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Abstract: In this study, a series of HZSM-5 catalysts were prepared by the chemical liquid-phase
deposition method, and low concentration toluene degradation was carried out in an atmospheric
pressure dielectric barrier discharge (DBD) reactor. The catalysts were characterized by X-ray powder
diffraction (XRD), SEM, TEM, and N2 adsorption analysis techniques. In addition, several organic
contaminants were used to evaluate the adsorption performance of the prepared catalysts, and the
effect of pore size on the removal efficiency of toluene and byproduct formation was also investigated.
The unmodified HZSM-5 zeolite (Z0) exhibited good performance in toluene removal and CO2

selectivity due to the diffusion resistance of ozone and the amounts of active species (OH• and
O•). Meanwhile, the time of flight mass spectrometry (TOF-MS) result showed that there were
more byproducts of the benzene ring in the gas phase under the action of small micropore size
catalysts. Moreover, the surface byproducts were detected by gas chromatography–mass spectrometry
(GC-MS).
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1. Introduction

Volatile organic compounds (VOCs) are recognized as precursors for the formation of organic
aerosols, ground ozone, and photochemical smog [1,2]. Their emissions have adverse effects on
human health, such as dry cough, dizziness, headache, and cancer [3,4]. Therefore, researchers have
made great efforts to investigate different technologies for VOC abatement, including adsorption [5],
membrane separation [6], thermal combustion [7], photocatalysis [8], and catalytic oxidation [9].
However, traditional VOC control methods have technical and economic limitations, especially for the
treatment of low concentrations of VOCs.

In recent decades, non-thermal plasma (NTP) technology has attracted more and more attention
due to its inexpensive and easy operation to remove diluted VOCs [10,11]. However, some
shortcomings—such as poor product selectivity, low efficiency, and the formation of unwanted
byproducts (other VOCs, aerosols, NOx, O3)—in an NTP-only system hinder the development of
industrial VOC abatement [12,13]. To overcome these limitations, many studies attempt to combine
plasma technology with suitable heterogeneous catalysts [14–16]. Previous studies have demonstrated
the positive effects of a plasma catalytic system on various VOC pollutants such as formaldehyde [17],
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acetaldehyde [18], trichloroethylene [19], benzene [2], toluene [20,21], and chlorobenzene [22]. In the
periodical process, the selection of suitable catalysts plays an important role in the plasma catalysis
system. In recent years, various catalysts including MnOx/Al2O3, CeMn/TiO2, MnO2-CuO/TiO2,
AgCu/HZSM-5, and Co/MCM-41 have been developed for VOC abatement [14,22–25]. Van Durme
et al. [23] studied the oxidation of toluene adsorbed on MnO2-CuO/TiO2 catalyst in a post-plasma
catalytic system and found that the combination of NTP with MnO2-CuO/TiO2 had great potential for
toluene decomposition.

Fan et al. [14] investigated the decomposition of low-concentration benzene, toluene and p-xylene
(BTX mixture) by a positive corona discharge on MnOx/Al2O3 catalyst. They concluded that the
increase of relative humidity (30–80%) had slightly positive and negative effects on toluene and
benzene removal, respectively. However, to our knowledge, it is essential to develop efficient methods
to identify the byproducts and reduce their formation. Thus, this was one of the main objectives of this
study. Moreover, zeolite molecular sieves have good hydrophobicity, high toluene adsorption capacity,
and are also beneficial for VOC decomposition because of the stability and characteristics of the pore
system [26–28]. Nevertheless, the studies on the relation among pore structure, catalytic activities, and
the generation of byproducts remain limited.

In this study, toluene was used as a representative VOC because it is widely applied as a solvent
in several processes such as pressing, printing, and petrochemical industries. Different pore structures
of HZSM-5 were prepared by the chemical liquid-phase deposition method, and their adsorption
capacity and the catalytic performance of adsorbed toluene were evaluated. Moreover, an in situ time
of flight mass spectrometry (TOF-MS) and an ozone analyzer were used to determine the gas-phase
VOCs and O3 byproduct. The relation between pore structure and the generation of byproducts was
also explored.

2. Experimental

2.1. Preparation

HZSM-5 zeolite samples were obtained from Nanjing XFNANO Materials Tech. Co. Ltd. (Nanjing,
China). Tetraethyl orthosilicate (TEOS) and cyclohexane were purchased from Aladdin Chemistry Co.
Ltd. (Shanghai, China) and were used as a precipitant and a solvent, respectively. All the reagents
were of analytical grade and were used without further purification.

Different pores sizes of HZSM-5 were synthesized by the chemical liquid-phase deposition
method with TEOS and cyclohexane as the precipitant and solvent, respectively. In a typical process,
1 g of HZSM-5 was dissolved in a mixed solution containing a certain amount of TEOS and 10 mL
cyclohexane. The obtained solution was stirred for several hours at room temperature. Then the
mixture was heated and dried under the irradiation of an infrared lamp. After cooling to ambient
temperature, the samples were heated from room temperature to 550 ◦C in a muffle furnace at the
heating rate of 2 ◦C/min. After calcination at 550 ◦C for 4 h, the catalysts were naturally cooled to
room temperature.

According to the different amounts of TEOS, the samples were recorded as Z0, Z1, Z2, Z3, and Z4.
Detailed information is displayed in Table 1.

Table 1. The component ratios of as-prepared catalysts.

Sample HZSM-5 Cyclohexane TEOS

Z0 pure HZSM-5 0 0
Z1 1g 10 mL 0.2 mL
Z2 1g 10 mL 0.8 mL
Z3 1g 10 mL 1.6 mL
Z4 1g 10 mL 2.4 mL
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2.2. Characterization

The X-ray powder diffraction (XRD) measurements of the prepared catalysts were carried out
on a Bruker D8-ADVANCE X-ray diffractometer (Bruker Axs Inc. Germany) with Cu Kα radiation
(k = 0.15418 nm, 40 kV, 40 mA). The shape and morphology of the catalysts were recorded through a field
emission scanning electron microscope (FE-SEM, Hitachi S–4800, Tokyo, Japan) and a transmission
electron microscope (TEM, JEOL JEM-4000EX, Tokyo, Japan). The surface area was evaluated by the
Brunauer–Emmet–Teller (Micromeritics TriStar II 3020, Micromeritics Instrument Corporation, Norcross,
GA, USA) method, and the pore size distribution, average pore diameter, and total pore volume were
measured by the Barrett-Joyner-Halenda (BJH) method.

2.3. Experimental Setup

The schematic diagram of the experimental device is shown in Figure 1, and it consisted of
a bubbling system, an NTP-catalysis reactor, and a gas detection system. Toluene was evaporated
by bubbling N2. The diluted toluene was mixed with N2 and O2 (N2:O2 (v:v) = 4:1) to achieve the
concentration of 100 ppm in the mixing bottle. The dielectric barrier discharge (DBD) reactor was
a wire-cylinder type made of quartz tube (outer diameter: 8 mm, length: 180 mm, wall thickness:
1 mm). A nickel rod with a diameter of 2 mm was placed at the reactor center as the high-voltage
electrode. The grounding electrode was coated with a layer of copper wire outside the quartz glass tube.
In this experiment, a high-voltage AC power supply (CTP-2000K, Su peak voltage man, Nanjing Suman
Plasma Technology Co. Ltd., Nanjing, China) was used to generate an 8-kV discharge with a fixed
frequency of 1.45 kHz. The discharge parameters were detected by oscilloscope (TDS1002, Tektronix,
Beaverton, OR, USA). In the process of adsorption and catalysis, 150 mg catalyst was put into quartz
tube at the airflow rate of 100 mL·min−1. In addition, the concentrations of toluene, CO2, and CO in
export gases were determined by gas chromatography (GC-2014C, Shimadzu, Japan). The gas-phase
organic byproducts were detected by time of flight mass spectrometry (TOF-MS, SPIMS 1000, Hexin
Mass Spectrometry Co. Ltd., Guangzhou, China), and the ozone (O3) concentration was determined by
an O3 monitor (IDEAL-2000, Zibo Ideal Measurement and Control Technology Co. Ltd., Zibo, China).
The residues of the catalyst were detected by gas chromatography–mass spectrometry (GCMS-QP2010
Ultra, Shimadzu, Japan). Toluene removal efficiency and carbon balance were defined as follows:

η =
C0 − C

C0
. (1)

Carbon balance =
[CO2] + [CO]

7(C0 − C)
× 100% (2)

where C0 and C were the inlet and outlet concentration of toluene; [CO] and [CO2] were the CO and
CO2 concentrations in the gas stream during the plasma catalytic process.
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3. Results and Discussion

Figure 2 shows the XRD results of the catalysts (Z0, Z1, Z2, Z3, and Z4). The intensive and
sharp diffractions at 2θ = 7.9◦, 8.8◦, 23.9◦, and 24.3◦ could be indexed by ZSM-5 (JCPDS42-0024) with
a well-resolved mordenite framework inverted (MFI)structure [29]. Meanwhile, the result revealed
that the synthetic method had no effect on the crystal structure of ZSM-5.
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Figure 2. X-ray powder diffraction (XRD) spectra of the as-prepared catalysts.

Figure 3 displays the SEM and TEM images of Z0 and Z4 samples. As shown in Figure 3a,b, two
samples with flake morphology contained aggregations of nanoparticles with a relatively uniform size,
indicating that the modification of the pore structure had little effect on their morphology. HRTEM
images (Figure 3c,d) showed that the lattice fringes with d-spacing of about 1.10 nm corresponded
well to the (011) lattice plane of ZSM-5 (JCPDS No. 42-0024), further confirming that the prepared
nanomaterials also had an MFI structure [30].
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Figure 4 shows the nitrogen adsorption-desorption isotherms of Z0 and Z4 sample. As shown in
Figure 4, two samples exhibited type I isotherm according to International Union of Pure and Applied
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Chemistry (IUPAC) classification, indicating the characteristic of microporous solids [30]. After the
treatment by the chemical liquid-phase deposition method, the isotherms had no significant change.
The physicochemical properties of all catalysts are listed in Table 2. The slightly decreased BET surface
area (SBET) and micropore specific surface areas (Smic) could be observed in the samples synthesized
by the chemical liquid-phase deposition method. This phenomenon might be attributed to the effect of
the precipitant and might affect the subsequent catalytic activity and the formation of byproducts.
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Table 2. Surface properties of the catalysts.

Sample SBET (m2/g) Smic (m2/g) Vtot (cm3/g) Vmic (cm3/g) Dmic (nm)

Z0 366 330 0.180 0.145 0.533
Z1 360 328 0.179 0.145 0.531
Z2 354 325 0.178 0.146 0.526
Z3 349 318 0.174 0.141 0.523
Z4 341 313 0.175 0.140 0.522

The adsorption curves of prepared samples are displayed in Figure 5. Obviously, the breakthrough
time of Z0 was about 3 times higher than that of Z4, and the adsorption capacity of toluene decreased
from 39.7 to 30.32 mg/g with the increase of the TEOS amount from 0 to 2.4 mL. This could be
attributed to the fact that the SBET and pore size of as-prepared catalysts gradually decreased with the
increase of the precipitant concentration. Moreover, the channel dimension of pure Z0 was similar
to the kinetic diameter of toluene; the mass transfer process of toluene molecules in HZSM-5 was
susceptible to the change of pore size. As the pore size decreased, gas diffusion resistance increased,
and the driving force of toluene adsorption became more negative in the adsorption site of HZSM-5.

In order to further investigate the effect of pore size on the adsorption potential, the adsorption
experiments of p-xylene and m-xylene on the prepared catalysts were also carried out. As shown in
Table 3, the adsorption capacity of p-xylene on Z0 was 34.23 mg/g, which was slightly higher than
that obtained on Z4 (30.17 mg/g). The adsorption capacity of m-xylene on Z0 was 10.58 mg/g, which
was much larger than that on Z4 (1.10 mg/g). This result indicated that the adsorption of p-xylene
on the prepared catalysts was significantly higher than the adsorption of m-xylene, and this could be
attributed to the effect of size. The channel dimensions of as-prepared HZSM-5 were similar to the
kinetic diameters of toluene and p-xylene [31–33], and micropore diffusion might affect the overall
reaction rate and adsorption capacity [34].
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Table 3. The adsorption capacity of as-prepared catalysts for different contaminants.

Sample
Equilibrium Adsorption Capacity (mg/g)

Toluene p-xylene m-xylene

Z0 39.70 34.23 10.58
Z1 38.92 34.15 9.17
Z2 36.53 34.02 6.96
Z3 33.31 31.42 3.84
Z4 30.32 30.17 1.10

Figure 6 shows the toluene removal efficiency of toluene and the carbon balance of the prepared
catalysts in the plasma catalytic systems. As expected, the conversion of toluene decreased slightly
from 84.9% (Z0 sample) to 79.8% (Z4 sample). The similar crystal structure and surface properties of
the catalysts were directly proportional to the amount and energy of high-energy electrons in plasma
catalysis [26], so the removal efficiency of toluene by the catalysts showed little difference. However,
the carbon balance decreased significantly from 81.9% in Z0 to 65.8% in Z4. This could be attributed
to the adsorption capacity and ozone utilization [35]. Moreover, the acidity of zeolite might have an
effect not only on the removal efficiency, but also on the adsorption properties of the zeolite [36].
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The ozone concentrations of different catalysts are shown in Figure 7. In the plasma catalytic
process, it was believed that the destruction of VOCs is mainly due to ozone, which was acting either
directly or indirectly via adsorption or decomposition on catalyst surfaces, thereby creating active
species to oxidize adsorbed VOCs [37,38]. As shown in Figure 7, the ozone concentration of Z4 was
1.5 times higher than that of Z0. This could be ascribed to the fact that the diffusion resistance of ozone
in the pore tunnel of catalysts was enhanced with the decrease of pore size, and less ozone migrated
toward the surface of the catalysts to decompose toluene. This result was well correlated with the
result in Figure 6b, which showed that higher COx concentrations were observed with Z0 than those
with Z4.
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Figure 8 demonstrates the gas-phase organic byproducts of various catalysts in plasma catalysis.
As shown in Figure 8, the intensity of m/z was 78, 106, 122, 137, and 153, increasing from Z0 to Z4.
The result indicated that more benzene ring byproducts such as benzene, benzaldehyde, benzaldehyde,
nitrotoluene, and nitrobenzyl alcohol were easily maintained in the gas phase in the catalysts with
smaller pore diameters. On the contrary, more small gas-phase compounds such as formic acid,
oxalaldehyde, and methylglyoxal could be found in the catalysts with bigger pore diameters during
plasma catalysis. This result suggested that the amounts of oxygen species (OH• and O•) were
greater on large-pore-size HZSM-5 than those on small-pore-size HZSM-5, and the active oxygen
species decomposed from O3 to the oxygen vacancy in the catalysts were in charge of toluene deep
oxidation [39]. Therefore, toluene could be deeply oxidized into small byproducts in the Z0 sample.

The catalyst surface byproducts identified by GC-MS were shown in Figure 9. Almost
10 byproducts could be found in the surface of catalysts after toluene degradation. Most of these
byproducts were benzene ring products, which might affect the deactivation of the catalysts [15].
Compared with the Z4 catalyst with a small pore size, byproducts with a large pore size—e.g., the Z0
sample—had fewer byproducts due to more active species available for the reaction and reduction of
byproducts. This result was consistent with the analysis results of ozone and gas-phase byproducts
above. Meanwhile, several nitro-containing byproducts were found on catalyst surfaces after plasma
catalysis. O-nitrotoluene appeared due to the reaction of toluene with radicals, and the formation
of o-nitrophenol might be attributed to the reaction between phenol and excited NO2 [40,41]. More
interestingly, the amount of phenol increased slightly with the increase of the pore size of HZSM-5.
This might be due to the amount of toluene adsorption, and because more adsorbed toluene molecules
were oxidized on the surfaces of catalysts and more phenol was formed.
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4. Conclusions

In conclusion, a simple chemical liquid-phase deposition method was established using TEOS
as a precipitant for the synthesis of different pore structures of HZSM-5, and toluene oxidation
was evaluated under plasma catalysis. It was indicated that with the decline of the SBET (from
366 m2/g to 341 m2/g) and the micropore size (from 0.533 nm to 0.522 nm), toluene adsorption and
catalytic performance gradually decreased. The decreased removal efficiency could be attributed to the
enhanced diffusion resistance of ozone and the reduction of active species (OH• and O•). Moreover,
TOF-MS results showed that more benzene ring byproducts were easily maintained in the gas phase
in the catalysts with smaller pore diameters. Almost 10 byproducts could be found on the surface
of catalysts after plasma catalysis, and benzene ring byproducts might affect the deactivation of the
catalysts. GC-MS result also showed that the amount of phenol increased slightly with the increase
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of pore size of HZSM-5 due to the oxidation of more toluene molecules adsorbed on the surface of
HZSM-5 with a large pore size.
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