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ABSTRACT

DNA-bound proteins are essential elements for the
maintenance, regulation, and use of the genome. The
time they spend bound to DNA provides useful in-
formation on their stability within protein complexes
and insight into the understanding of biological pro-
cesses. Single-particle tracking allows for direct vi-
sualization of protein–DNA kinetics, however, iden-
tifying whether a molecule is bound to DNA can be
non-trivial. Further complications arise when track-
ing molecules for extended durations in processes
with slow kinetics. We developed a machine learning
approach, termed Bound2Learn, using output from
a widely used tracking software, to robustly clas-
sify tracks in order to accurately estimate residence
times. We validated our approach in silico, and in live-
cell data from Escherichia coli and Saccharomyces
cerevisiae. Our method has the potential for broad
utility and is applicable to other organisms.

INTRODUCTION

Quantitative information regarding the kinetics of a protein
provides valuable insight into the behaviour of the protein,
as well as its relationship with other proteins if it is part of a
complex. This in turn may inform on the activity of the pro-
tein. The residence times of DNA-bound proteins (DBP)
can reveal important details on basic cellular processes such
as transcription, DNA repair and DNA replication, at the
timescales at which they operate (1–7). This is true for pro-
teins that bind directly at sites on DNA (such as initiator
proteins, repair proteins, and chromatin remodellers) and
indirectly as part of complexes that bind or translocate on
DNA (such as the DNA replication complex (replisome)
and RNA polymerase (RNAP)) (1,8).

Recent advances in fluorescence microscopy have allowed
us to study protein kinetics directly in living cells, with
the most common techniques used being single-particle

tracking (SPT), fluorescence recovery after photobleaching
(FRAP), and fluorescence correlation spectroscopy (FCS)
(3,4,8–13). SPT has the particular advantage of being able
to directly observe protein behaviour, allowing for a wealth
of information to be extracted from the images, both quali-
tatively and quantitatively (14,15). Typically, SPT has been
used to determine binding kinetics of DBP with very fast ki-
netics (hundreds of milliseconds to a few seconds), by using
capture rates of few to tens of milliseconds. However, many
processes operate on much longer timescales posing issues
for SPT, including photobleaching and unreliable tracking
of single-molecules.

To bypass these issues, a useful approach is to use long-
exposure times to blur out diffusing molecules, in com-
bination with stroboscopic illumination to minimize pho-
tobleaching (Figure 1A). Nonetheless, multiple yet unre-
solved issues continue to complicate the analysis of this ap-
proach. Intensity fluctuations caused by the molecule mov-
ing out of focus and photophysics of the fluorophores re-
sult in fragmentation of tracks (1,16). Reducing the thresh-
old intensity for spot localization can compensate for this
at the cost of introducing false positives. A second common
problem is the incorrect assignment of diffusive molecules
as DNA-bound, despite motion blurring and tracking pa-
rameters to select for only bound molecules. This re-
quires further filtering steps so that only tracks represent-
ing true DNA-bound proteins are included in the analy-
sis (1,2,17,18). In contrast to complications associated with
tracking algorithms and automated analysis, the user can
typically distinguish immobile DBP when looking at the
raw images under these imaging conditions as they appear
to wiggle around a fixed point. This led us to the idea that
a machine learning approach would be able to accurately
classify the DNA-bound state of a protein.

Here, we provide a user-friendly and robust method
called Bound2Learn to determine residence times of DBP
using machine learning and SPT in live Escherichia coli and
Saccharomyces cerevisiae (budding yeast), which can be eas-
ily extended to other organisms. This approach removes
some of the variability in parameter setting and is less sen-
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Figure 1. Approach to isolate DNA-bound molecules. (A) Diagram of experimental setup to do single-molecule tracking with
photoactivatable/photoconvertible fluorophores to calculate residence times on DNA. (B) Variables from Trackmate used to predict if a track
represents a genuine bound molecule. (C) Illustration of the general procedure for ML and how it can be used to predict tracks from experimental data
for POI. (D) Top: Example images from simulations of single-molecule movies representing E. coli cells and budding yeast nuclei. Bottom: Illustration of
the variables used in ML models 1 and 2. (E) Example of plot to help tune hyperparameters to minimize OOB error. (F) Test data results for different ML
models.

sitive to track fragmentation than other approaches. Hence,
we believe it will be particularly useful for the study of
protein–DNA binding kinetics with time constants ranging
from tens of seconds to minutes.

MATERIALS AND METHODS

Computer simulations of single-molecule timelapses

Computer simulations of images were written in Python 3.6.
First, a 5000 × 5000 array was constructed as an image.

Each array element was 10 nm, therefore the total size was
meant to represent 50�m x 50�m. Cells were placed in a
grid-like pattern to prevent overlap and given a low inten-

sity value of around 0.2 per array element to represent cell
autofluorescence. E. coli cells were modelled as 3D rectan-
gles, with average width of 0.7 �m, and an average length of
3 �m., while budding yeast nuclei were modelled as spheres
of average diameter 2 �m. For each cell, unless stated oth-
erwise, two fluorescent molecules were assigned such that
their initial locations were confined to the interior of their
respective cell. A weighted sampling method was used to
assign their initial diffusive state.

To model fluorescent spots, a spot intensity was assigned
at the center of the molecules and using a standard deviation
of 130 nm, the intensity was spread across the region using a
Gaussian filter. To represent out-of-focus spots in the bud-
ding yeast simulation, the standard deviation used was in-
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creased by 5% for every 150nm increase/decrease in z posi-
tion of the molecule’s position. For example, from ±150 nm
from the z-origin of 0, the molecule was assumed to be in
focus. However, if the molecule moved to a |z position| of
>150 nm but less than 300nm, its standard deviation was in-
creased by 5%. After the Gaussian filter, Poisson shot noise
at each element was added by sampling from a Poisson dis-
tribution with mean equal to the initial intensity value at
that element.

Kinetics for individual molecules were determined using
transition matrices: one for the photophysics (e.g. photo-
bleaching), and the other for transitions to different diffu-
sive states. We determined the probability of transition us-
ing a time step (� ) of 5ms. We omitted photoblinking as the
lower laser powers used in long-exposure experiments typi-
cally do not cause it. This simplified the photophysics tran-
sition matrix to:

Fstate(t + � ) Bstate(t+� )
Fstate(t) 1 – CDFbleach CDFbleach
Bstate(t) 0 1

where the Fstate is the fluorescent state, Bstate is the irre-
versible photobleached state and CDFbleach is the probabil-
ity of photobleaching within � , calculated from the cumula-
tive distribution function (CDF) of an exponential distribu-
tion with a specified mean bleach time. If the molecule went
to the Bstate, it was removed from subsequent iterations.

The transition matrix for transitions to different diffusive
states was:

Mobilestate (t+� ) Boundstate(t+� )
Mobilestate(t) 1 – CDFsearch CDFsearch
Boundstate(t) CDFbound 1 – CDFbound

where Mobilestate represents the state with D = Dmobile,
and Boundstate represents the state with D = Dbound,
CDFsearch is the probability that the molecule switches to
the Boundstate, based on an exponential distribution with
a specified mean search time, and CDFbound, is the prob-
ability that the molecule switches to the Mobilestate based
on an exponential distribution with a specified mean bound
time. In the case of the heterogeneous population of bound
molecules, a second Boundstate was added with a different
bound time.

From the transition matrices and the respective proba-
bilities, we would select the next state using sampling from
a multinomial distribution with the weights given by the
probabilities.

To simulate molecule movement, the step size in each x,
y, z direction was picked from a Gaussian distribution with
variance 2Dτ�, and � = 1 for the mobile fraction, and 0.4
for the bound fraction to represent subdiffusive behaviour
of genomic loci, due to the Rouse model of DNA polymer
motion, although we do acknowledge that loci in E. coli can
undergo more ballistic motions (19–21).

After each time step, the sum of the values of 10 × 10 ar-
ray elements was taken to simulate a 100 nm pixel size and
get a 500 × 500 pixel image. Subsequently, camera noise was
added by sampling from gaussian distribution with mean =
150 and standard deviation = 20. To obtain images of differ-
ent exposure times, time steps were integrated (e.g. 100 ms =

5 ms × 20 steps of integration). In the case of time intervals,
we allowed molecule movement but no image formation un-
til the next image is taken, e.g. for 1 s interval, a 500 ms im-
age was followed by 500 ms of only molecule movement but
no image formation, followed by another 500 ms image.

Construction of Top2 and TBP HaloTag fusions

Strains used in this study are all from a BY4741 back-
ground and are shown in Supplementary Table S5. Con-
struction of strains was done as previously described (22).
Both mNeonGreen and HaloTag fusions were preceded by
an eight amino acid linker at the 5′ end (sequence: GGT-
GACGGTGCTGGTTTAATTAAC). Fluorescent fusions
were made by PCR amplification from pTB16 or pSJW01
using the primers listed in Supplementary Table S6.

PCNA-mNeonGreen (from YTB31) and the
pdr5Δ::KanMX deletion (from a haploid sporulated from
YTK1414) were combined by mating and the resulting
diploid was dissected to isolate strain ZEY098, a haploid
with both PCNA-mNeonGreen and pdr5Δ::KanMX.
ZEY098 was then mated with either a Top2-Halo or
Spt-15-Halo (TBP, TATA-Binding Protein) haploid of
the opposite mating type, and the resulting diploids were
dissected to create ZEY075 and ZEY157 respectively,
the haploids with all three markers (HaloTag, PCNA-
mNeonGreen and pdr5Δ) that were then used for imaging
and control experiments. The genotypes of these imaging
haploids are detailed in Supplementary Table S5. Growth
curves, flow cytometry and western blots were performed
on both strains as described previously (22) to ensure the
growth and cell cycle of the cells were not disrupted by the
insertion of the HaloTag, and to confirm the HaloTag was
not being cleaved and that all fluorescent spots seen were
the intact fusion protein.

Single molecule imaging in budding yeast

A single colony from a YPD plate was placed in 5 ml syn-
thetic complete (SC) medium and grown with shaking at
30◦C for ∼5–6 h. This culture was diluted by transferring
∼50 �l into 5 ml of fresh S.C and grown overnight at 30◦C.
The overnight culture was diluted to 0.15 the next day and
grown until the optical density (OD) reached 0.30. 1 ml of
this culture was spun down for 1 min @ 4000 RPM, and
the pellet was resuspended in 500 ul of fresh S.C. Janelia
Farms photoactivatable 549 (PA-JF549) was added to the
500 ul culture for a final dye concentration of 50 nM, except
for YTK1434-Halo (Histone H3), where a concentration of
10nM was used to compensate for the higher copy number.
This culture was placed in a thermomixer at 30◦C and 500
RPM for 40 min. After incubation, three wash cycles using
fresh SC were done to wash away unbound dye. After the fi-
nal wash step, the pellet was resuspended in 50 �l of SC, and
3 �l of the culture was placed on an agarose pad consisting
of SC and Optiprep (Sigma), within a Gene Frame (Thermo
Scientific). The pad was made by taking a 2% agarose Op-
tiprep mixture (0.02 g in 1 ml Optiprep)––that was heated
to 90◦––and mixing 500 ul with 500 �l 2× SC, resulting in a
1% agarose 30% Optiprep SC mixture. Approximately 140
�l of this mixture was placed within the Gene Frame, with
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excess being removed with a KimWipe. Prior to imaging, we
waited ∼15 min to let any unbound dye be released.

Coverslips were cleaned with the following steps: (i) place
in 2% VersaClean detergent solution overnight; (ii) wash
with MilliQ water 3×; (iii) sonicate in acetone for 30 min;
(iv) wash with MilliQ water 3×; (v) place in methanol and
flame coverslips using Bunsen burner; (vi) place in plasma
etch plasma oven for 10 min.

Microscopy was done at 23◦C, on a Leica DMi8 inverted
microscope with a Roper Scientific iLasV2 (capable of ring
total internal reflection fluorescence (TIRF)), and an Andor
iXON Ultra EMCCD camera. An Andor ILE combiner
was used, and the maximum power from the optical fiber
was 100 mW for the 405 nm wavelength, and 150 mW for the
488 nm and 561 nm wavelengths. The iLasV2 was config-
ured to do ring highly inclined and laminated optical sheet
(HILO), for selective illumination and single-molecule sen-
sitivity. Metamorph was used to control acquisition. A Le-
ica HCX PL APO 100×/1.47 oil immersion objective was
used, with 100 nm pixel size. Any z-stacks were doing using
a PInano piezo Z controller.

Single-particle photoactivated localization microscopy
(sptPALM) experiments were performed by activating
molecules with low power (0.5% in software) 405 nm light to
photoactivate ∼1 molecule/cell, followed by stroboscopic,
long-exposure (500 ms) illumination with 561 nm light (5%
in software) to image primarily bound molecules. A bright-
field image and a z-stack of 6 �m (0.3 �m step size) in the
488 nm channel, was taken before and after each timelapse,
to ensure normal cell health and to find nuclei.

Tracking analysis

Tracking was done with Trackmate (23). Spots were local-
ized using the Laplacian of Gaussian (LoG) method, with
an estimated spot size of 2.5 pixels, with the exception of
the E. coli experimental data where it was set to 5 pix-
els. The intensity threshold was set a bit lower to prevent
track fragmentation due to intensity fluctuations. The lin-
ear assignment problem (LAP) algorithm was used to form
tracks with costs on quality ranging from 0.1 to 0.5. We set
a gap frame of 1 to allow temporary disappearance of the
molecule, and track merging and splitting was allowed in
cases where multiple molecules crossed paths with one an-
other.

To isolate tracks found only in cells/nuclei, we used the
binary images to locate tracks whose mean positions coin-
cided with values of 1 in the binary image.

Machine learning and tracking analysis

All machine learning and subsequent analysis for estima-
tion of residence times was done using Matlab.

To construct training data sets, we had binary classifica-
tion, with a value of 0 assigned to false positive/diffusing
molecule, and a value of 1 to a track representing a bound
molecule. We manually looked at the raw image data to de-
termine if the molecule appeared immobile.

For the learning procedure, the ‘TreeBagger’ function in
Matlab was used, representing the random forest algorithm.
The hyperparameters that were adjusted were: InBagFrac-
tion (representing the fraction of the training data given to

each tree), MinLeafSize (minimum leaf size), NumPredic-
torstoSample (number of predictors to sample at random
at each node), and NumTrees (the number of trees to con-
struct). InBagFraction was adjusted to make the models
generalizable: giving a small sample to each tree will pre-
vent overtraining; however, if the training data was strongly
biased towards one class (e.g. mostly bound), then a higher
fraction was used to ensure the other class was still be-
ing represented during the learning procedure. MinLeaf-
Size was set to 50 for most models, which represents a large
enough size to prevent overfitting (since the trees are not un-
necessarily extensive), while small enough for trees to have
layers and have strong predictive performance. NumPredic-
torstoSample was set to 2, as for a case of 4–5 variables
used during the learning procedure, it provides a balance of
accuracy and generalizability. NumTrees was selected un-
til the OOB error was stable and at a minimum (generally
over 6000 trees). Too few trees results in poor predictive per-
formance while a large number of trees increases computa-
tional time, and may provide no additional benefit after a
certain point. These parameters were adjusted until the best
OOB error was achieved and performed well on test data,
when applicable.

For GMM fitting, the expectation-maximization (EM)
algorithm was used.

After the final classification, we analyzed the tracks to ex-
tract residence times. We fit the track durations of the result-
ing tracks with a truncated exponential model, to compen-
sate for discarding short duration tracks, using maximum
likelihood estimation (MLE) through Matlab’s ‘mle’ func-
tion, to calculate the mean track duration.

PDF =
(

1
τ

)
e

−(x−L)
τ

where τ is the mean track duration, and L is the truncation
point. For photobleaching controls, this was equivalent to
estimating the mean bleach time.

The 95% confidence intervals were calculated by boot-
strapping 1000 samples.

In cases where the experimental data was taken with a
longer time interval than the photobleaching control, we
used the following equation to calculate Tbleach (1,24):

Tbleach = Tint

Texp
(Tbleach AF AP)

where Tint and Texp are the time interval and exposure, re-
spectively, used to acquire the data, while Tbleach AF AP is the
photobleaching time for data collected with continuous ex-
posure, which in in the case of the data used here, would
represent 500 ms interval

Bound times were calculated using the following equa-
tion, after combining data from multiple experiments col-
lected with the same time interval:

Tbound = Ttrack ∗ Tbleach/ (Tbleach − Ttrack)

To calculate the errors on the estimate, we per-
formed bootstrap sampling on the track durations to the
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following equation:(
1

Ttrack

)
e−t/Ttrack =
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Tbound

)
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Tbleach
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× e−
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1
Tbound

)
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Tbleach

))
t

With 10% variation allowed for the Tbleach estimate, in or-
der to obtain biologically sensible results.

To check for two-exponential mixtures, the track dura-
tions were fit with the following two-exponential model:

p
(

1
τ1

)
e

−(x−L)
τ1 + (1 − p)

(
1
τ2

)
e

−(x−L)
τ2

where τ1 = (Tbleach + Tboundγ )/(Tbleach *Tboundγ ), τ2=
(Tbleach + Tboundψ )/(Tbleach * Tboundψ ), p is the mixture
proportion, and L is the truncation point.

The lower and upper bounds on the two binding
timescales were 0.0001 and 6000 s, respectively, while allow-
ing for a 10% variation in the bleaching estimate.

To check for overfitting and to identify whether the two-
exponential model significantly fit the data better, we used
the BIC test and the Loglikelihood ratio (LLR) test, as de-
scribed in (1). We looked for cases when the two-exponential
model estimates did not simply return the lower and/or up-
per bounds as this would indicate that no physically sensible
solution was found.

Diffusion coefficient estimation

Diffusion coefficients were estimated from individual tracks
by calculated the slope of the time lag (� ) vs mean squared
displacement (MSD) curve. The equation used was modi-
fied from (25):

4 ∗ Dapp ∗ τα

+
(

4 ∗ b2 − 8 ∗
(

1
6

)
∗

(
Texp
Tint

)
∗ D ∗ Tint

)

where Dapp is the apparent diffusion coefficient, � is the
anomalous diffusion constant, and b is the static localiza-
tion error. We used this equation to correct for dynamic lo-
calization error due to the molecule moving within the ex-
posure time, which in our case was quite long.

To classify tracks using their Dapp estimates, we per-
formed GMM fitting on the distribution of Dapp, with
two components, and clustered tracks according to their
Dapp to assign them as either being in the bound state
vs diffusing/noise. Clustering was done by first calculating
posterior probabilities to each track (the probability it be-
longs to a diffusive state given its Dapp), and then selecting
the diffusive state with the maximum posterior probability.

To gain a better estimate of the diffusion coefficient for
Top2, TBP, and Histone H3, we performed a weighted, least
-squares fit using the MSD values averaged over the tracks,
after they were classified by Bound2Learn. We did not in-
clude tracks with a goodness of fit (gof) score of less than
0.70 from the previous step, given the noisiness of some of
the MSD curves. We also included lower and upper bounds
on the estimates to ensure physically sensible estimates, and
in cases where on the estimates was the lower or upper

bound value, we discarded data points at higher � values.
This is a known issue given there are fewer data points in
the calculation of MSD at the higher � values leading to
more noisier traces.

RESULTS

Random Forest for single-molecule tracking classification

Machine learning (ML), including its branch of deep-
learning, is a powerful tool for image analysis and classifica-
tion, with the most common implementation being super-
vised learning, whereby a labelled training data set is given
to the ML algorithm, which then builds a model for subse-
quent classification (26,27). Our motivation arose from rec-
ognizing the limitations associated with automated detec-
tion and tracking, and our desire to develop a classification
method to compensate for these limitations. We recognized
that a known DBP (e.g. histone H3) could be used to con-
struct a training data set manually, for how DBP in general
should move and how single-molecules should look like in
images, from which we can build a ML model. We can also
use this control as a photobleaching control––if it exhibits
stable binding––when we estimate the residence time for our
DNA-bound protein of interest (POI) (1).

We used Trackmate, a freely available plugin in Fiji, to
track molecules and used variables from the tracking output
that we believed to be good predictors of single-molecule
DBP and reduced the cross-validation error (CVE) (Figure
1B) (23). To predict whether a molecule moves like a DBP
we used the following variables from the tracking output:
mean speed, maximum speed, minimum speed, and median
speed. For predicting whether the track represented a gen-
uine molecule, we used the maximum quality variable––a
parameter corresponding to the intensity of the molecule
as well as its shape (23). Classification of the track was
done manually by looking at the raw image data, with bi-
nary classification: 0 for a diffusing molecule or noise, and
1 for a track representing a genuine immobile, DNA-bound
molecule. We chose to use the random forest algorithm to
construct a model from the training data, as it is accurate,
tolerant of noise, and less prone to overfitting (28) (Figure
1C). The various parameters used to construct the different
random forest models are listed in Supplementary Table S1.
We used this model to classify tracks for our POI (Figure
1C), and subsequently determine their residence time after
correcting for photobleaching.

We first tested our approach using computer simulations
of single-molecule timelapses of E. coli and nuclei of bud-
ding yeast (see Materials and Methods). The main differ-
ence between the two simulations, aside from cell shape,
was that the budding yeast simulation had a distortion in
the shape of the molecule based on its position in z, to
model the point spread function (PSF) and emulate the
molecule going out of the focal depth of the objective. Un-
der our experimental conditions, E. coli cells have diam-
eters of 0.7 �m, which is not far from the estimated fo-
cal depth of high numerical aperture objectives commonly
used in single-molecule studies (∼0.4 �m), so we assumed
molecules to be in focus, regardless of their z position (1).
We first constructed training data sets from simulated data
with 500ms exposure, no time interval, and a mean bleach
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time of 10s (Supplementary Table S2). We had a stable,
bound fraction (diffusion coefficient (D) of Dbound = 0.005
�m2/s, bound time >>> bleach time), along with a mo-
bile fraction (Dmobile = 0.5 �m2/s) (Figure 1D). We chose a
Dmobile of 0.5 �m2/s, as it represents an appropriate lower
limit for a diffusing molecule and is on the order of previ-
ously used values used in simulations to benchmark mea-
surements of DBP (3,18,29). The value for Dbound was se-
lected for similar reasons.

We only considered tracks with ≥4 localizations, as it
is difficult to discern the state of the molecule for shorter
tracks, and throughout the rest of the sections we used a
low intensity threshold for localization during analysis to
prevent track fragmentation, with the ML approach meant
to discard any false positives of DBP (3,18). In order to
make use of a single training data set, instead of construct-
ing multiple training data sets for classifying data collected
under different conditions, we constructed two models: ML
model 1 only has the speed variables and ML model 2 has
the speed variables along with maximum quality (Figure
1D). We calculate the mean of ‘mean speed’ as well as the
mean of ‘maximum quality’ from the tracks classified as be-
ing bound in the training data and used these values to scale
the speed and quality variables, respectively, for data col-
lected with different time intervals and/or illumination in-
tensities (Supplementary Figure S1).

The entire procedure for the classification of tracks for a
POI is as follows:

1) We performed a two-component Gaussian mixture
model (GMM) fit on the log of mean speed, of all the
tracks, and the component with the lowest mean is se-
lected as representing the immobile molecules. This step
does not need to be robust as it is only used to do some
initial filtering for subsequent steps.

2) Using this value, we scale the speed variables accord-
ingly, using the mean of ‘mean speed’ calculated from the
training data, as follows: scale factorspeed = mean (mean
speedtraining)/mean(mean speedboundPOI). This helps to
ensure the ML models can classify tracks obtained from
different time intervals than the training data. We then
run the tracks through ML model 1 for initial filtering.

3) From the resulting tracks, we calculate the mean of
‘maximum quality’ using a two-component GMM, sim-
ilar to step 1 except selecting the component with the
higher mean and use the same variable from the training
data to scale the quality variable, similar to the previous
step. We then run the tracks through ML model 2 for
final classification.

To assess how well the procedure worked, we quanti-
fied both the accuracy (proportion of tracks accurately pre-
dicted to be bound), and the recovery error (RE) (the frac-
tion of tracks known to be representing bound molecules
that were missed by the classification procedure). While
high classification accuracy is important to ensure accurate
estimation of residence time, we also wanted to make sure
that the recovery error is small, as single-molecule studies
are often plagued by low sample sizes that reduce confidence
in the estimate (1,14). In addition, the out-of-bag (OOB) er-
rors, equivalent to the CVE for random forests (28), were es-

timated for each ML model (Supplementary Table S1). The
hyperparameters during the learning procedure (e.g. num-
ber of trees, bag fraction, number of variables to sample)
were optimized to give the lowest OOB error and best re-
sults on test data (Figure 1E). On test data, we obtained an
accuracy of 0.96 and RE of 0.10 for the E. coli simulation,
and an accuracy of 0.97 and RE of 0.06, for the budding
yeast simulation (Figure 1F).

Accurate estimation in silico of residence times under differ-
ent conditions

Next, we tested how well the ML models would work on
simulations of image data with different time intervals and
spot intensities (Materials and Methods, Supplementary
Table S2). First, we tested on data with a 1 s time interval
and the same spot intensities as the training data set (Sup-
plementary Videos S1 and S2). The mean residence time was
set to 8 s, while the bound fraction was set to 0.5. As Fig-
ure 2A (top) illustrates, we first calculate the mean of ‘mean
speed’ of the bound population, in order to scale the speed
variables. After the final classification step, for both the E.
coli and budding yeast simulations, we were able to obtain a
mean residence time estimate (∼7 s) that was in close agree-
ment with the 8s set in the simulation (Figure 2A (bottom)).
In addition, the accuracy values were 0.93 and 0.96, with re-
covery errors of 0.11 and 0, respectively, for the E. coli and
budding yeast simulations (Supplementary Table S3).

With the E. coli simulation, we also tested the accuracy
and RE by using a more traditional approach of estimat-
ing apparent diffusion coefficients (Dapp) through mean-
squared displacement (MSD) analysis, GMM fitting to de-
termine diffusive fractions, and assigning individual tracks
to a diffusive state using a cluster method (Materials and
Methods). We observed that there was a large spread in
the apparent diffusion coefficients, consistent with the dif-
ficulty of obtaining precise estimates from single tracks us-
ing MSD analysis, given that they are inherently noisy (25)
(Figure 2B). Furthermore, the accuracy and RE using this
approach was 0.54 and 0.12, respectively, with a bound time
estimate much lower than 8s, suggesting a significant frac-
tion of tracks resembling diffusing molecules or noise were
being classified as bound (Figure 2B). This suggests that
while it is possible that mean values of the Dapp for dif-
ferent states may be accurate, due to precision issues from
MSD analysis, assigning individual tracks to different states
based solely on their Dapp can be error prone. We then
tested whether we could obtain an accurate estimate in a
situation representing poorer image quality, by lowering the
integrated spot intensity from 3000 to 2000. As Figure 2C
(top) illustrates, we use the GMM fit on the max quality
values to find an appropriate scaling factor. After classifi-
cation, we find that we can still recover an estimate of the
residence that is within error of the known value, for both
simulations, with accuracy values and REs similar to the
previous condition (Figure 2C, Supplementary Table S3).
In contrast, the MSD analysis approach on the same data
resulted in a lower accuracy of 0.79, with a RE of 0.096, and
bound time estimate of ∼5 s (Supplementary Table S3).

While a long exposure of 500 ms helps to blur out dif-
fusing molecules, it also restricts the temporal resolution
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Figure 2. Estimating residence times over a range of conditions. (A) Top: Diagram illustrating the GMM fit to determine the mean of mean speed for 1 s
interval data, which can be used to rescale the speed variables. Bottom – Estimates of residence times in both simulations (n = 169 tracks for E. coli and n =
232 tracks for budding yeast). (B) Distribution of apparent diffusion coefficients from E. coli simulation, with GMM fitting, followed by clustering to isolate
tracks representing bound molecules (blue) and diffusing/noise (orange). n = 291 tracks. (C) Top: Diagram illustrating the GMM fit to maximum quality
values from a data set with lower fluorescent intensities. Bottom: Estimates of residence times from simulated data representing poorer image quality (n =
159 tracks for E. coli and n = 227 tracks for budding yeast). (D) Top: Example of image from simulated 100 ms timelapse in E. coli. (E) Two-exponential
fitting to a data set with heterogeneous population of bound molecules (n = 508 tracks). For all estimates, 95% confidence intervals are shown.

achievable, and makes it difficult to obtain precise estimates
for faster processes, as fewer tracks will remain if using a
track localization acceptance threshold. Therefore, we con-
structed a training data set with 100 ms exposure [accuracy
and RE on test data was 0.97 and 0.06, respectively (Fig-
ure 1E)], and tested on data with a mean residence time
set to 1s while the bleach time for this condition was set
to 2 s (20 frames) (Figure 2D, Supplementary Video S3).
Once again, we were able to obtain an estimate (∼0.97 s)
that was in agreement with the 1s residence time, although
with lower accuracy and higher recovery errors than with
500ms, as one would expect under conditions where the sep-
aration between two diffusive states is more difficult to dis-
cern. (Figure 2D). We tested this by changing Dmobile to 5
�m2/s, and found the errors were drastically reduced, with
an accuracy of 0.98 and RE of 0.08 (Supplementary Table
S3). We then asked whether the ML models built with the

500 ms training data can be used to classify the 100ms data,
and surprisingly, we found that it still performed well (Fig-
ure 2D), with comparable errors to the 100 ms ML models
(accuracy = 0.86 and RE = 0.16 with 500 ms ML model,
versus accuracy = 0.85 and RE = 0.18 with 100 ms ML
model) (Supplementary Table S3).

We also found that we could get accurate estimates of
the residence times of a heterogeneous population of bound
molecules, where two distinct binding regimes were present:
mean Tbound� set to 7 s while mean Tbound� set to 1 s
(Figure 2E). We note that for the simulation representing
a heterogeneous population of bound molecules, we had
to change the bleach time to 10 s, in order to recover the
two binding times. As others have alluded too, detecting
multiple populations is highly dependent on acquisition set-
tings (30). These results show that one can use ML models
constructed from a single training data set and use them
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Figure 3. Testing Bound2Learn under challenging simulation conditions
for tracking. Simulations were done based on E. coli cells and the same
tracking analysis parameters were used across all conditions. The input
bound time was 8 s while the bleach time was 20 s. Images represented
500 ms exposure with a 1 s time interval. Error bars for bound time esti-
mates represent 95% confidence intervals.

for accurately classifying tracks obtained from data col-
lected under widely different conditions, along with obtain-
ing accurate residence times of homogeneous and heteroge-
neous bound populations. It is important to highlight that
this analysis does not require additional steps to identify
appropriate thresholds to filter out noise and/or diffusing
molecules, which can be time-consuming and a source of
heterogeneity in the analysis.

We also characterized our approach across a range of
different simulation conditions and compared it to the
commonly-used MSD analysis approach for classifying
states of molecules from SPT (Figure 3) (2,11,29). Here
we tested the performance of our approach in conditions
where we reduced the proportion of DNA-bound to diffu-
sive molecules, the signal to noise ratio of the spots, and the
diffusion coefficient of diffusive molecules. All these condi-
tions were expected to complicate the accurate estimation
of the bound times. We found our approach consistently
out-performed the MSD analysis approach, and achieved
estimates for the bound time in close agreement with the

input of 8 s. The Bound2Learn approach was able to per-
form robustly even in conditions where the intensity of the
spots was one third of the optimal intensity (Figure 3, con-
dition 5). Compared with the Bound2Learn approach, the
MSD analysis approach had a much lower detection ac-
curacy, but with similar RE, suggesting that the MSD ap-
proach resulted in a higher number of false positives. We
note that this does not imply that the MSD approach is poor
in general for classification, but rather, under tracking con-
ditions meant to prevent track fragmentations, it can have
a high classification error. The procedure used for image
simulation constrained the lower-bound limit for the diffu-
sion coefficient of diffusing copies, below which molecules
may appear to become stuck at the boundaries of the cell.
Hence, we did not simulate molecules that diffused slower
than 0.25 �m2/s. However, this value is roughly half of the
slowest diffusive DBPs in E. coli (29). Overall, these results
make us confident that our ML approach can robustly clas-
sify DBP and estimate bound times across a range of con-
ditions.

Experimental validation in E. coli

We then determined if Bound2Learn could estimate resi-
dence times from imaging of E. coli. Unless stated other-
wise, estimates were obtained by fitting track durations us-
ing a truncated exponential model (we discarded tracks with
<4 localizations as they were not reliable) to data from mul-
tiple experiments collected under the same acquisition set-
tings to obtain higher statistical confidence (Materials and
Methods, Supplementary Table S4). We reanalyzed a sub-
set of the data reported in (1) to test if we could obtain con-
sistent results. For our DNA-bound control we used LacI,
a transcriptional repressor, fused to the photoconvertible
mMaple, which upon illumination with 405 nm light, con-
verts to a red fluorescent form (31). LacI has been reported
to bind stably to the lacO array site on DNA (∼5 min),
thus making it suitable as a photobleaching control, un-
der our acquisition times (32) (Supplementary Figure S2).
Although we had initially used this strain for photobleach-
ing correction in (1), we decided to use it for constructing a
training data set as well. The LacI data used for the train-
ing data was collected with 500ms exposure and continuous
acquisition, resulting an estimated photobleaching time of
13.60 s (Figure 4D).

Once the ML models were constructed, we asked whether
we could get an accurate estimate of the residence time for
E. coli DNA polymerase, PolIII, for which we had previ-
ously reported to have a residence time of around ∼10 s, (1).
We reanalyzed a dataset from (1) taken of the PolIII sub-
unit, ε, also tagged with mMaple (ε-mMaple), to determine
if Bound2Learn could give similar results (Figure 4A). Our
analysis resulted in an estimate of 10.82 s (8.06, 12.37 s), in
very close agreement with the previously reported estimate
(Figure 4B and C). We also reanalyzed data taken of the
DNA binding clamp, �-mMaple, which we previously re-
ported to have a bound time of 47.22 s (1). As mentioned
before, stable binding poses an issue for tracking as intensity
fluctuations (e.g. molecule moving out-of-focus) can result
in track fragmentation (1). Bound2Learn is less sensitive to
such intensity fluctuations since it allows the use of lower
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Figure 4. Estimating residence times for PolIII subunit, ε. (A) Example of ε-mMaple timelapse. Red circles indicate molecules that were classified as being
bound with Bound2Learn. Scale bar = 2 �m. (B) Histogram and fit of track durations from combined data set of ε. (C) Estimation of residence times and
comparison to estimates from (1). Estimate for � was a weighted average calculated from bound times estimated with different time intervals. (D) Summary
of results showing both mean track duration estimates and mean bound time estimates from combined data sets. 95% confidence intervals are shown next
to estimates.

intensity thresholds during the localization step and still re-
sult in accurate classification. We analyzed data collected
with 1s and 5s time intervals, and then calculated a weighted
average as our final estimate for mean bound time. Our es-
timate using Bound2Learn was 59.39 s (47.71 s, 71.08 s),
which is slightly higher, but still within error, than our pre-
viously published estimate (Figure 4C). Use of a different
localization and tracking software than the one in our previ-
ous publication may also explain part of this difference (1).
Our full results are summarized in Figure 4D, showing the
estimates for mean track durations and mean bound times
for the different proteins, and different time intervals in the
case of �2. Overall, these results suggest that Bound2Learn
robustly estimates residence times of proteins with different
binding behaviours in E. coli.

Estimating residence times of topoisomerase II and TATA-
binding protein in budding Yeast

We then asked if our approach could be used in live budding
yeast. For our photobleaching control and training data
construction, we used histone H3 fused to HaloTag (H3-
HaloTag), due to its expected long residence time and high
bound fraction (33) (Supplementary Figure S2 Table S5). In
order to detect the protein, we incubated cells with the cell-

permeable photoactivatable (PA) dye, PA-JF549 (34). The
experimental protocol was very similar to that described
in E. coli (1), consisting of the use of highly-inclined and
laminated optical (HILO) sheet stroboscopic illumination
with 500ms exposure, but with cycles of low-dose 405 nm
activation every 40 frames (Materials and Methods). To
improve image quality with budding yeast, we also used
the refractive-index matching media, Optiprep, to minimize
light refraction due to the cell wall (35). The mean photo-
bleaching duration estimated, with 1 s interval acquisition,
was ∼22 s (Supplementary Table S4, Supplementary Figure
S2).

As experimental test, we tagged Topoisomerase II (Top2)
with HaloTag (Top2-HaloTag) and to segment nuclei in or-
der to isolate tracks found only in S-phase nuclei, we tagged
proliferating nuclear cell antigen (PCNA) with mNeon-
Green (Pol30-mNeonGreen) and acquired a z-stack in the
green channel prior to acquisition (Supplementary Table
S5). Tagging Top2 with HaloTag did not result in any vis-
ible growth or viability defect of the cells, or in the degra-
dation of the protein (Supplementary Figure S3). The re-
sulting z-stack went through a smooth manifold extraction
(SME) process for better image quality of the nuclei (36).
We chose Top2 as mammalian Top2 enzymes have been re-
ported to be dynamic in interphase cells, with FRAP t1/2
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lifetimes of 1.8–10 s (no precise residence time determined
since the recovery due to diffusion versus Top2 dissocia-
tion was not determined). A more recent study examining
Top2A dynamics in mitosis reported a FRAP recovery time
that consisted of two t1/2 lifetimes, with the longer timescale
(representing DNA-bound fraction) estimated to be ∼ 30–
60 s (13,37). We collected the data under the same acqui-
sition settings as H3-HaloTag. As observed in Figure 5A,
we were able to visualize dissociation events of the protein
under our acquisition settings. Following tracking analysis
and ML classification, we obtained an estimate for the res-
idence time of Top2 of ∼30 s, consistent with dynamic be-
haviour reported previously in mammalian cells (Figure 5B
and C, Supplementary Table S4). We also performed sim-
ilar experiments in a strain lacking a HaloTagged protein,
but incubated with the fluorescent dye, and could not ob-
serve any molecules in the timelapses (Supplementary Fig-
ure S4). In addition, no bound tracks were obtained af-
ter classification with Bound2Learn. Therefore, nonspecific
binding of the dye is unlikely to contribute to our estimates.
It should be noted that despite slightly poorer spot qual-
ity compared to E. coli (compare Figure 4A versus Figure
5A), Bound2Learn was able to obtain estimates in this sys-
tem, suggesting our approach can be used across a range of
imaging conditions.

To further confirm that our approach works with single-
molecule data from budding yeast, we performed similar
experiments with a HaloTag fusion of TATA binding pro-
tein (TBP) (SPT15-HaloTag), a general transcription fac-
tor, which has been shown in budding yeast to have FRAP
recovery times <15 s, and with a minimal immobile frac-
tion, suggesting it is dynamic on DNA, although the ex-
act binding time has not been determined (8) (Supplemen-
tary Table S5). We collected the data with continuous ex-
posure (500 ms intervals) rather than with a 1s time in-
terval, to prevent the possibility of TBP binding to neigh-
boring binding sites thereby artificially increasing its esti-
mated residence time. Our data confirms the dynamic be-
haviour of TBP, as we observed dissociation within a few
seconds (Figure 5D, Supplementary Video S4). Few of the
spots detected were in S-phase nuclei, indicating that some
transcription (e.g. expression of histones) occurs during S-
phase (38). Our measured photobleaching time using his-
tone H3 was 12.19 s (Supplementary Table S4). When we
quantified the track durations for TBP, we observed a sig-
nificantly different track duration distribution relative to hi-
stone H3, with an abundance of short duration tracks, sug-
gesting most tracks ended due to dissociation of the protein
as opposed to photobleaching (Figure 5E, Supplementary
Table S4). Our estimate for the mean bound time of TBP, af-
ter photobleaching correction, was 11.43 s, consistent with
TBP being dynamic on DNA (Figure 5F).

To increase our confidence that the tracks classified as
being DNA bound were actually DNA-bound, we tested
if they had diffusive properties similar to chromosomal
loci. We estimated the apparent diffusion coefficients and
anomalous diffusion constants for the different budding
yeast proteins used here by fitting the � versus MSD
curve (Materials and Methods) (22). Remarkably, the es-
timates were not only consistent among the different pro-
teins (Dapp ranging from 0.003263 to 0.007080 �m2/s) but

were consistent with previously estimated values of chro-
mosomal loci in budding yeast of Dapp ∼0.0025 �m2/s and
� ∼ 0.5 (20) (Figure 5G). We did notice that histone H3
had slightly different values compared to TBP and Top2,
but given that histones are widespread on chromosomes, it
is possible that we detected histone H3 molecules bound to
chromosomal segments where TBP and Top2 do not bind
frequently (e.g. telomeres) (22).

The results from budding yeast, summarized in Figure
5H, show estimates for mean track durations and mean
bound times for TBP and Top2. Although our results show
that both of them have bound times of several seconds, fur-
ther experiments need to test the biological relevance of
these binding kinetics by, for example, using mutant pro-
teins impaired in different aspects of their function. Despite
not causing any evident growth defect, we cannot rule out
that the HaloTag may have a negative effect in the func-
tion of these proteins. However, our results broadly agree
with what has previously been reported for these proteins.
Overall, these results show that our approach can accu-
rately determine residence times across a range of binding
behaviours in two very different organisms.

DISCUSSION

Here, we have provided a robust, easy-to-use classifica-
tion approach to isolate tracks of DBP and estimate res-
idence times from long-capture (motion blurred) single-
molecule data. Commonly used approaches to classify
bound molecules by applying thresholds on various track
traits (MSD analysis, step-size per frame of DBP, PSF, etc.)
often are not sufficient for rigorous classification, require
additional analysis steps and/or experiments, or may dis-
card too many tracks (1,2,18,25). Our approach bypasses
these limitations, without requiring significant technical ex-
pertise or computational resources, and can obtain esti-
mates in a rapid manner. This new approach is particularly
advantageous for the study of DBPs with residence times
ranging from tens of seconds to minutes (where molecules
moving out-of-focus is an issue), as has been recently shown
to work very well for replication proteins (22). Notably,
Bound2Learn permits the use of tracking analysis param-
eters to prevent track fragmentation (e.g. low intensity
threshold for localization) that is prohibited with a MSD
analysis approach. Since Bound2Learn functions by differ-
entiating the almost immobile bound copies from the diffu-
sive copies, we expect that our approach may be also adapt-
able to the study of the binding kinetics of proteins that bind
to other cellular structures, such as lipid membranes or the
cytoskeleton.

Bound2Learn was able to recover the residence time even
in suboptimal signal-to-noise conditions. Despite this ob-
servation, a requirement for good image quality is still the
main limitation of our approach. Lower intensity will not
only lead to lower quality values but also overestimate speed
variables for classification due to increased localization er-
ror. Similarly, the classification error in our approach in-
creases when the diffusive and DNA-bound fractions have
similar mobility, although as demonstrated above Bound-2-
Learn should performs robustly under most biologically rel-
evant diffusive values. Another limitation is that construct-
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Figure 5. Estimating residence time of Top2 and TBP in budding yeast. (A) Example of Top2-HaloTag timelapse after photoactivation. Yellow circle
indicates molecule classified as being bound with Bound2Learn. Cell and nucleus outlines are drawn in white and cyan, respectively. Also shown is the
SME of a Pol30-mNeonGreen z-stack. Scale bar = 3 �m. (B) Violin plots of track durations for Top2 (n = 94), and Histone H3 (n = 123). Error bars
represent 95% confidence intervals. Dotted horizontal lines represent upper and lower bounds of the 95% confidence interval of Histone H3. (C) Histogram
and fit on Top2 track durations. Note that bin counts for short durations are smaller than expect given that short tracks of <4 localizations were discarded.
This was compensated for during the fitting procedure (Materials and Methods). Errors are represented by 95% confidence intervals (D) Example of
SPT15-HaloTag (TBP) timelapse collected with continuous exposure, after photoactivation. Yellow circles indicate molecules classified as being bound by
Bound2Learn. Cell and nucleus outlines are drawn in white and cyan, respectively. Also shown is the SME of a Pol30-mNeonGreen z-stack. Scale bar =
3 �m. (E) Violin plots of track durations for TBP (n = 729), and Histone H3 (n = 242). Error bars represent 95% confidence intervals. Dotted horizontal
lines represent upper and lower bounds of the 95% confidence interval of Histone H3. (F) Histogram and fit on TBP track durations, along with estimate
for bound time. (G) Estimates for diffusive properties and static localization errors of ML classified bound tracks, obtained through fitting averaged MSD
curves. (H) Summary of results showing both mean track duration estimates and mean bound time estimates from combined data sets. 95% confidence
intervals are shown next to estimates.
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ing training data sets manually can take significant time and
choosing the right hyperparameter values for building ran-
dom forest models requires some expertise; to facilitate this
step we provide advice on how to train and tune the model
in the methods as well as providing a link to an instructional
video. However, our results suggest that once the initial
models have been created, they can be used across a range
of conditions whether that be different exposure times, time
intervals, data quality, and are amenable for use in a high-
throughput manner. During this study, we had to adjust
our simulation parameters (akin to adjusting experimen-
tal conditions) to detect two binding regimes in cases where
there was a heterogeneous population of bound molecules,
similar to what a recent study has reported (30). Nonethe-
less, this is not an issue with our classification approach but
rather the acquisition settings used (or in our case, simu-
lation parameters), and our results suggest simulations can
help identifying the optimal acquisition conditions to use
for detecting multiple binding states.

Use of Bound2Learn solves some of the limitations
with previous approaches for classification of DNA-bound
molecules, demonstrating an advantage of using ML ap-
proaches. Future development of this approach should fo-
cus on decreasing its sensitivity to image quality. A po-
tential method to doing this may be the incorporation of
Deep Learning approaches for the denoising and other pre-
processing of the images, an area of image analysis that has
had a fast development recently (39). As it stands, we expect
that Bound2Learn will improve the analysis of other DNA-
binding proteins, and other proteins interacting to relatively
immobile structures in the cell. We also expect that this ap-
proach will be easily applicable to other experimental mod-
els, including mammalian cells.
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