) The scatterplots with predicted and measured gene expression values for transcribed regions and promoters. (C-D)
The scatterplots with predicted and measured exon expression values for constitutive exons and cassette exons.
doi:10.1371/journal.pone.0067448.g001
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In addition, we investigated whether the resulting quantitative

correlation between histone modifications and exon expression is

limited to a specific cell type or is ubiquitous among cell types.

First, a linear regression model was trained on the CD36+ T cell

dataset, and next, according to the model obtained, the histone

modification levels in the CD4+ T cell were used as input to

predict the corresponding exon expression values. As shown in

Figure 2B, the Pearson correlation coefficient between the

predicted and measured expression values is 0.72 (t-test p-

value,2.2e-16). However, it is worth noting that the exon

expression levels in CD4+ and CD36+ T cells are similar.

Therefore, to exclude the possibility that this similarity is

responsible for the good prediction performance, we analyzed

the exons whose expression levels differed significantly between the

two cell types. The exons whose expression levels changed at least

2-fold, 5-fold and 10-fold between two cell types were selected.

The regression model derived from the CD36+ T cell was used to

predict the expression levels of these selected exons in the CD4+ T

cell. The Pearson correlation coefficients between the predicted

and measured exon expression levels were respectively 0.75,0.68

and 0.69 (Figure S2A-C). Moreover, a linear regression model was

trained on H1 cell line datasets. According to this model, the

histone modification levels in CD4+ T cells were then used as

input to predict the corresponding exon expression values. As

shown in Figure 2C, the Pearson correlation coefficient between

the predicted and measured expression values was 0.65 (t-test p-

value,2.2e-16). Also the exons whose expression values changed

at least 2-fold, 5-fold and 10-fold between two cell types were

selected. The corresponding Pearson correlation coefficients were

respectively 0.65,0.63 and 0.62 (Figure S2D-F).

Thus, the results suggested that the quantitative correlation

between histone modification levels and exon expression values

could be universal across different exon types and even different

cell types.

Figure 2. The quantitative relationship between histone modifications and exon expression is general. The x axis represents the
measured value of exon expression. The y axis represents the predicted value by the linear regression model using histone modification levels as
input. (A) The scatterplot with predicted and measured exon expression values for cassette exons. The linear regression model was trained on
constitutive exons. On the basis of the resulting model, the histone modification levels on cassette exons were employed as input to predict the
corresponding exon expression values. (B-C) The scatterplots with predicted and measured exon expression values in the CD4+ T cell. The linear
regression models were trained on exons in the CD36+ T cell and H1 cell line, respectively. On the basis of the resulting models, the histone
modification levels on exons of the CD4+ T cell were employed as input to predict the corresponding exon expression values.
doi:10.1371/journal.pone.0067448.g002
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An Interaction Network Among Histone Modifications
and Cassette Exon Expression
A general quantitative relationship between histone modifica-

tions and exon expression has been presented above, but it cannot

be interpreted as a direct interaction, since the quantitative

correlation does not provide a way of distinguishing between direct

and indirect associations. Some works have been reported to infer

the relationship among histone modifications, non-histone proteins

and gene expression [45–46], or the interplay among exon

splicing, conserved sequence and splicing factors [47]. Those

studies used clustering-based Bayesian network learning methods

to recover the interaction relationships, but the clustering

procedure might cause loss of information, and different proce-

dures could yield different network structures [45]. In addition, the

expression of alternative exons is to a great extent determined by

the expression of the corresponding gene. Thus, to investigate

whether a specific histone modification could result in differenti-

ation between exon expression and gene expression, it is necessary

to remove the transcription effect from exon expression. Gene-

level-normalized exon intensity, which is defined as the ratio of

exon expression to gene expression, has been widely used for

studying alternative splicing. However, owing to the high-level of

inherent noise, some studies using this approach have reported low

validation rates for the identification of alternative splicing events

[48–50]. Considering these facts, we applied the partial correla-

tions to remove the transcription effect from exon expression and

deduce the putative direct interaction between histone modifica-

tions and exon inclusion. Partial correlation has been widely

utilized to model gene co-expression network and protein-protein

interaction network [51–53]. A recent study employed partial

correlation to study exon co-splicing networks, and achieved a

higher statistical power than the approach based on gene-level-

normalized exon intensity [54]. The partial correlation coefficient

is the correlation that remains between two variables when the

effects of the other variables are regressed away. For example, in

order to exclude the possibility that a high correlation between one

histone modification and exon expression is due to the association

between that histone modification and gene expression, we

calculated the partial correlation coefficient between the histone

modification and exon expression conditional on gene expression.

If the partial correlation remained high, it could be claimed that

there is an association between the histone modification and exon

expression and this association represents a putative direct

regulatory relationship. In addition, the links between different

histone modifications on exonic regions were studied, where a high

correlation between two modifications is not due to their

association with a third histone modification.

To derive such a model, we first measured the histone

modification intensities on cassette exons, associated exon

expression values and gene expression values. The partial

correlation analysis was carried out directly with no data

discretization, and thus avoided information loss as well as

network structure instability resulting from different discretization

methods. To eliminate indirect influences, each pair-wise partial

correlation between histone modifications and exon expression

was obtained conditional on all other histone modifications and

gene expression. All pair-wise partial correlation coefficients are

presented in Table S2. Next, a partial correlation threshold was

selected to determine whether there is a regulatory relationship

between two features, and to decide whether connections are

assigned to such pairs. The choice of significance threshold

remains a major challenge for network studies. Several approaches

have been developed to select the threshold, such as the

permutation procedure [55–56], expected FDR control [57] and

scale-free topology criterion [58]. The FDR control and scale-free

topology criterion methods are suitable for analyzing large-scale

networks, but the histone modification interaction network is

small. Therefore, a partial correlation threshold was selected based

on the Bayesian information criterion (BIC), which accounts for

the model complexity. The pairs between different histone

modifications, exon expression and gene expression were sorted

by descending their partial correlations. Next, the networks were

generated by successively assigning edges to the sorted pairs, and

then, the BIC score was calculated for each network. The blue line

in Figure 3 indicates the BIC scores for different networks, and the

pink line demonstrates the differences between two adjacent BIC

scores. The BIC score was found to decrease continuously with the

increasing model complexity, but it decreased only slightly after

the interaction pair with partial correlation 0.1189. This suggests

that the interactions with partial correlations greater than 0.1189

could be crucial for increasing the prediction accuracy of the

whole model, so the partial correlation coefficient 0.1189 was

chosen as threshold. Furthermore, the exon expression values and

histone modification levels were permuted 100 times and a

distribution of the new pair-wise partial correlations was recalcu-

lated for each permutation. The distribution of partial correlation

coefficients is indicated in Figure S3. Permutation failed to create

any associations with partial correlations over the selected

threshold. The z-score of the threshold is 18.66 in this distribution.

This fact suggests that the threshold found in the original dataset

could not be generated by random chance. According to the

selected threshold, the connections were assigned to the network.

Thus, an undirected network for cassette exons was obtained, in

which the nodes represent histone modifications and exon

expression and the edges represent direct interactions between

the connected pairs.

As demonstrated in Figure 4A, many histone modification

interactions were observed, including the interactions between

different levels of the same modification (H3K79me1,

H3K79me2 and H3K79me3, together with H3K4me1,

H3K4me2 and H3K4me3), between modifications on different

amino acids (H3K4me1, H3K4me2 and H3K9me1), and

between different kinds of modifications (H3K9ac and

H3K4me3). In addition, two histone modifications

(H3K36me3 and H4K20me1) and gene expression directly

interacted with cassette exon expression and they all had

positive partial correlations with exon expression. Some

experiments described in the literature are consistent with our

observations [20,29–31]. However, it is worth noting that not

both of the inferred histone modifications have the highest

Pearson correlation coefficients with exon expression (see Table

S2). To further validate such connections, we used all possible

combinations of one and two histone modifications to predict

the exon expression levels. It was expected that the inferred

direct interactions would yield the most accurate prediction,

even if not both of them have the highest Pearson correlation.

Ten-fold cross-validation was employed to train and ascertain

the models. As demonstrated in Figure 4B, the one-feature

model comprising H4K20me1 and the two-feature model

comprising H4K20me1 and H3K36me3 gave the highest

prediction accuracies in their corresponding groups (Pearson

correlation coefficients are 0.63 and 0.69, respectively). This fact

to some extent confirmed that the interactions inferred by our

method contribute directly to exon expression, whereas the

other histone modifications could contribute indirectly to exon

expression even if they have higher Pearson correlations with

exon expression.
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Combinations of Histone Modifications Regulate Exon
Expression in an Accumulative and Redundant Fashion
Previous studies have explored the way in which the ‘histone

code’ works. Some have hypothesized that histone modifications

result in downstream effects in a synergistic fashion [6–7], while

others have suggested that they specify functions in a collective

manner [8–10]. Those studies focused on investigating how

combinations of histone modifications on promoters regulate gene

expression, but little is known about histone modifications on exon

regions. We have obtained an interaction network among histone

modifications and cassette exon expression. Furthermore, we

assessed how such combinations on exons direct exon expression.

Two combinations as examples were taken and an analytical

approach similar to that in [17] was employed. Firstly, the network

indicated that H3K36me3 and H4K20me1 interact directly with

exon expression. All exons were then grouped into four bins

according to the intensities of these two modifications. As

demonstrated in Figure 5A-B, exon expression is lowest when

both H3K36me3 and H4K20me1 are low, highest when both

modifications are high and moderate when one modification is

high and the other low. In addition, another combination

(H2BK5me1 and H3K79me2) was considered, which interacts

directly with histone modification H3K79me1. A significant

difference was observed in H3K79me1 intensity from other bins

when all of the modification intensities in the combination were

high (Figure 5C-D). Similar phenomena were also observed in two

other cell types CD36+ T cell and H1 cell line (Figure S4). These

facts suggest that the combinations of histone modifications could

regulate both exon expression and histone modifications in a

cumulative rather than a synergistic fashion. To further validate

this hypothesis, a multivariate regression model with interaction

terms was performed (for details, see Methods). In the regression

model (741 interaction terms), only six interactions are significant

(Table S1, p-value corrected by Benjamini method [38],0.001).

Furthermore, to assess the importance of these interactions in

determining exon expression levels, we compared the above

regression model with a singleton model that contains no

interaction terms. Ten-fold cross-validation was also utilized to

evaluate the predictive power of the interaction model, and the

Pearson correlation between predicted and measured exon

expression levels was taken as the measure of its accuracy. It

was found that the interaction model improves the accuracy of

prediction by only 0.58% over the singleton model. The

comparison was also repeated in the CD36+ T cell and H1 cell

line. Consistent with the observations in the CD4+ T cell, the

improvement ratios were still low (2.9% in the CD36+ T cell and

3.4% in the H1 cell line). The Pearson correlation coefficients are

0.70 and 0.71 for singleton models; 0.68 and 0.69 for interaction

models. These facts suggest that the contribution of interactions to

the prediction of exon expression is not substantial. Additionally,

we performed the interaction regression models on all histone

modification combinations predicted by the partial correlation

Figure 3. Threshold selection for the interaction network among histone modifications, gene expression and exon expression. The x
axis represents the pairs between histone modifications, exon expression and gene expression. Such pairs were sorted by descending their partial
correlations along x axis. The left y axis represents the BIC score, and the right y axis represents the difference in BIC score. Edges were successively
assigned to the pairs along x axis, and the BIC scores for the newly-generated networks were calculated (blue line). Furthermore, the differences
between two adjacent BIC scores were calculated (pink line). For clearer illustration, the shadowed part was enlarged into the figure in the middle.
The grey dash indicated the 20% of the maximum difference, and the red dash indicated the pair between histone modifications with selected partial
correlation threshold.
doi:10.1371/journal.pone.0067448.g003

Epigenetic Impact on Exon Splicing

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e67448



Epigenetic Impact on Exon Splicing

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e67448



network, and compared each of them with the corresponding

singleton model. The interaction models did not make the

accuracy of prediction significantly greater than the singleton

models (Figure S5, the difference was 3% at most). The above facts

to some extent validate the conclusion that combinations of

histone modifications contribute to exon expression in a cumula-

tive not a synergistic way.

In addition, we examined whether the redundancy exists among

the histone modifications. In the unsupervised clustering

(Figure 6A), different histone modifications exert similar intensity

profiles within exons, implying that to some extent there exists

redundancy among histone modifications. As demonstrated in

Figure 6B, many histone modifications show high Pearson

correlations with exon expression, but such correlations are not

consistent with the trend of partial correlations. This also validates

Figure 4. The interaction network among histone modifications, gene expression and exon expression. (A) To enable the maximum
partial correlation coefficient to be 1.0, we normalized them by dividing each coefficient by the absolute value of the maximum coefficient. Colors
were employed to represent the levels of normalized partial correlations. The colors of the edges denote the normalized partial correlations between
connected nodes, and the colors of the nodes indicate the normalized partial correlations between corresponding nodes and the exon expression.
Colors are scaled in the color legend. (B) The prediction accuracies by linear regression models constructed using all possible combinations of one
(blue curve) and two (red curve) histone modifications. The models were sorted by ascending their prediction accuracies. The x axis denotes the
combinations of one and two histone modifications. The y axis denotes the prediction accuracy. The dash line is the prediction accuracy of the full
model by 38 histone modifications as well as RNAPII.
doi:10.1371/journal.pone.0067448.g004

Figure 5. Co-regulation of histone modification combinations. (A and C) The x and y axis respectively represent the intensities of
corresponding histone modifications. According to the histone modification intensities, all cassette exons are grouped into four bins: LL (grey), HL
(purple), LH (blue) and HH (green). Whether the intensity is H or L is determined by comparing the histone modification intensity with the
corresponding median values (1.63 for H3K36me3, 1.32 for H4K20me1, 1.21 for H2BK5me1 and 0.54 for H3K79me2). (B and D) The distributions of the
exon expression and the intensity of H3K79me1 for the four bins.
doi:10.1371/journal.pone.0067448.g005
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the existence of redundancy. Furthermore, the extent to which the

redundancy exists was explored. As shown in Figure 5 and Figure

S4, when both the histone modifications (H3K36me3 and

H4K20me1) have high signals, exon expression is significantly

higher, suggesting that histone modifications are not totally

redundant. Finally, among the redundant histone modifications,

the smallest combination was figured out, which could faithfully

model exon expression. We added histone modifications succes-

sively to the prediction model according to the order of partial

correlation (Figure 6B) and assessed the BIC score. The BIC score

evaluates the prediction power of the histone modification

combination, and meanwhile, penalizes the number of histone

modifications. As shown in Figure 6C, the BIC value decreased

monotonously, indicating that it is beneficial to include more

histone modifications, even if the model complexity was penalized.

However, it reduced only slightly after using the combination

(H3K36me3 and H4K20me1). This fact suggests that such a

combination could be good enough to model the variation of exon

expression, and further validates their major role of in regulating

exon splicing.

Discussion

In this paper, a quantitative model for predicting the effects on

gene expression of histone modifications on transcribed regions

has been presented. We suggest that this model could capture the

modulation of gene expression better than the model constructed

on promoters. On this basis, a quantitative model for predicting

alternative splicing exon expression was constructed using histone

modifications on exons. Furthermore, an interaction network

among histone modifications and cassette exon expression was

constructed using partial correlations. This network indicated that

exon expression is directly influenced by two factors: expression of

the corresponding gene, and a specific combination of histone

modifications (H3K36me3 and H4K20me1). It was also found

that combinations of histone modifications contribute to exon

expression in a redundant and cumulative fashion.

Recently, based on the genome-wide ChIP-seq and RNA-seq

dataset in human CD4+ T cells, Karlic et al. [16] analyzed the

quantitative relationship between histone modifications on pro-

moters and gene expression. Similarly, Gerstein et al. [17]

performed a more systematical analysis using the dataset

generated by modENCODE [59]. Both of these methods utilized

regression models to characterize the quantitative relationship

between histone modification and gene expression (i.e., a simple

regression model in [16] and a SVR model in [17]). However,

these investigations have focused on the effects of histone

modifications on gene promoters, while we assessed the effects of

histone modifications along the transcribed regions on gene

expression regulation. Our study was based on high-throughput

sequencing datasets. To further validate the results, we referred to

the related biological experiments in published literatures. On

several candidate genes, Ref [60–62] utilized quantitative RT-

PCR and ChIP to reveal the high distributions of H3K36me3,

H4K20me1 and H3K27me3 along the transcribed regions, and

indicated the correlation between these histone modifications and

gene expression. These facts suggest that, not only the histone

modifications on promoters, but also those on transcribed regions

could affect gene expression. Moreover, we found that the model

for transcribed regions gives even more accurate predictions than

the model built on promoters [16], implying that histone

modifications on transcribed regions could more directly account

for the variation of gene expression than those on promoters.

Exon splicing and transcription elongation are traditionally

thought to function separately, one at the RNA level, and the

other at the DNA level, but increasing evidence suggests that

splicing is functionally coupled to transcription elongation [25].

On this basis, a linear regression model for predicting exon

expression was built using histone modifications on constitutive as

well as alternative splicing exons. A high prediction accuracy was

obtained, revealing a close association between histone modifica-

tions and exon expression. Consistently, based on quantitative

RT-PCR and ChIP, Ref [31,63] found that the distributions of a

set of histone modifications on alterative spliced exons, including

H3K36me3, H3K4me1, H3K27me3, H3K4me3 and H3K9me1,

significantly changed accordingly with the differential exon

expression in different cell types. These biological experiments

further verified our founding. Recently, a rule-based model was

trained to predict exon inclusion levels (high or low) from the

histone modification combinations [64]. The generated model is in

the form of ‘‘IF … THEN …’’, and had a high prediction

accuracy. As well as this work, that study also implies that histone

modifications along transcribed regions could play a role in

regulating exon splicing. However, that study suggests that such

role is in a switch on/off way, while the results here revealed a

continuous way with levels of histone modifications rising or falling

over a large range of expression values. Furthermore, this

relationship was found to be general across different exon types

and different cell types. This enables us to declare the relationship

between histone modifications on exons and associated exon

expression with more confidence.

To further explore the relationship among histone modifica-

tions, gene expression and exon expression, we constructed an

interaction network based on partial correlations. The network

indicated that aside from gene expression, two histone modifica-

tions (H3K36me3 and H4K20me1) contribute directly to exon

expression. This suggests that such two histone modifications could

account for exon inclusion with transcription effects regressed

away. Consistently, Luco et al. [31] utilized biological experiments

(RNA interference, RNA immunoprecipitation and quantitative

RT-PCR) to validate the causal role of histone modifications in

alternative splice site selections, and indicated that H3K36me3

could interact with PTB protein to regulate alternative splicing. A

preliminary study by Han et al. [45] utilized a Bayesian network to

infer the histone modification regulatory network on gene

promoters, while this work investigates the histone modification

interaction relationships on exons. A recent study [65] indicated

that the cross-talk between histone modifications could evolve over

different genomic elements. Consistently, Zippo et al. [66] found

that if a histone phosphorylation H3S10ph respectively happens

on the enhancer and promoter, it will induce different histone

modifications, and consequently, result in different gene expres-

sion status. Compared to the network on promoters [45], different

histone modification interactions were actually revealed on exons.

This possibly results from three mechanisms. Firstly, promoters

and exons could recruit different protein complexes. Wang et al.

[67] revealed distinct distributions of histone acetyltransferase and

deacetyltransferase on promoters and transcribed regions, includ-

ing p300, CBP, PCAF, MOF, Tip60, HDAC1, HDAC2, HDAC3

and HDAC6. These distinct distributions could contribute to the

different histone modification interaction relationships on promot-

ers and exons. Secondly, the specific sequence features on two

different genomic elements could result in the different regulatory

relationships. For example, compared to promoters, exons have

specific sequence Exon Splicing Silencer (ESS). Luco et al. [31]

indicated that ESS could recruit PTB; furthermore, PTB interacts

with MRG15, a component of the retinoblastoma binding protein
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2 (histone demethylase complex) [68]. Thirdly, genomic elements

could exert different chromatin structure, which associate with

different chromatin remodeling proteins. Some chromatin remo-

delers have been indicated to function as or associate with histone

modifiers [69–70].

In the partial correlation interaction network, specific combi-

nations of histone modifications were identified, some contribute

directly to exon expression and others regulate the differentiation

of histone modification levels. Traditionally, proponents of the

histone code hypothesis have held that specific combinations of

histone modifications specify distinct downstream effects in a

synergistic fashion [6–7], while other studies have only revealed

the simple additive consequence of histone modifications [8–10].

Consistently with the latter hypothesis, our results suggested that

combinations of histone modifications on exons regulate exon

expression cumulatively rather than synergistically. In addition,

the existence of redundancy was observed in the histone

modifications on exon regions. Our results suggested that only

two histone modifications (H3K36me3 and H4K20me1) could

faithfully predict exon expression levels. However, the redundant

histone modifications cannot be considered meaningless, since

they could act in additive ways and the multitude of modifications

could contribute to stability and robustness [71], therefore

indirectly contributing to exon splicing. The remaining modifica-

tions might also stabilize the major modifications through feedback

loops and mutual interactions.

The quantitative predictive model and the partial correlation

network were constructed among histone modifications and exon

expression, but it is very difficult to identify the directions of the

connections. In fact, both directions of causality have been

reported. Luco et al. suggest that histone modification could

interact with splicing factors to influence alternative splicing [31],

while a recent study by Kim et al. indicates that specific histone

modifications could be determined by pre-mRNA splicing [63].

Moreover, there is bidirectional causality among histone modifi-

cations, and such feedback loops could be important for making

the interaction network robust and stable [71]. Therefore, the

cause-effect relationships need to be elucidated by further

incorporating different types of data.

Finally, these results offer a better understanding of the roles of

histone modifications on transcribed regions. With the generation

of more and more high-throughput sequencing datasets of novel

histone modifications, the significance of such modifications needs

to be studied. Our study presents a tool for investigating the

relationship between histone modifications and exon expression.

Molecular experiments are still required to investigate this

relationship, but our study could help to reduce the range of

experimental investigations required. Additionally, our results

provide a framework for predicting exon expression levels using

histone modifications.

Conclusion
To elucidate the effects of histone modification on transcribed

regions of genes, this paper constructed a quantitative model for

predicting gene expression using histone modifications on such

regions, and suggested that it captures the variation of gene

expression more faithfully than the model constructed on

promoters. Moreover, motivated by the fact that exon spicing is

functionally coupled to transcription, we constructed a quantita-

tive model for predicting alternative exon expression using histone

modifications on exons, and demonstrated that it differs from the

model for gene expression. Furthermore, a partial correlation

network was employed to identify histone modifications that

directly influence exon expression with the transcription effect

removed. In addition, the way in which the ‘histone code’ on

exonic regions contributes to exon splicing was explored. Thus,

our results provide a better understanding of the roles of histone

modifications on gene transcribed regions.

Materials and Methods

Data Sets
Genome-wide ChIP-seq data of 38 histone modifications of

human CD4+ T cells and ChIP-seq data for RNAPII were

obtained from [32–33]. The RNA-seq dataset of human CD4+ T

cells was downloaded from [34]. We also derived the human

RefGene annotation from the UCSC genome browser [72] to

determine the genomic coordinates of the sequences in the ChIP-

seq data, and obtained the KnownAlt table to identify the

annotation of alternative splicings. All read lengths were extended

to 100 base pairs in the direction of the strand to which they map.

Obtaining Histone Modification Levels, Exon Expression
Values and Gene Expression Values from ChIP-seq and
RNA-seq Datasets
The gene location sites were obtained from the RefGene

annotation. The RNA-seq reads and ChIP-seq reads of 38 histone

modifications as well as RNAPII were aligned to RefGenes and

summed. In order to produce a measurement of expression value

normalized to the length of the gene, the sums of RNA-seq reads

mapping to genes were divided by the number of base pairs in

exonic regions. Likewise, the sums of histone modification ChIP-

seq reads were divided by the number of base pairs in exonic

regions, since there are significantly more nucleosomes - in which

histone modifications take place - in exons than in introns. We

added a pseudo-count of 0.01 to the length-normalized read sums

to avoid undefined values of the logarithm, and treated the

corresponding logarithmic transformations as the estimated

histone modification levels on transcribed regions and measured

gene expression values.

In addition, on the basis of the KnownAlt table, we eliminated

all putative alternative splicing exons from the exons obtained

from RefGene, thus deriving the constitutive exon annotations.

The location site annotations of cassette exons (i.e. exons totally

included or skipped) were derived from the table KnownAlt. The

fold change (log2) was calculated between exon expression and the

corresponding gene expression, and was treated as the indicator of

exon inclusion value. Exons with negative inclusion values were

regarded as alternative splicing exons. The first and last exons in a

given gene were not considered, since they could be influenced to

Figure 6. Redundancy exists among histone modifications. (A) The heatmap and hierarchical clustering for histone modifications on 17,713
alternative splicing exons. The exons were sorted according to the ascending expression levels from up to down. Hierarchical clustering was
performed based on the signal profiles of histone modifications on all cassette exons. Colors are scaled in the color legend. (B) The Pearson
correlation coefficients and partial correlation coefficients between histone modifications on exons and exon expression. (C) The plot of BIC scores for
the linear regression models using different combinations of histone modifications. The y axis represents the BIC score. The x axis denotes the histone
modification combination for the regression model. From left to right, the histone modification on x axis was added to the former combination. Then,
the newly-generated combination was employed to construct a regression model and the corresponding BIC score was calculated.
doi:10.1371/journal.pone.0067448.g006
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a great extent by transcription. RNA-seq reads and ChIP-seq

reads of histone modifications as well as RNAPII were then

aligned to exons and summed. The sums of reads mapping to

exons were divided by the number of base pairs in the associated

exon to produce a measurement of expression value and histone

modification levels normalized to exon length. A pseudo-count of

0.01 was added to these length-normalized sums. The logarithms

of these normalized read counts were taken as the measurements

of exon expression and the histone modification intensities on

exons.

The procedure in [16] was repeated to assess the levels of

histone modifications on promoters. ChIP-seq reads of histone

modifications were aligned to a window of 4,001 base pairs

surrounding the TSS of each gene, and the logarithmic

transformation of the read sum was taken as an estimate of the

levels of histone modification on the promoters.

Linear Regression Model
To build the quantitative correlation between histone modifi-

cation intensities on transcribed regions of genes and associated

gene expression, a linear regression model was constructed, which

is described as follows:

XN
i~1

aihijzb~ej ð1Þ

where N represents the number of chromatin features; hij is the

independent variable, representing intensity of histone modifica-

tion i on transcribed region of gene j; ej is the explanatory variable,

representing the expression of gene j; and ai and b are the slope

and intercept of the linear regression model, respectively. The t-

test was utilized to evaluate the significance of regression

coefficients and Benjamini method [38] was utilized to address

the multiple testing issue.

Ten-fold cross-validation confirms the quantitative relationship.

The dataset of histone modification intensities and associated gene

expression values was randomly grouped into 10 bins. Nine bins

were used to train the linear model, and then on the basis of the

resulting model, the histone modification levels of the remaining

genes were used as input to predict their expression. This

procedure was repeated ten times. The performance of the model

was evaluated by determining the average of the Pearson

correlation coefficients between measured expression and corre-

sponding predicted expression in 10 non-overlapping bins. The

procedures for construction and confirmation of linear regression

models for histone modification levels on exons and corresponding

exon expression values were all similar to the above.

In addition, a multivariate regression model with interaction

terms was performed to investigate the interactions among histone

modifications. The model is shown as follows:

ek~
XN
i~1

aihikz
X
ivj

aijhikhjkzb ð2Þ

where N represents the number of chromatin features; hik is the

independent variable, representing the intensity of the ith histone

modification on the kth exon; ek is the explanatory variable,

representing the expression level of the kth exon; and a and b are

the slope and intercept of the linear regression model, respectively.

A significant interaction term in this model would imply that the

interaction between two histone modifications has a significant

effect on exon expression. Ten-fold cross-validation was also

utilized to evaluate the predictive power of the interaction model,

and the Pearson correlation between predicted and measured

exon expression levels was taken as the measure of its accuracy.

Furthermore, this model was compared with the singleton model:

ek~
PN
i~1

aihikzb. The improvement ratio was calculated as:

(Psingleton-Pinteraction)/Psingleton, where Psingleton and Pinteraction are

the Pearson correlation coefficients between measured and

predicted values for the singleton model and interaction model,

respectively. Additionally, interaction regression models were

performed on all histone modification combinations in the partial

correlation network. For example, the network indicated that

H3K4me1, H3K79me1 and H4K20me1 contribute to

H2BK5me1 in a combinatorial way, therefore, an interaction

regression model was constructed as follows:

H2BK5me1= a16H3K4me1+ a26H3K79me1+ a36H4K20me1+
a46H3K4me16 H3K79me1+ a56H3K4me16H4K20me1+
a66H3K79me16H4K20me1+b. There are eighteen similar com-

binations of histone modifications. Thus, we constructed eighteen

interaction regression models and compared each of them with the

corresponding singleton model.

Partial Correlation Coefficient
The R function pcor.test (http://www.yilab.gatech.edu/pcor.

html) was used to calculate the partial correlation coefficients. The

partial correlation coefficient PAB,C between variables A and B,

conditional on another variable C is described as follows. A and B

are hypothesized to be linearly related to C.

A~aCzbzrA ð3Þ

B~cCzdzrB ð4Þ

The partial correlation coefficient PAB,C is defined as the

correlation coefficient between residuals rA and rB. The partial

correlation coefficient PAB,C between A and B conditional on C can

be computed as follows:

PAB,C~
PAB{PACPBCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{PAC
2

� �
1{PBC

2
� �q ð5Þ

where PAB, PBC and PAC respectively represent the pair-wise

correlations between variables A, B and C. The value of PAB,C is

between 21 and 1.

Partial Correlation Network
The partial correlation network is a graph, G~fN,Eg, where

the node set, N, are the variables of interests (here, they are histone

modifications and exon expression); the edge set, E, is the

interaction between variables. eAB is an edge in G, if PAB,{AB=0,
where PAB,-AB is the partial correlation coefficient between

variables A and B, conditional on all other variables except A

and B.

From the statistical aspect, the partial correlation network is one

kind of conditionally independent network [51]. Variables A and B

are connected in the partial correlation network if there is no other

variable for which A and B are conditionally independent. From

the geometrical aspect, the partial correlation network is

equivalent to a proximity graph of variables [51], and more
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concretely, it is a ’Gabriel graph’ [73]. A and B are connected in

the Gabriel graph if no other point falls within the sphere that has

the chord A, B as its diameter.

Network Construction, Threshold Selection and
Permutation Test for Significance
To derive such a model, we first used the procedure above to

obtain the histone modification intensities on exons, associated

exon expression values, and gene expression values. Secondly,

each pair-wise partial correlation was calculated among histone

modifications, exon expression and gene expression conditional on

all other variables to remove the indirect influence. Thirdly, a

threshold was selected to assess whether the partial correlation was

significant. If the partial correlation was higher than the threshold,

an edge was assigned to the pair. For this work the threshold was

selected based on the BIC criterion, which assesses a model by

penalizing its complexity and evaluating the goodness of fit

between sample data and the model. The BIC criterion is

described as follows:

{2 logP xDGð Þ~BIC~{2 logLzd logm ð6Þ

where x represents samples for histone modifications and exon

expressions; G is the estimated model; L is the maximized value of

the likelihood function P(xDG); m is the sample size of x; d is the

number of free parameters; and herein, d is the number of

regressors of the linear regression model, including the intercept.

To select the threshold, we first sorted the pairs between

different histone modifications, exon expression and gene expres-

sion (41640/2= 820 pairs in the network) by descending their

partial correlations. Next, 820 networks were generated by

successively assigning edges to the sorted pairs, and then the

BIC score was calculated for each network. As long as the BIC

score decreases, it is beneficial to add new edges. However, to

preclude the addition of too many edges to the network, we kept

only the crucial interactions. Assigning edges to these crucial

interactions would significantly reduce the BIC score of the

network. Therefore, we selected a threshold from which the BIC

score changed slightly. The difference in the BIC score was

calculated as BICi-1-BICi, where BICi represents the score for the i
th

network. The difference helped to determine the extent to which

the BIC score changes. The BIC score is assumed to change over a

small scale, when the corresponding difference is less than 20% of

the maximum difference.

Furthermore, to examine whether the selected threshold can be

expected randomly, we independently permuted the datasets of

the histone modification intensities on exons and associated exon

expression values to enable that no single data corresponds to the

right exon in each dataset. The partial correlation coefficients

between different histone modifications and exon expression were

calculated based on the generated datasets. The permutation was

repeated 100 times, and a distribution of the new pair-wise partial

correlations was recalculated for each permutation.

According to the threshold, the connections were assigned to the

network. It is an undirected network.

Predicting Exon Expression Across Cell Types
The ChIP-seq datasets of eight histone modifications,

H3K4me1, H3K4me3, H3K27me1, H3K27me3, H4K20me1,

H3K9me1, H3K9me3 and H3K36me3, as well as RNAPII in the

human CD36+ T cell, were obtained from [35]. The RNA-seq

dataset was derived from Gene Expression Omnibus (GSE26501)

[36]. In addition, the ChIP-seq datasets of twenty histone

modifications, H3K4me1, H3K4me2, H3K4me3, H3K9me3,

H3K36me3, H3K79me1, H3K79me2, H4K20me1, H2AK5ac,

H2BK5ac, H2BK12ac, H2BK20ac, H2BK120ac, H3K4ac,

H3K9ac, H3K18ac, H3K23ac, H3K27ac, H4K5ac, H4K91ac

and the RNA-seq dataset in the H1 cell line were obtained from

NIH Epigenomics Roadmap Consortium [37]. Histone modifica-

tions and RNAPII shared by both CD4+ T cell and CD36+ T cell

as well as those by both CD4+ T cell and H1 cell line were

considered in this analysis. The histone modification levels and

expression value for each exon were obtained as described above.

To normalize the exon expression values and histone modification

levels relative to the corresponding values in the CD4+ T cell, we

derived a regression line between the corresponding values and

then modified the values in the CD36+ T cell and H1 cell line to

transform the regression line into y = x. To check whether the

quantitative correlation was general across cell types, we first

trained linear regression models using the normalized histone

modification levels and associated exon expression in the CD36+
T cell and the H1 cell line, and then used the histone modification

levels in the CD4+ T cell as input to predict the associated exon

expression. The Pearson correlation coefficient between the

predicted and measured exon expression values in the CD4+ T

cell was calculated.

Comparison between the Prediction Capabilities of
Linear Regression Models using Different Histone
Modification Combinations
All possible one-modification and two-modification combina-

tions were generated. The linear regression model was trained for

each combination of histone modifications, where levels of histone

modifications in each combination are independent variables, and

the corresponding exon expression value is the explanatory

variable. Ten-fold cross-validation was employed, and the Pearson

correlation coefficient between predicted values and measured

values was treated as the performance evaluation of the linear

regression model for a given combination of histone modifications.

Supporting Information

Figure S1 Histone modifications along transcribed
regions predict gene expression more faithfully than
those on promoters. The x axis represents the measured value

of gene expression. The y axis represents the predicted value by

the linear regression model using the histone modification levels as

input. (A-B) The scatterplots with predicted and measured gene

expression values for transcribed regions and promoters in the

CD36+ T cell. (C-D) The scatterplots with predicted and

measured gene expression values for transcribed regions and

promoters in the H1 cell line.

(TIF)

Figure S2 Prediction of exon expression across cell
types. The x axis represents the measured value of exon

expression. The y axis represents the predicted value by linear

regression model using histone modification levels as input. (A-C)

The prediction of exon expression in the CD4+ T cell using the

linear regression model built from the CD36+ T cell. The linear

regression model was trained on exons in the CD36+ T cell. Based

on the resulting model, the histone modification levels on exons of

the CD4+ T cell were employed as input to predict the

corresponding exon expression values. This analysis was per-

formed on exons whose expression changed at least 2-fold (A), 5-

fold (B) and 10-fold (C) between two cell types. (D-F) The
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prediction of exon expression in the CD4+ T cell using the linear

regression model built from the H1 cell line. The linear regression

model was trained on exons in the H1 cell line. Based on the

resulting model, the histone modification levels on exons of the

CD4+ T cell were employed as input to predict the corresponding

exon expression values. This analysis was performed on exons

whose expression changed at least 2-fold (D), 5-fold (E) and 10-fold

(F) between two cell types.

(TIF)

Figure S3 The significance of the selected threshold was
validated using the permutation test. The histogram for the

pair-wise partial correlations of the permutation. It illustrates the

frequencies of partial correlation coefficients for the permutation.

The blue and red triangles respectively represent the maximum

partial correlation coefficient generated by permutation and the

selected threshold for the interaction network.

(TIF)

Figure S4 Co-regulation of histone modification combi-
nations in the CD36+ T cell and H1 cell line. (A and C) The

x and y axis respectively represent the intensities of corresponding

histone modifications. In the CD36+ T cell and H1 cell line, all

exons were respectively grouped into four bins: LL (grey), HL

(purple), LH (blue) and HH (green). Whether the intensity is H or

L is determined by comparing the histone modification intensity

with the corresponding median value (1.43 for H3K36me3 and

1.16 for H4K20me1 in the CD36+ T cell; 1.77 for H3K36me3

and 1.91 for H4K20me1 in the H1 cell line). (B and D) The

distributions of the exon expression for the four bins in two cell

types.

(TIF)

Figure S5 The interaction model did not lead to obvious
improvement compared to the singleton model. Singleton
and interaction regression models were respectively constructed

according to eighteen histone modification combinations indicated

by the partial correlation network. The x axis denotes the

explanatory variables in eighteen regression models. The y axis

represents Pearson correlation coefficients between measured and

predicted values. The explanatory variables were sorted by

ascending Pearson correlation coefficients along the x axis.

(TIF)

Table S1 Detailed information of the linear models. This file

is.xls format. This table respectively presents the detailed

information of the linear model for histone modification levels

on transcribed regions and gene expression values, the linear

model for histone modification levels on constitutive exons and

associated exon expression values, the linear model for histone

modification levels on cassette exons and associated exon

expression values as well as the interaction regression model for

histone modification levels on cassette exons and associated exon

expression values. For each model, this table respectively presents

the regression coefficients, standard errors, t-statistics and

corresponding p-values corrected by Benjamini method. The

histone modifications marked in yellow have the largest regression

coefficients. The interaction terms marked in red have significant

regression coefficients (p-value,0.001).

(XLS)

Table S2 The pair-wise Pearson and partial correlation

coefficients between histone modifications and cassette exon

expression. This file is.xls format. The values marked in yellow

represent the partial correlations between histone modifications

and cassette exon expression. The values marked in green

represent the Pearson correlations between histone modifications

and exon expression. The values marked in red suggest that there

exists an interaction between this pair.

(XLS)
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