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Abstract

Alopecia areata (AA) is a chronic autoimmune hair loss disease that affects several million men, women and children
worldwide. Previous studies have suggested a link between autoimmunity, stress hormones, and increased cardiovascular
disease risk. In the current study, histology, immunohistology, quantitative PCR (qPCR) and ELISAs were used to assess heart
health in the C3H/HeJ mouse model for AA and heart tissue response to adrenocorticotropic hormone (ACTH) exposure.
Mice with AA exhibited both atrial and ventricular hypertrophy, and increased collagen deposition compared to normal-
haired littermates. QPCR revealed significant increases in Il18 (4.6-fold), IL18 receptor-1 (Il18r1; 2.8-fold) and IL18 binding
protein (Il18bp; 5.2-fold) in AA hearts. Time course studies revealed a trend towards decreased Il18 in acute AA compared to
controls while Il18r1, Il18bp and Casp1 showed similar trends to those of chronic AA affected mice. Immunohistochemistry
showed localization of IL18 in chronic AA mouse atria. ELISA indicated cardiac troponin-I (cTnI) was elevated in the serum
and significantly increased in AA heart tissue. Cultures of heart atria revealed differential gene expression between AA and
control mice in response to ACTH. ACTH treatment induced significant increase in cTnI release into the culture medium in a
dose-dependent manner for both AA and control mice. In conclusion, murine AA is associated with structural, biochemical,
and gene expression changes consistent with cardiac hypertrophy in response to ACTH exposure.
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Introduction

The non-scarring hair loss disease alopecia areata (AA) is driven

by autoimmune lymphocytes [1,2]. Over five million people are,

or will be, affected by AA in the United States alone, making it one

of the most prevalent autoimmune diseases [3]. The development

of AA can be associated with other inflammatory diseases such as

thyroiditis [4], vitiligo [5,6] and psoriasis [7–9]. While stress as an

inducer of AA has long been suspected [7,10–12], studies with

rodent models suggest the onset of AA can also exacerbate stress

responses. AA affected mice show a decreased ability to cope with

physiological stress and a deficit in habituation to repeated

psychological stress [13]. Stress hormones such as cortisterone

(CORT) and adrenocorticotropic hormone (ACTH) are elevated

in AA mice and stress receptors in the brain are altered [13,14].

Chronic inflammatory conditions can be significant contribut-

ing factors to the development of various cardiovascular diseases

[15]. The etiology and pathogenesis of chronic inflammatory

processes, which usually implicate autoimmune disease, also often

involve changes to stress hormone levels [16]. For example, the

autoimmune skin disease psoriasis involves chronic upregulation of

inflammatory cytokines and dysregulated stress hormones [17].

Development of psoriasis also correlates with an increased risk for

atherosclerosis, dilated cardiomyopathy, and myocardial infarc-

tion [18,19]. Potentially, other diseases with chronic inflammation

and changes to stress hormone activity, such as AA, could also be

associated with heart tissue damage.

Pathologic cardiac hypertrophy is multifactoral; it is common to

many cardiovascular diseases such as hypertension and cardiac

infarction where the heart increases in muscle mass, but not in

contractility, due to dysregulated cardiac remodelling [20,21].

Several studies have suggested the involvement of stress hormones

in cardiac hypertrophy and hypertension; treatment of epilepsy

using cortisol and ACTH increases left ventricular mass index

[22–24].

A possible epidemiological link between AA and heart disease

has been suggested, but has not been actively investigated [25,26].

In this study, we examined the potential structural and molecular

changes of hearts in AA affected C3H/HeJ mice. With chronic

AA development, cardiac enlargement and other pathological

changes were observed. Tissue culture studies suggested exposure

to ACTH modulates gene expression and promotes the release of

cardiac troponin (cTnI), a marker of heart tissue damage.
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Materials and Methods

Ethics Statements
All animal studies were approved by the University of British

Columbia Animal Care Committee.

Mice and Tissue Collection
Normal haired, female C3H/HeJ mice (The Jackson Labora-

tory, Bar Harbor, ME) were induced to express AA by skin

grafting as described previously [27]. Age matched sham-grafted

littermates as controls. Mice were weighed before euthanasia and

their hearts were weighed after blood collection. Mice were

euthanized with CO2 and subsequent cervical dislocation. Hearts

were divided equally such that half was used for RNA extraction

while half was used for histology or protein extraction as below.

RNA Extraction, cDNA Synthesis, and Quantitative Real-
Time PCR (qPCR)

RNA extraction from skin and hearts (n = 5) was performed

using Qiagen RNeasy Fibrous Tissue Mini Kit (Qiagen, Toronto,

ON) with manufacturer’s protocols except double the amount of

RLT buffer and Proteinase K were used and QIAshredder

(Qiagen) was used to homogenize tissue. First strand cDNA was

synthesized from each sample and subjected to reverse transcrip-

tion using the Superscript first-strand cDNA synthesis kit

(Invitrogen, Burlington, ON) according to manufacturer’s proto-

cols using a Mini Cycler (MJ Research, MA).

cDNA templates were mixed with gene specific primers and

SYBR Green PCR Master Mix with passive reference dye

(Finnzymes, Burlington, ON). Primers (Invitrogen) (Table S1)

were designed with Primer3 software [28], 18S was used as the

internal control. The qPCR reactions were completed with an

OpticonTM DNA Engine (MJ Research) and always in duplicates.

Relative fold change of gene expression in AA mouse tissue

compared to controls was calculated as described [29]. Relative

quantification was used to determine the fold change in expression

of selected target genes in AA mouse tissue compared to sham-

grafted (control) derived tissue. A threshold cycle number, DC(t),

was calculated by normalizing the sample cycle number of the

targeted gene with that of the internal control reference gene 18S.

The DDC(t) value was then determined using the formula:

DDC(t) =DC(t) sample (AA)-DC(t)calibrator (normal). The gene

expression fold change in AA tissue relative to controls was

calculated by 2-DDC(t). Statistical significance (P-value ,0.05) was

calculated with Student’s T test.

Histology
Masson’s Trichrome Stain (Sigma-Aldrich, Oakville, ON) was

used to stain collagen in 6 mm thick Telly-fekete’s acid alcohol

fixed heart sections. Cardiac calcinosis has been reported in

C3H mice [30–32]. Alizarin Red S (Sigma-Aldrich, Oakville,

ON) was used to stain calcium deposits. Four hearts each from

AA and normal control groups were selected randomly for

staining; for each heart, three random sections were analysed

and collagen deposition calculated for random blood vessels

from each section. The areas encompassed by the collagen,

blood vessel lumen, and endothelium were measured in pixels

with ImageJ [33] (National Institute of Health, Bethesda, MD).

To quantify collagen within whole heart sections, blue pixel

(Masson’s Trichrome Stain) frequencies were counted with

Adobe Photoshop. The hearts were measured randomly to

avoid bias. Hematoxylin and Eosin (H&E) staining was

performed following standard protocols. Heart sections from

AA and control (n = 3 per group) mice were stained and the

numbers of nuclei in the atria and ventricles per 100 mm2 were

quantified and compared with two separate counts for each of

the images with atrial and ventricle heart sections; the average

of counts from two atrial and two ventricle images were taken

for calculation. Cardiomyocyte size in AA and control heart

tissue was compared by quantifying the area in pixels

encompassed by cardiomyocytes and their corresponding nuclei,

and calculating the average nucleus to cardiomyocyte ratio.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on heart

sections from AA (n = 4) and control mice (n = 4) for IL18,

IL18R, and IL18BP (all Santa Cruz Biotechnologies, Santa

Cruz, CA) using the Vector avidin-biotinylated enzyme complex

(ABC) staining system, with Vector red alkaline phosphatase

substrate kit (Vector Laboratories, Burlington, ON) and

hematoxylin counterstain. Negative controls had no primary

antibody.

Heart Tissue Culture
Atrial tissues from both AA (n = 6) and control mice (n = 6) were

divided and treated with four different concentrations of ACTH

(0 mM, 0.1 mM, 1 mM, 2 mM) [11,34]. Tissues were minced into

1 mm blocks and laid in the culture plate. Full length ACTH

(Sigma-Aldrich, Oakville, ON) was used (1–39aa) [35]. Serum-free

medium, DMEM F12/Glutamax (Invitrogen), was used as

described [36] and refreshed every 24-hours with ACTH [37]

until 72 hr. QPCR was subsequently performed on RNA

extracted from atria (as above) and culture media collected for

ELISA analysis (below).

Total Protein Extraction and Quantification
Hearts from AA affected (n = 4) and control (n = 4) mice were

cut into half such that each portion contained one atria and

ventricle. Total protein extraction was performed on the atria of

one portion of each heart using Total Protein Extraction Kit

(Millipore, Billerica, MA) following manufacturer’s protocols. The

extracted protein concentration was determined with a BCA

protein assay kit (Pierce Biotechnology, Rockford, IL). Standard

curves for total protein concentration were calculated and samples

equalized.

Cardiac Troponin I, IL18, IL18R1, IL18BP and CASP1 ELISA
Cardiac troponin I (cTnI), a marker for heart tissue

remodelling, is released into the blood stream [38–40]. Its

expression is increased in those whose heart is undergoing rapid

remodelling associated with dysfunction [41]. Mouse cTnI

ELISA kits (Life Diagnostics, West Chester, PA) were used to

test blood samples of AA (n = 5) and control mice (n = 5). A

different cTnI ELISA (Kamiya Biomedical, Seattle, WA) with

higher detectable range was used to measure cTnI released in

response to ACTH into the supernatant of atria tissue cultures

at 72 hours (AA n = 5, control n = 6). 50 ng of total protein

from each sample, as determined by BCA protein assay (above),

was subjected to cTnI ELISA. A standard curve was generated

with the standards provided by the manufacturer and the

corresponding equation of the line was used to determine the

cTnI concentration in the samples. For mouse IL18 (eBioscience

San Diego, CA), IL18R1, IL18BP and CASP1 ELISA

(MyBioSource Inc, San Diego, CA), 1 mg of heart tissue

homogenate protein was used to perform the assay following the

manufacturer’s protocol (n = 3 for each group and time points).

AA and Heart Disease
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Results

AA Mice Displayed Significantly Heavier Heart Weights
and Changes in Heart Morphology

There was a significant difference between the heart weights of

AA mice and normal mice (Figure 1A). The heart to body weight

ratio of AA mice was also significantly greater than the control

mice (Figure 1B). The changes in heart morphology were

identified with H&E staining (Figure 2A–D). There were

significantly lower frequencies of nuclei in the atria of AA mouse

hearts compared to the controls despite the increase in heart size

(Figure 2E). However, the ventricles of AA mice had significantly

higher frequencies of nuclei compared to the controls (Figure 2E).

The average area encompassed by the atrial cardiomyocytes and

their corresponding nuclei and also nucleus to whole cell area ratio

(0.147 in AA, 0.095 in control) was greater in AA mice compared

to control mice; with statistically significant differences achieved

for the average area of the nucleus and nucleus to whole cell area

ratios (both p,0.0005).

Increased Collagen Deposition in AA Hearts
The total amount of collagen in AA mouse hearts was

significantly higher than control hearts (Figure 3A). Collagen

was largely restricted to the periphery of blood vessels (Figure 3B).

The average ratio of areas encompassed by collagen versus areas

encompassed by blood vessel walls (endothelial layer) was

significantly higher in AA mice (Figure 3C); indicating increased

collagen accumulation. The average width of heart blood vessel

walls in AA mice was also found to be significantly lower than in

healthy controls (Figure 3D). Taken together, AA mouse hearts

presented with increased peri-vascular collagen. Calcinosis was

minimal and not different between AA mice and controls (not

shown).

AA Affected Mice have Higher Concentrations of cTnI in
Heart Tissue and Plasma

As cTnI is a cardiac regulatory protein of actin and myosin

interaction [42], the elevation of plasma cTnI levels is an

indication of myocardial tissue insult [42,43]. ELISA revealed a

trend for higher cTnI levels in AA affected mice compared to

controls (Figure 3E) potentially consistent with an overall

deterioration of heart health. AA mice also had significantly

higher concentrations of cTnI in heart protein homogenates

Figure 1. Heart weight and heart to body weight ratio in AA and sham-grafted mice. The wet heart weight (A) and heart to body weight
ratio (B) of AA (n = 10) and healthy sham-grafted mice (n = 11) revealed significantly heavier hearts in AA mice. Statistical significance was determined
with Student’s t test where *denotes p#0.05.
doi:10.1371/journal.pone.0062935.g001

Figure 2. AA mice had significantly fewer nuclei in atria tissue
compared to sham-grafted mice. Sham-grafted control mouse atria
(A) and ventricles (B) and AA mouse atria (C) and ventricles (D) were
H&E stained. The number of nuclei in 100 mm2 was quantified (E). AA
mice had significantly fewer nuclei in their atria but significantly more
nuclei in their ventricles compared to the controls. Statistical
significance was determined with Student’s t-test where *denotes
p,0.05. Bar = 20 mm.
doi:10.1371/journal.pone.0062935.g002

AA and Heart Disease
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Figure 3. Evaluation of heart collagen deposition and cardiac troponin-I (cTnI) in AA and sham-grafted mice. Areas encompassed by
collagen, lumen, blood vessels, and blood vessels plus surrounding collagens, were measured with ImageJ (A, C, D). There was a higher amount of
collagen infiltration into the blood vessels within the hearts of AA mice (B, AA left; Control right). AA mice had significantly larger regions of collagen
deposition around blood vessels but had significantly thinner blood vessel wall thickness compared to normal controls. Three random readings
performed from each of 3 different non-consecutive slides per mouse for AA (n = 4) and control (n = 4) mice. ELISA revealed a higher amount of serum
cTnI associated with AA (n = 5 per group) compared to control mice, though not statistically significant (E). The concentration of cTnI in the heart
tissue of AA mice was significantly higher than the control mice (F). Statistical significance was determined with Student’s t-test where *denotes
p,0.05. Bar = 50 mm.
doi:10.1371/journal.pone.0062935.g003

AA and Heart Disease
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compared to healthy controls (Figure 3F) consistent with higher

serum cTnI. This indicates that, despite the low gene expression

(Figure S1B), there was still a relatively high level of cTnI protein.

Pro-inflammatory Cytokine Gene Expression is
Significantly Higher in AA Mouse Skin and Heart Tissues

We conducted a preliminary gene expression screen for diverse

genes implicated in heart disease tissue damage which first

identified pro-inflammatory cytokine Interleukin 18 (Il18) (Figure

S1B). Subsequently, qPCR analysis in AA mice revealed Il18, Il18

receptor-1 (Il18r1) and Il18 binding protein (Il18bp) to be

significantly increased in their heart tissues; 2.8, 4.5 and 5.2 fold

respectively compared to control mice, 18 months after skin

grafting (Figure 4A,B). Markers of heart hypertrophy were also

examined. While changes in b-myosin heavy chain (Myh7) were

insignificant, the mRNA expression for atrial natriuretic factor

(Nppa) was significantly increased 3.2 fold in AA mouse hearts

compared to controls (Figure 4B).

Changes in Gene and Protein Expression during the
Onset of AA

Mice usually develop AA around 10 weeks after skin grafting

[27]. The gene expression profile dynamics of Il18, Il18r1, Il18bp,

and Caspase-1 (Casp1) in hearts were investigated in response to

AA skin grafts (Figure 5A–D). Compared to sham-grafted control

mice, qPCR analysis revealed increased Il18 expression shortly

after skin grafting prior to overt hair loss, but expression decreased

when the mice first started to lose hair around 10 weeks after

grafting. The expression of Il18bp was increased in AA mouse

hearts compared to controls throughout the first 12 weeks after

skin grafting; before and after hair loss onset. Both Il18r1 and

Casp1 maintained significantly increased expression in AA mice

within the first 12 weeks except just before the onset of AA (eight

weeks). Overall, Il18bp, Il18r1 and Casp1 all showed similar

increased expression patterns as observed in chronic AA affected

mice. The protein expression of IL18, IL18R1 and IL18BP as

evaluated by ELISA showed similar trends to gene expression in

the hearts (Figure 5E–H). IL18, IL18R1 and IL18BP showed

decreasing trends as AA began to develop around eight weeks. At

12 weeks, IL18BP in AA mouse hearts expressed significantly

lower IL18BP compared to the controls. CASP1 expression in AA

mouse hearts was significantly decreased at 10 and 12 weeks.

The Expression of IL18 is Localized in the Atria of AA
Mouse Hearts

By immunohistochemistry (IHC) all AA mice displayed an

atrial-specific localization of IL18 (Figure 6A) while no specific

labelling was found in the ventricles, or in the hearts of control

mice (Figure 6B). The expression pattern for IL18R1 was similar

when comparing AA to sham-grafted controls (Figure 6C, D). The

IL18 antagonist, IL18BP, displayed weak and unspecific expres-

sion in both AA and controls, indicating a possible low protein

expression despite the increased gene expression (not shown).

Differential Response of Gene Expression between AA
and Control Mouse Atria with ACTH Treatment in Culture

The stress hormone ACTH promotes IL18 secretion via the

modulation of caspase-1 in the adrenal gland during stress [44–

46], but its effect on IL18 secretion in the heart is unknown. With

ACTH exposure there was an increase in Il18, Il18r1, and Casp1

expression compared to the no-treatment control in the atria of

AA mice, but data were not statistically significant (Figure 7A–D).

However, ACTH statistically significantly increased Il18bp, Il18r1,

and Casp1 in control mouse atria (Figure 7E–H). Notably, the

expression pattern for Il18r1 and Ice in control mouse atria both

showed a concentration dependent increasing trend, reaching

statistical significance at 2 mM ACTH.

Increased Expression of Major Collagen Genes in the
Atria with ACTH Treatment

The gene expression of Col1a1 (Collagen Ia1), Col3a1 (Collagen

IIIa1) and Col5a1 (Collagen Va1) in the atria of AA and normal

mice (both n = 3) was evaluated by qPCR. All collagens showed an

ACTH concentration dependent increase; at both 1 mM and

2 mM of ACTH, the expression of Col5a1 was significantly

increased in AA mice (Figure 8A–C).

Figure 4. qPCR analysis of selected genes in AA and sham-grafted mice in chronic stage. In an initial screen for various heart disorder
related gene markers, there was a significant increase of Il18, Il18r1 and Il18bp gene in both skin (A) and hearts (B) of AA mice (n = 4) compared to
sham-grafted control mice (n = 5). The expression of Nppa was also significantly increased in the hearts of AA mice. QPCR relative fold change in gene
expression analyses were calculated using 22DDCt; average fold change is presented. Error bars represent the range factor difference (22DDCt6DCtSD).
Statistical significance determined with Student’s t-test; *denotes p,0.05.
doi:10.1371/journal.pone.0062935.g004

AA and Heart Disease
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Cardiac Troponin I Increased in Both AA and Control
Mouse Atria with Increasing ACTH Concentration

ELISA quantification of cTnI revealed both AA and control

mouse atrial tissues released more cTnI into the culture medium

after ACTH treatment and the increase was dose dependent

(Figure 8D). The release of cTnI from AA mouse atria was

significantly increased at 2 mM of ACTH compared to no

treatment controls.

Discussion

A relationship between androgenetic alopecia, cardiovascular

disease and hypertension has been demonstrated by various

groups, though the exact biological mechanism remains elusive

[47–50]. Potential relationships between other forms of hair loss

and heart tissue damage have not been actively investigated

beyond brief epidemiological reports. In this study, hearts were

found to be significantly enlarged in AA mice compared to

Figure 5. qPCR and ELISA analysis of Il18 and related genes and protein expression in AA and sham-grafted mice during the onset
of AA. Comparing AA mice to sham grafted mice (n = 3 per time point), Il18 gene expression fold change in mouse hearts showed an increase in the
expression pattern before the onset of AA, but decreased expression around the time of AA onset. Il18r1, Il18bp and Casp1 (A–D) showed mostly
significant elevation both before and after onset of AA. At the protein level, the expression of IL18, IL18R1 and IL18BP displayed similar trends as with
qPCR (E–G). However, Casp1 expression was significantly higher in sham grafted mice at 10 and 12 weeks (H). QPCR analyses for gene expression
levels were calculated as fold change by using the 22DDCt, average fold change presented. Error bars represent the range factor difference
(22DDCt6DCtSD). Statistical significance determined with Student’s t-test; *denotes p,0.05.
doi:10.1371/journal.pone.0062935.g005

Figure 6. Immunohistochemistry of IL18 on AA and sham-grafted mice. IHC performed on AA and sham-grafted mice heart sections
revealed localized expression of IL18 (red) in the atria of AA mice (A). In healthy sham-grafted mice, there was no specific labeling in the atria of the
heart (B). In both groups of mice, no specific labeling for IL18 was found in the ventricles. AA mouse hearts (C) had slightly more specific expression of
IL18R1 near the apical part of the heart compared to healthy controls (D). Three random paraffin-embedded slides from each mouse, each containing
3 to 4 sections, were analyzed in parallel. Slides were counterstained with hematoxylin (blue). Bar = 50 mm.
doi:10.1371/journal.pone.0062935.g006

AA and Heart Disease
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Figure 7. qPCR analysis of atria treated with ACTH for 72 hours. For atria derived from AA mice, Il18 expression was highest at 1 mM of ACTH
(A); the expression of Casp1 showed similar trend (D). Il18r1 expression was dependent on ACTH concentration (B) while Il18bp was down-regulated
(C). For atria derived from sham-grafted mice, Il18 expression was lowest at 1 mM unlike AA (E). However, Il18bp was significantly increased at 1 mM
(G). ACTH had a significant effect on the control atria with concentration dependent increase of Il18r1 (F) and Casp1 (H). Gene expression levels were
calculated as fold change compared to no-treatment control (0 mM ACTH). Error bars represent the range factor difference (22DDCt6DCtSD). Statistical
significance determined with Student’s t-test; *denotes p,0.05.
doi:10.1371/journal.pone.0062935.g007

AA and Heart Disease
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healthy, sham-grafted littermates (Figure 1). The variable extent of

hair loss and its fluctuation over time may affect (and potentially

reflect) the degree of heart damage, consistent with the high

variability of results between each mouse. C3H/HeJ mice are

relatively resistant to atherosclerosis [51]; potentially this may alter

their pathological presentation.

Further investigations into changes in heart morphology

(Figure 2A–D) revealed a significant difference between the

density of cardiomyocyte nuclei in the atria and ventricles of AA

mice compared to the controls (Figure 2E). AA mouse atria had

significantly fewer nuclei per unit area compared to the controls.

Cardiomyocytes in AA hearts presented with statistically signifi-

cantly larger nuclei and a greater nucleus to whole cell area ratio

in AA mice compared to controls, consistent with atrial

hypertrophy [52]. In contrast, the frequency of nuclei in the

ventricles of AA mouse hearts was significantly higher than the

controls.

AA hearts had an overall statistically significantly higher

amount collagen compared to normal hearts (Figure 3A,B). The

blood vessel walls of AA mouse hearts were also significantly

thinner than those of sham-grafted mice (Figure 3D). It has been

shown that elevated peri-vascular collagen is a pathological event

in many forms of cardiovascular disease [53,54] and can increase

the stiffness and decrease the contractility of the heart [55].

Potentially, the thinning of the blood vessel walls may be a result of

collagen reorganisation by cardiac fibroblasts [56]. Such blood

vessel wall thinning may also be a result of endothelial cell size

decrease, a phenomenon observed in hypertension [57]. The

accumulation of extracellular matrix (ECM) can modulate cellular

function and size; type I, III, IV collagen and fibronectin can

decrease aortic endothelial cell migration, proliferation and size

[58]. Increased collagen around and within blood vessel walls

(Figure 3C) can lead to hypertrophy and ultimately to heart failure

[59].

Il18, Il18r1, and Il18bp were significantly increased AA mouse

hearts (Figure 4B). Increased Il18r1 may have a synergistic effect

with Il18 by increasing the sensitivity to the ligand [60]. The

expression of Casp1 was also elevated; increased caspase-1 may

increase the amount of activated form of IL18. IL18BP protein is

an antagonist of IL18; its gene expression alongside Il18 and Il18r1

may be a sign of an activated negative-feedback system to counter

adverse IL18 activity [61]. A marker for cardiac hypertrophy,

Nppa, was also found to be significantly increased in the AA mouse

hearts (Figure 4B). Nppa is a vasodilator released by the atrial

tissues in response to stretch and remodelling; its expression can be

induced by IL18 [62]. Increased IL18 product intensity and

Figure 8. Gene expression of collagens and the release of cardiac troponin from AA and sham-grafted mouse atria in response to
ACTH treatment after 72 hours. Both AA and control mice displayed ACTH concentration dependent increase of Col1a1 (A), Col3a1 (B), Col5a1 (C)
and the release of cTnI from atria (D). However, significant increase was only observed in AA mouse atria for Col5a1 (at 1 mM and 2 mM ACTH) and
release of cTnI (at 2 mM ACTH) compared to no-treatment control. QPCR analyses for gene expression levels were calculated as fold change by using
the 22DDCt, average fold change presented. Error bars represent the range factor difference (22DDCt6DCtSD). For cTnI ELISA, a standard curve was
generated with the standards provided by the manufacturer and the corresponding equation of the line was used to determine the cTnI
concentration in the sample. Statistical significance determined with Student’s t-test; *denotes p,0.05.
doi:10.1371/journal.pone.0062935.g008

AA and Heart Disease
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localization was found in AA mouse atria (Figure 6A). This

suggests that AA may be associated with heart inflammation and/

or defects in the regulation of inflammation. Injection of IL-18 into

mice induces myocardial hypertrophy and heart remodeling [63].

Therefore, the elevation of Il18 expression in the heart, in

conjunction with the abnormal hypertrophy in AA affected mice,

may be a marker of inflammatory heart disease similar to

observations with dilated cardiomyopathy [64,65].

IL18 can induce interferon c (IFNc) production from lympho-

cytes and natural killer cells [65–70]. It has been shown to be

involved in cardiovascular diseases such as ischemia-reperfusion

injury, and atrial fibrillation [64,71–73], where it induces cell

mediated inflammation and myocardial fibrosis [74–77]. Howev-

er, we did not observe inflammatory cell infiltration in AA hearts.

Alternatively, dysfunctional caspase-1 activity can lead to in-

creased secretion of IL18 and IL1b in heart-specific ‘‘auto-

inflammatory disease’’ in the absence of cell infiltration [78,79]. It

is also possible that AA activated lymphocytes release IL18 into

circulation as observed in other autoimmune diseases [80].

Increased IL18 has been found in AA patient plasma [81].

Increased IL18 activity in the heart could lead to cardiac

hypertrophy and increased cell apoptosis without direct lympho-

cyte infiltration [65]. However, the exact link between IL18 and

the changes in the hearts of AA mice remains to be determined.

The serum level of cTnI, a myocardial regulatory protein that is

elevated after cardiac injury [82,83], was higher in AA affected

mice compared to sham-grafted controls (Figure 3E). Though not

statistically significant, the trend observed in the serum is

consistent with heart tissue remodelling. The release of cTnI can

precede the actual onset of more severe forms of heart disease and

can serve as a hypertension marker [83]. The significantly higher

levels of cTnI in AA heart tissue compared to control mice

(Figure 3F) is consistent with tissue remodelling and heart

hypertrophy and thus increased demand for cTnI. The gene

expression of cTnI may be limited by the expression of other

molecules such as, IGFBP, as one of the ways to inhibit heart

hypertrophy [84].

Adrenocorticotrpic hormone (ACTH) is a known inducer of

IL18 [44,46]. Evidence suggests that there is abnormal regulation

of stress hormones and receptors in AA affected mice [13,14,85].

AA mice display higher levels of ACTH and corticosterone,

possibly due to the inflammatory cytokines released by the

lymphocytes involved in AA development [13]. With ACTH

exposure, we found that Il18, Il18r1, and Casp1 gene expression

increased in mouse atria and statistical significance was achieved

with normal mouse atria (Figure 7E–H). Possibly, as AA mouse

atria were likely previously exposed to increased ACTH activity

in vivo, there was limited opportunity for even greater modulation

of gene expression by ACTH in our in vitro assay. Sham-grafted

mice may be somewhat better at coping with the effect of

increased ACTH by increasing the expression of Il18bp. However,

the net result suggests ACTH can promote IL18 activity.

With ACTH exposure, the gene expressions for various

collagens increased in both AA and control mouse atria. ACTH

has been shown to increase bone mass by increasing the

production of type I collagen in osteoblast cell lines [86–89]. In

AA mice, their elevated ACTH levels could potentially increase

collagen production in the heart resulting in adverse effects.

Col1a1, Col3a1 and Col5a1 gene expression were all increased in

AA mouse atria while less pronounced in control mice. Type V

collagen is a regulator of Type I collagen assembly [90] and the

significant increase of the Type V collagen gene (Col5a1) in AA

mice may be consistent with excess accumulation of type I collagen

[91].

Stress hormones are associated with damage to the cardiovas-

cular system, though the exact mechanism is unclear [92,93].

Excess Type V collagen production in response to ACTH is one

possible hypothesis. Also, ACTH is reported to suppress the

inactivation of cortisol, which may have inflammatory effects on

the vasculature and result in hypertension [94]. Injury was

confirmed by measuring the amount of cTnI released into culture

medium after 72 hours. Culture medium cTnI levels increased

after ACTH exposure for both AA and sham-grafted mouse atria

indicating heart tissue changes in response to ACTH. AA atria

released significantly more cTnI (Figure 8D) suggesting AA mouse

atria may be more susceptible to ACTH action compared to

control mice.

The results presented emphasize that AA is not just restricted to

the hair follicles. The sequelae of AA development may have

impact on other tissues and organs beyond the skin. We have

provided evidence that AA development in mice is associated with

abnormal heart hypertrophy, associated with elevation of Il18,

Col5a1 and cardiac remodelling marker, cTnI. Stress hormones,

such as ACTH, can accentuate the production of Il18 and may

lead to damage in the heart and the release of cTnI. The results

presented in this study suggest that AA onset can be a predisposing

factor to abnormal heart remodelling and closer follow-up for

patients with AA should be considered.
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Figure S1 Preliminary qPCR gene screening of chronic AA

mice compared to the healthy controls. In both the skin (a) and

heart (b), there was a significant increase of Il18 and significant

decrease of Cti in the AA mice (n = 6) compared to the healthy

sham-grafted controls (n = 6). There was an over 1,000 fold

increase in granzyme B (Gzmb) activity in the skin of AA mice but

such increase was not observed in the heart. Statistical significance

was determined with Student’s t test where *denotes p,0.05.
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