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Background:Neoantigens are presented on the cancer cell surface by peptide-restricted
human leukocyte antigen (HLA) proteins and can subsequently activate cognate T cells. It
has been hypothesized that the observed somatic mutations in tumors are shaped by
immunosurveillance.

Methods: We investigated all somatic mutations identified in The Cancer Genome Atlas
(TCGA) Skin Cutaneous Melanoma (SKCM) samples. By applying a computational
algorithm, we calculated the binding affinity of the resulting neo-peptides and their
corresponding wild-type peptides with the major histocompatibility complex (MHC)
Class I complex. We then examined the relationship between binding affinity alterations
and mutation frequency.

Results: Our results show that neoantigens derived from recurrent mutations tend to
have lower binding affinities with the MHC Class I complex compared to peptides from
non-recurrent mutations. Tumor samples harboring recurrent SKCM mutations exhibited
lower immune infiltration levels, indicating a relatively colder immune microenvironment.

Conclusions: These results suggested that the occurrences of somatic mutations in
melanoma have been shaped by immunosurveillance. Mutations that lead to neoantigens
with high MHC class I binding affinity are more likely to be eliminated and thus are less
likely to be present in tumors.

Keywords: Melanoma, recurrent mutation, immunosurveillance, neoantigen, antigen presentation
INTRODUCTION

Cancer is a genetic disease caused by genomic abnormalities including somatic mutations, which
result in mutated antigens (i.e., neoantigens). Neoantigens derived from non-synonymous
mutations can be recognized, bound, and presented on the tumor cell surface by major
histocompatibility complex (MHC) proteins. T cells can recognize and attack tumor cells
org January 2022 | Volume 12 | Article 7038211
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presenting these neoantigens, which is known as T cell-mediated
cancer immunosurveillance (1, 2). However, tumors can develop
different strategies to avoid recognition and elimination by the
immune system (3–5).

Evolving neoplasms accumulate non-synonymous mutations
at a high rate, leading to the expression of antigenic epitopes that
might be recognized by the immune system (6). According to the
theory of immunosurveillance, a functional immune system can
recognize and eliminate tumor cells harboring antigenic
mutations (1, 7). Tumor cells presenting immune-activating
neoantigens are more likely to be eliminated through T-cell
recognition as compared to non-immunogenic mutations (8–
10). Consequently, somatic mutations abrogating essential
immune functions (e.g., mutations in B2M and HLA genes)
are generally positively selected for in tumors and are common in
different types of cancers (11). In contrast, the majority of
somatic mutations are under negative selection during the
tumorigenesis by immunosurveillance. A number of previous
studies have shown that the immune system can exert strong
selection pressure on neoantigens in both untreated and treated
tumors (12–15). During lung cancer evolution, the immune
system also exhibits neoantigen-editing in which cells with
immunogenic mutations are eliminated (14). Indeed, the
observed counts of neoantigens were unexpectedly low in some
tumor types (16, 17), suggesting the impact of negative selection
posed by immunosurveillance. However, other studies have
suggested that neoantigen selection by the immune system
becomes negligible in untreated tumor samples when
considering mutational signatures (18, 19).

The potential impact of immunosurveillance on gene mutation
abundance is determined by multiple factors, namely, the category
of mutated genes (cancer driver or passenger genes), mutation
frequency (12, 20–22), the expression level of the mutated genes
(23), and HLA functionality (proficient or deficient) (24). The
capacity of antigens to induce a CD8+ T cell immune response
(antigenicity) is mainly determined by their binding affinity with the
MHC class I (MHC-I) complex. In this study, we investigated the
non-synonymous somatic mutations identified in the TCGA Skin
Cutaneous Melanoma (SKCM) samples. We applied a
computational pipeline to calculate the binding affinity of the
resulting neoantigens with the MHC-I complex. As a control, we
calculated the MHC-I binding affinity of the wide-type peptide. We
found that neoantigens of recurrent mutations have significantly
lower MHC-I binding affinity than those from non-recurrent
mutations. These results were observed for somatic mutations
presenting in both melanoma-specific driver and passenger genes.
In addition, we investigated the potential influence of HLA
genotypes and HLA gene deficiency (mutation and loss events).
Our results suggested that the somatic mutation landscape in
melanoma is shaped by T cell-mediated immunosurveillance.
Abbreviations: MHC, major histocompatibility complex; MHC-I, MHC class I;
HLA, human leukocyte antigen; dRM, recurrent mutation in driver genes; dNRM,
non-recurrent mutation in driver genes, pRM, recurrent mutation in passenger
genes; pNRM, non-recurrent mutation in passenger genes; WES, whole-exome
sequencing); GDC, Genomic Data Commons; ROC, Receiver Operating
Characteristics; AUC, Area Under The Curve.
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RESULTS

Quantification of the Effect of Non-
Synonymous Mutations on MHC-I
Binding Affinity
To investigate how T cell-mediated immunosurveillance shapes the
mutational landscape in SKCM tumors, we calculated a residue-
centric presentation score to quantify MHC-I binding affinity
changes that resulted from non-synonymous mutations using the
method described in Figure 1. First, for each non-synonymous
mutation, we enumerated nine 9-mers (peptides with 9 amino
acids) that overlap with the mutated residue (Figure 1A). We
applied NetMHCPan4.0 (25) to these 9-mers to calculate their
binding affinity with the MHC-I complex (Figure 1B) using six
patient-specific HLA class I alleles (two HLA-A, two HLA-B, and
two HLA-C genes). We decided on NetMHCPan4.0 for MHC-I
binding affinity calculations due to its overall high and stable
performance as demonstrated in previous studies (28–30). Each
mutation-derived peptide received a prediction score within [0,1],
with higher scores indicating higher binding affinities with the
MHC-I complex. In total, 54 binding scores were calculated for
the nine peptides that resulted from a mutation with the six HLA
class I alleles. Second, we calculated the maximum value for each
HLA allele to capture the peptide with the highest binding affinity,
resulting in six HLA class I allele-specific affinity scores. Finally, we
selected the maximum value of the six HLA class I allele-specific
affinity scores to represent the best MHC-I complex presentation
potential for peptides derived from a specific non-synonymous
mutation (see Materials and Methods section). In Figure 1C, we
evaluated the prediction accuracy of this pipeline by applying it to a
combined benchmark data (Supplementary Table 1), containing
experimentally identified MHC-I binding peptides (27) and non-
binding control peptides (26). As shown, our pipeline can accurately
classify these two types of peptides with an average AUC
(area under receiver operating characteristic curve) score of
0.88 (Figure 1C). After verifying the robustness of the
pipeline, we applied it to a total of 122,603 non-synonymous
mutations identified from 345 TCGA SKCM tumor samples
(Supplementary Table 2).

Neoantigens Derived From Recurrent
Mutations Have Lower Binding Affinities
Than Those From Non-Recurrent
Mutations
We hypothesize that somatic mutations that result in neoantigen
with high MHC-I binding affinity are subject to negative
selection via immunosurveillance and are therefore less likely
to be present at high frequencies in tumor samples. To test this
hypothesis, we divided non-synonymous (NS) mutations
identified in the TCGA SKCM samples (29) into recurrent
(occurred in at least three samples) and non-recurrent
mutations (occurred in only one sample) (Figure 2A). In total,
we identified 5,677 recurrent and 97,618 non-recurrent NS
mutat ions . For each mutat ion , we ca lcu la ted the
aforementioned binding score that indicates the putative
highest possible affinity score a mutation-derived peptide can
receive given the HLA-A, B, and C allele type of a patient (see
January 2022 | Volume 12 | Article 703821
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Materials and Methods for details). First, we calculated MHC-I
binding affinity correlations between mutation-derived peptides
and the corresponding wild-type peptides. Overall, we observed
fairly high correlations with recurrent mutations showing
slightly lower correlations than non-recurrent mutations (r =
0.70 versus 0.75) (Figure 2B), indicating larger differences in
MHC class I binding affinities upon mutation in recurrent
mutations as compared to non-recurrent mutations. To
quantify the effect of mutations on binding affinity, we
calculated binding score differences between mutant and wild-
type peptides to obtain DS for each mutation. The DS takes a
value within [−1, 1] with the distribution shown in Figure 2C.

As shown in Figure 2D, recurrent mutations showed
significantly lower binding affinity with MHC-I complex in
their mutation-derived peptides than non-recurrent mutations
(adjust P-value (Padj) = 1.2e−13). We also compared the MHC-I
binding scores of the corresponding wild-type peptides and
found that the recurrent mutations showed significantly higher
MHC-I binding scores than non-recurrent mutations (Padj =
0.0058). When DS values were compared, the recurrent
mutations are significantly lower than non-recurrent mutations
(Padj = 4.5e−42). Altogether, our results suggest that the presence
of somatic mutations are likely shaped by immunosurveillance—
Frontiers in Immunology | www.frontiersin.org 3
tumor cells hosting mutations with higher MHC-I binding
affinity are more likely to be eliminated and, as a consequence,
these mutations are less to be present in tumors.

In addition to melanoma, we also applied the same analysis in
16 TCGA cancer types with available HLA genotypes and large
sample size. Out of them, we found significantly DS reduction in
recurrent (occurrence ≥3) than non-recurrent mutations
(occurrence = 1) in 6 cancer types, breast cancer, cervical
cancer, rectum adenocarcinoma, stomach adenocarcinoma,
endometrial cancer, and kidney cancer (Figure S1). Some of
the non-significant cancer types have relative low tumor
mutation burden and therefore the numbers of recurrent
mutations are small, which limited the statistical power for
DS comparison.

Somatic Mutations in Driver and
Passenger Genes
Based on the functional impact of somatic mutations, genes may
be categorized into cancer driver genes and passenger genes (31).
Mutations in driver genes are more likely to confer growth
advantages to tumor cells and are therefore often positively
selected for during cancer development (21, 32). In this study,
we utilized the 1,161 melanoma driver genes (DGs) reported by
A C

B

FIGURE 1 | Calculation of the MHC-I binding affinity of the neoantigen derived from a non-synonymous mutation. (A) For each mutation, a total of 17 amino acids
centering at the mutated site were considered. The binding affinities with MHC-I complex of the nine possible 9-mer peptides were calculated by using
NetMHCPan4.0 (25). (B) During the MHC-I binding affinity calculation, patient-specific HLA genotypes were used. Each patient has two alleles for HLA-A, B, and C
gene, resulting in six total alleles. For each allele, MHC-I binding affinities to the nine 9-mers were calculated. The final MHC-I binding affinity of the somatic mutation
was calculated as the maximum value of the 9 (peptides) × 6 (alleles) binding scores. Figure created using BioRender (https://biorender.com/). (C) The performance
of our MHC-I binding affinity pipeline was evaluated by classifying MHC binding and non-MHC binding epitopes in experimental data from previous studies (26, 27).
The data provided peptide sequences for a collection of MHC binding and non-MHC binding epitopes in 5 different human cell lines (Fibroblast, SupB15W, JY,
HCC1937, and HCC1143).
January 2022 | Volume 12 | Article 703821
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Chung et al. (33) as SKCM DGs. The distributions of NS somatic
mutations in DGs and passenger genes (PGs) are shown in
Figure 3A. We detected no significant differences in MHC-I
binding scores between mutations in these two gene groups
(Figure 3B and Figure S2A).
Frontiers in Immunology | www.frontiersin.org 4
By further considering the frequency of mutations in the
TCGA SKCM samples, we divided the DG and PG mutations
into four groups: recurrent driver mutations (dRM), non-
recurrent driver mutations (dNRM), recurrent passenger
mutations (pRM), and non-recurrent passenger mutations
A

C

D

B

FIGURE 2 | Recurrent somatic mutations have significantly lower DS than non-recurrent mutations in SKCM. (A) The distribution of occurrences of non-synonymous
mutations in SKCM. Mutation count was calculated as the number of melanoma patients harboring a specific somatic mutation. Based on the distribution, we
defined recurrent mutations (blue) as those presenting in at least three melanoma samples, and non-recurrent mutations (red) as those presenting in only one
sample. (B) Correlations between antigens derived from mutations (all, non-recurrent, and recurrent) and the corresponding wide-type in MHC-I binding affinities.
(C) The density plot of DS, which was defined as the difference between the MHC-I binding score of mutant and wild-type antigens. (D) Comparison between
recurrent vs non-recurrent mutations in the MHC-I binding affinity with antigens derived from mutations (left) and the wild-type (middle), as well their difference (DS)
(right). In all plots, P-values were calculated using two-sided Wilcoxon rank-sum test and adjusted for multiple testing by the Holm–Bonferroni method.
January 2022 | Volume 12 | Article 703821
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(pNRM). A comparison between these groups indicated that in
both driver and passenger genes, recurrent mutations showed
significantly lower DS than non-recurrent mutations (Figure 3C
and Figure S2B). Thus, neoantigens derived from recurrent
mutations tend to have lower MHC-I binding affinities with
respect to peptides from their wild-type counterparts.

The Effect of Somatic Mutations and Loss
of HLA Genes
Previous studies have reported that the loss of HLA genes can
affect tumor cell immune escape in lung cancer (24, 34). We thus
examined the potential effect of HLA gene defects (HLA gene
mutation or loss) on MHC-I binding affinity of neoantigens
derived from somatic mutations in SKCM.We obtained the HLA
gene mutation information of the TCGA melanoma samples
from Castro et al. (11), and HLA gene loss information from
Taylor et al. (35). In melanoma samples with HLA gene
deficiency, the distributions of MHC-I binding affinities for
dRMs, dNRMs, pRM, and pNRMs were similar to those with
proficient HLA genes (Figures 4A, B). Significance was generally
not reached when comparing the effect of HLA mutations
Frontiers in Immunology | www.frontiersin.org 5
(Figures 4A, B), presumably due to reduced sample size (the
number of samples with HLA gene mutation or loss is small).

Melanoma Samples Harboring Recurrent
Somatic Mutations Have Lower Immune
and Stromal Scores
Based on the number of recurrent mutations in each sample, we
divided melanoma samples into two groups. The first group
contained 215 melanoma samples with at least seven recurrent
somatic mutations, while the second group contained 130 samples
with less than seven recurrent mutations. We compared their
immune microenvironment difference by calculating sample-
specific immune scores and stromal scores based on their gene
expression profiles using the ESTIMATE algorithm (36). These two
scores indicated the relative abundance of infiltrating immune cells
and stromal cells in the tumor samples, respectively. We found that
melanoma samples harboring more recurrent mutations had
significantly lower immune scores compared to those with less
than 7 recurrent mutations (Padj = 0.0037). This was observed in
both primary and metastatic melanoma samples (Padj = 0.0015, and
0.023, respectively), as shown in Figure 5A. Similarly, stromal
A B

C

FIGURE 3 | Recurrent mutations have significantly lower DS than non-recurrent mutations in both driver and passenger genes. (A) The distribution of occurrences of
non-synonymous mutations in melanoma samples. Mutations presenting in driver and passenger genes are separated. (B) No significant DS difference between
somatic mutations in driver and passenger genes. n.s., not significant. (C) Comparison of DS between recurrent and non-recurrent mutations in driver and passenger
mutations. dRM, recurrent mutation in driver genes; dNRM, non-recurrent in driver genes; pRM, recurrent mutation in passenger genes; pNRM, non-recurrent in
passenger genes. P-values were calculated using two-sided Wilcoxon rank-sum tests.
January 2022 | Volume 12 | Article 703821
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scores were also significantly lower in melanoma samples with
higher levels of recurrent mutations (Figure 5B). These results
suggest a differential tumor microenvironment between patients
with high and low numbers of recurrent mutations sample groups.

MHC-I Binding Affinities of Detected
SKCM Mutations and Their Possible
Alterations
In this study, the binding affinity of peptides with MHC-I complex
was calculated based on the HLA genotype of the patient. For each
Frontiers in Immunology | www.frontiersin.org 6
non-synonymous somatic mutation, we also calculated MHC-I
binding scores using HLA genotypes of patients that did not
carry the somatic mutation (i.e., non-self HLA genotype).
Comparative analyses identified a total of 46 somatic mutations
that showed significantly lower DS with self-HLA than with non-self
HLA genotypes (Table 1, P-value ≤0.001, two-sided Wilcoxon
rank-sum test). We hypothesize that his set of mutations has been
shaped by immune selection in a patient-specific manner.

Next, we examined whether the observed amino acid change
for a given somatic mutation tended to have a different MHC-I
A

B

FIGURE 5 | Melanoma samples with ≥7 recurrent mutations (G1) have lower immune and stromal scores than those with <7 (G2). (A) Comparison of immune
scores between recurrent and non-recurrent mutations in all, primary and metastatic melanoma samples. (B) Comparison of stromal scores between recurrent and
non-recurrent mutations in all, primary and metastatic melanoma samples. Padj-values were calculated using two-sided Wilcoxon rank-sum tests and adjusted for
multiple testing by the Holm–Bonferroni method.
A

B

FIGURE 4 | Difference in MHC-I binding affinities of somatic mutations in melanoma samples with and without HLA gene deficiency. (A) The distribution of DS of
somatic mutations in samples with and without HLA gene mutations. (B) The distribution of DS of somatic mutations in samples with and without HLA gene loss.
dRM, recurrent mutation in driver genes; dNRM, non-recurrent in driver genes; pRM, recurrent mutation in passenger genes; pNRM, non-recurrent in passenger
genes. Padj-values were calculated using two-sided Wilcoxon rank-sum tests and adjusted for multiple testing by the Holm–Bonferroni method. n.s., not significant.
January 2022 | Volume 12 | Article 703821
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TABLE 1 | The mutations, which have significant lower DS in own patient’s HLA alleles than non-self patients’ HLA alleles, were identified in SKCM (P-value ≤0.001,
two-sided Wilcoxon rank-sum test).

Gene Mutation DS P-value

ZNF804A R97Q 0.024951 3.85E
−06

PABPC3 K177R −0.357816 9.28E
−07

CDH5 R230Q −0.034363 1.23E
−06

WHSC1 R85M 0.009242 6.74E
−05

SPHK2 L302I 0.225282 1.23E
−05

XRN1 L284F −0.041268 5.46E
−05

HIP1 V228I −0.11429 2.16E
−05

CSN2 P131S −0.057814 3.08E
−05

TNN E1022K −0.359041 4.71E
−05

GIMAP7 E32K −0.639266 4.51E
−07

TMEM202 R233I 0.080141 2.48E
−05

KRT34 R390Q −0.3156 3.03E
−07

ADRA2C R409L 0.058708 4.15E
−05

COL15A1 L1273F 0.122489 7.41E
−08

GPRC6A R124K −0.231665 4.48E
−05

ZNF804A R97Q 0.037489 3.85E
−06

PCDHGC3 F45L −0.150706 8.04E
−06

GALNT14 R124S 0.024075 8.84E
−07

C6orf15 P152S −0.024385 3.20E
−08

MKI67 P1132S −0.046145 4.72E
−05

ZNF821 Q139K −0.054997 2.04E
−05

PCDHA13 E790K −0.208681 4.27E
−05

CSMD3 D1025N 0.079423 5.84E
−09

TRIM71 D705N 0.13674 9.67E
−06

HS6ST3 D246N −0.16574 4.37E
−05

RGS18 H171P −0.53604 2.56E
−06

GIMAP7 E32K 0.332249 4.51E
−07

HIF3A P646S 0.044866 3.22E
−05

SGMS1 I87N −0.15749 3.28E
−05

FBXO24 R377Q −0.002459 6.11E
−05

LRP1B D1612N 0.056829 2.75E
−06

(Continued)
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binding affinity compared with the other 18 possible amino acid
changes. As shown in Figure 6A, our result indicated that the
observed amino acid change tended to be lower binding affinity
than other possible changes. This trend is more obvious when
comparing DS for the observed and other amino acid changes
(Figure 6B). Indeed, the DS values for the observed changes were
significantly lower than those for the other possible amino acid
changes (Padj = 6.9e−29, ANOVA test and adjusted for multiple
testing by the Benjamini–Hochberg method).
DISCUSSION

In this study, we demonstrated that T cell-mediated
immunosurveillance likely contributes to the mutational
landscape in SKCM tumors. Here we used the MHC-I binding
difference between mutation-derived neoantigens (Smu) and their
corresponding wild-type peptides (Swt) to measure the effect of
mutations on antigenicity, i.e., DS = Smu − Swt. This value has
been defined as differential aggretope index (DAI) in previous
analysis by Duan et al. (8). Following that, DAI has been used in
several studies (8, 9, 37–40) to measure the antigenicity of
neoantigens, using the same formula or a variant version (e.g.,
Smu/Swt) (39). DAI has been used to select the best potential
immunoprotective neoepitopes (i.e., those with the highest DAI
values) from a vast number of somatic mutations (8). Sedlacek
et al. reported that in the absence of CD91 on dendritic cells there
Frontiers in Immunology | www.frontiersin.org 8
was a rise of neoepitopes with high DAI, suggesting the function
CD91 during immunosurveillance (40). In this study, by showing
the DS difference between recurrent and non-recurrent somatic
mutation derived neoantigens, we showed the potential effect of
immunosurveillance on shaping the somatic mutation landscape.
In addition, we have used another DAI metric (Smu/Swt) to
compare recurrent and non-recurrent mutations, and observed
consistent results as DS (Figure S3).

In this study, we defined recurrent somatic mutations as those
occurring in at least three melanoma patients. To evaluate the
robustness of our analysis, we have also applied different
thresholds (the number of patients with a specific somatic
mutation) to define recurrent mutations. Specifically, we
defined recurrent mutations as those presenting in ≥s (s = 3, 4,
5, 6, 7) different melanoma patients, and compared with non-
recurrent mutations. We observed significant lower DS for
recurrent mutations regardless of threshold setting (Figure S4).

Our analysis indicated that neoantigens derived from
recurrent mutations tended to have lower binding affinity with
the MHC-I complex compared to those from non-recurrent
mutations. We found that in both driver and passenger genes,
recurrent mutations tended to have reduced MHC-I binding
affinities compared to non-recurrent mutations (Figure 3 and
Figure S2). These results support the model (Figure 7) in which
tumor cells presenting neoantigens with strong MHC-I binding
capacity are more likely to be eliminated during tumorigenesis
and are less likely to be observed (i.e., non-recurrent) at the
TABLE 1 | Continued

Gene Mutation DS P-value

F2RL3 E346K −0.02666 1.24E
−07

QRSL1 V294I 0.004044 1.38E
−08

SAA1 A99T 0.021469 4.36E
−05

PXDN V808I −0.217944 1.57E
−09

SPIDR E399G −0.514393 5.90E
−11

CATSPERB M414I −0.092106 2.18E
−05

PPAPDC2 A262V −0.182649 3.98E
−06

LCT P1458S 0.393053 2.20E
−05

REEP4 P170S −0.065841 1.31E
−05

ZNF592 P564L 0.210062 5.02E
−05

MLLT6 S594C −0.291905 1.14E
−05

MRPL37 P288L −0.092613 2.29E
−05

PCLO R3857K −0.031115 1.72E
−07

PTPN4 R838Q −0.127347 2.53E
−05

MYBPC2 S602N −0.235127 2.43E
−07
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population level. In contrast, somatic mutations that result in
neoantigens with low MHC-I binding affinity are under less
selective pressure by the host immune system and are therefore
more likely to be observed in tumors. This model is consistent
with observations from previous studies (41–45).
CONCLUSION

Neoantigens derived from recurrent mutations generally have
low binding affinities with MHC-I complex. Based on this
observation and previous studies, we proposed a model to
explain how T cell-mediated immunosurveillance shapes the
mutational landscape in tumors.
MATERIALS AND METHODS

Data Preparation and Processing
MuTect2-called whole-exome sequencing (WES) mutation
annotation format (MAF) files of the SKCM from The Cancer
Genome Atlas (TCGA) were downloaded from the Genomic
Data Commons (GDC) data portal (https://portal.gdc.cancer.
gov; data release v7). From these files, we selected all non-
synonymous mutations for downstream analysis.

The TCGA level 3 gene expression data of melanoma were
obtained from the Genomic Data Commons (GDC, available at:
https://portal.gdc.cancer.gov/) Data Portal on Mar 7, 2019. From
the GDC, we downloaded the expression profiles for tumors with
the disease type “melanoma” from the “TCGA-SKCM”.
Frontiers in Immunology | www.frontiersin.org 9
Fragments per kilobase of exon per million reads mapped
(FPKM) were used for expression quantification for a total of
20,501 protein-coding genes annotated in the TCGA data portal.

MHC-I Binding Affinity Predictions
HLA affinities of mutated and matched-wild-type peptides were
predicted for their sample-specific HLA genotype (a specific
combination of two HLA-A, two HLA-B, and two HLA-C
alleles) using NetMHCpan4.0 (25). Firstly, for each type of
HLA allele (HLA-A, HLA-B, and HLA-C), many subtypes
exist and most of these HLA allele subtypes account for a very
small proportion of the population (≤0.01%). To ensure stability
and avoid over-calculation, all HLA allele subtypes with a
proportion greater than 0.01% were selected in this study. A
total of 92 HLA alleles were selected for the peptide binding HLA
allele prediction. Thirty subtypes of HLA-A alleles cover 99.76%
of the population; 39 subtypes of HLA-B alleles cover 99.08% of
the population; 23 subtypes of HLA-C alleles cover 99.81% of the
population. The derived frequencies for each HLA allele were
compared with the allele frequencies from a healthy US blood
donor population, downloaded from the Allele frequency net
(46), Supplementary Table 3). Second, each mutated and
matched wild-type peptide was predicted for the 92 HLA
alleles. Finally, the patient-specific MHC-I binding affinities of
each mutated and matched wild-type peptides were obtained.

Calculation of Patient-Specific MHC-I
Binding Affinity of Somatic Mutations
We used an MHC-I binding score to represent the binding
affinity of a non-synonymous mutation with patient-specific
A

B

FIGURE 6 | Comparison of MHC-I binding alterations between observed and other possible amino acid changes. (A) Heatmap showing a list of 46 somatic
mutations that derive neoantigen with significantly lower DS using the self HLA genotype than non-self HLA genotypes. The HLA genotypes of melanoma patients
that do not have a specific mutation were selected as non-self. (B) The observed amino acid changes (red dots) tend to have lower DS than those unobserved ones
(other 18 possible amino acid changes) at the same position. The Padj-value was calculated by the ANOVA test and adjusted for multiple testing by the Benjamini–
Hochberg method.
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HLA class I alleles (two HLA-A, two HLA-B, and two HLA-C)
(Figure 1). First, for each non-synonymous mutation, we
enumerated the nine 9-mers (peptides with 9 amino acids) that
overlap with the mutated residue and applied NetMHCPan4.0
(25) to calculate their binding affinity with the MHC-I complex
using patient-specific HLA class I alleles (two HLA-A, two HLA-
B, and two HLA-C). Second, we calculated the maximum value
for each HLA allele to capture the peptide with the highest
binding affinity, resulting in six HLA allele-specific affinity scores
Frontiers in Immunology | www.frontiersin.org 10
for each mutation. Finally, we selected the maximum value to
represent the best presentation potential by the MHC-I complex
for peptides derived from a specific non-synonymous mutation.
The HLA typing of all the TCGA-SKCM samples was
downloaded from the TCIA (ref link: https://tcia.at/home).

To measure the effect of somatic mutations on antigenicity,
the MHC-I binding difference between mutation-derived
neoantigens (Smu) and their corresponding wild-type peptides
(Swt) was calculated, denoted by DS = Smu − Swt. This definition is
FIGURE 7 | A schematic diagram demonstrating how immunosurveillance shapes the somatic mutation landscape in tumors. Somatic mutations leading to CD8+
neoantigen with high MHC-I binding affinity are more likely to be recognized and eliminated by T cells and there tend to have low occurrences (non-recurrent) in
tumor. In contrast, mutations with low MHC-I binding affinity are more likely to be preserved and present in multiple patients. Figure created using BioRender (https://
biorender.com/).
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consistent with the differential aggretope index (DAI) introduced
in the previous studies by Duan et al. (8, 9, 40).

Evaluation of the MHC-I Binding
Prediction Pipeline
To test the performance of affinity scores representing actual
MHC class I presentation, we downloaded independent mass
spectrum data of 5 different human cell lines (Fibroblast,
SupB15W, JY, HCC1937, and HCC1143) from Bassani-
Sternberg et al. (27). These peptides were observed in complex
with MHC-I on the cell surface across known HLA alleles. An
independent non-MHC-binding peptide dataset was
downloaded from Abelin et al.; these peptides were validated
to not bind with known MHC-I alleles in mass spectrometry
experiments (26). Detailed information on the classification of
MHC-binding peptides and independent non-MHC-binding
peptide controls are shown in Supplementary Tables 1A–G.

Estimation of Stromal and Immune Scores
Sample-specific immune scores and stromal scores were
calculated based on gene expression profiles (described above).
The ESTIMATE algorithm (36) was applied to the normalized
expression matrix for estimating the stromal and immune scores
for each melanoma sample.

Statistical Analysis
The R statistical package was used for all data processing and
statistical analysis (R package: stats v3.6.2). All details of the
statistical tests are specified in the associated text or figure
legends. For the comparison of the observed mutations and their
according other possible mutations, the P-value was calculated by
using an ANOVA test and adjusted for multiple testing by the
Benjamini-Hochberg method. For the other statistical analyses, P-
values were calculated by using the “Wilcox_test” function from the
R package: stats v3.6.2, which applies the two-sidedWilcoxon rank-
sum test and corrected multiple testing using the Holm–Bonferroni
method. A statistically significant difference was assumed when
adjusted P ≤0.05.
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Garcia W, et al. Inferring Tumour Purity and Stromal and Immune Cell
Admixture From Expression Data. Nat Commun (2013) 4:1–11. doi: 10.1038/
ncomms3612

37. Brennick CA, George MM,Moussa MM, Hagymasi AT, Al Seesi S, Shcheglova
TV, et al. An Unbiased Approach to Defining Bona Fide Cancer Neoepitopes
That Elicit Immune-Mediated Cancer Rejection. J Clin Invest (2021) 131:276–
87. doi: 10.1172/JCI142823

38. Ebrahimi-Nik H, Michaux J, Corwin WL, Keller GL, Shcheglova T, Pak H, et al.
Mass Spectrometry–Driven Exploration Reveals Nuances of Neoepitope-Driven
Tumor Rejection. JCI Insight (2019) 4:1–15. doi: 10.1172/jci.insight.129152

39. Rech AJ, Balli D, Mantero A, Ishwaran H, Nathanson KL, Stanger BZ, et al. Tumor
Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer.
Cancer Immunol Res (2018) 6:276–87. doi: 10.1158/2326-6066.CIR-17-0559

40. Sedlacek AL, Younker TP, Zhou YJ, Borghesi L, Shcheglova T, Mandoiu II,
et al. Cd91 on Dendritic Cells Governs Immunosurveillance of Nascent,
Emerging Tumors. JCI Insight (2019) 4:1–11. doi: 10.1172/jci.insight.127239

41. Ballhausen A, Przybilla MJ, Jendrusch M, Haupt S, Pfaffendorf E, Seidler F,
et al. The Shared Frameshift Mutation Landscape of Microsatellite-Unstable
Cancers Suggests Immunoediting During Tumor Evolution. Nat Commun
(2020) 11:1–13. doi: 10.1038/s41467-020-18514-5

42. Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al. Whole-
GenomeMutational Landscape and Characterization of Noncoding and Structural
Mutations in Liver Cancer. Nat Genet (2016) 48:500–9. doi: 10.1038/ng.3547

43. Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, et al.
Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-
Infiltrating Lymphocytes. Cell (2018) 172:549–63. doi: 10.1016/j.cell.2017.11.043

44. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K,
et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature
(2017) 545:175–80. doi: 10.1038/nature22071

45. Wu J, Zhao W, Zhou B, Su Z, Gu X, Zhou Z, et al. Tsnadb: A Database for
Tumor-Specific Neoantigens From Immunogenomics Data Analysis.
Genomics Proteomics Bioinf (2018) 16:276–82. doi: 10.1016/j.gpb.2018.06.003
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