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Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder
characterized by progressive, asymmetric muscle weakness at the face, shoulders, and
upper limbs, which spreads to the lower body with age. It is the third most common
inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound,
and some present with extramuscular manifestations. FSHD is caused by aberrant
expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for
a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities
that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the
expression of DUX4 or the activity of its toxic protein product. In this article, we review how
genetic approaches such as those based on oligonucleotide and genome editing
technologies have been developed to achieve these goals. We also outline the
challenges these therapies are facing on the road to translation, and discuss possible
solutions and future directions
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INTRODUCTION

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder that affects 1
in 8,000–22,000 people in the world and is the third most common inherited muscular dystrophy
(Wang and Tawil, 2016). It presents as a progressive, distinctively asymmetric weakening of muscles
in the face, shoulders, and upper limbs. Muscles in other regions may become affected with age;
around 20% of patients become wheelchair-bound (Richards et al., 2012). Extramuscular symptoms
are uncommon, with a few patients experiencing restrictive lung disease, cardiac conduction
abnormalities, hearing loss, or retinal vasculopathy (Fitzsimons et al., 1987; Padberg et al., 1995;
Laforêt et al., 1998; Lutz et al., 2013; Scully et al., 2014; Lim et al., 2020c). Age of onset and disease
severity are both widely variable in FSHD (Tawil et al., 2014; Wang and Tawil, 2016). Intriguingly
though, 4–21% of patients who manifest symptoms before the age of five almost all follow a more
severe and rapid course of the disease (Klinge et al., 2006; Goselink et al., 2017). There is no available
cure for FSHD. Patients are currently managed for their symptoms at best.

While the genetic mechanisms leading to FSHD are diverse and complex, these all result in
aberrant expression of the double homeobox protein 4 (DUX4) gene in skeletal muscle. DUX4 has
roles in early embryonic development, where it appears to be essential for zygotic gene activation (De
Iaco et al., 2017; Hendrickson et al., 2017). Under healthy conditions,DUX4 is epigenetically silenced
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after the 4-cell stage in humans and kept as such in all developed
tissues but the testis (Snider et al., 2010) and thymus (Das and
Chadwick, 2016). This repression is compromised in patients
with FSHD, allowing for the synthesis of the DUX4 transcription
factor whose activities in skeletal muscle induce potent
cytotoxicity by dysregulating pathways involved in cell death,
oxidative stress, and muscle development, among others (Dixit
et al., 2007; Lim et al., 2020c).

Various approaches are being explored to treat FSHD.
Pharmacological treatments have been evaluated mostly with
the aim of improving muscular symptoms, and include the use
of prednisone, β2 receptor agonists, myostatin inhibitors, and
antioxidants, among others. Unfortunately, these generally
offered little to no therapeutic benefit based on results from
clinical trials (Hamel and Tawil, 2018; Le Gall et al., 2020).
Intramuscular transplantation of myoblasts or mesoangioblasts
(perivascular myogenic stem cells) from unaffected muscles of
FSHD patients into immunodeficient mice revealed that these
could integrate with recipient muscle fibers fairly well (Vilquin
et al., 2005; Morosetti et al., 2011). However, follow-up studies
examining the benefits of such cell-based therapies on FSHD
muscle pathology or function are currently unavailable and so
their potential for treating FSHD remains uncertain.

In response to developing a more targeted form of treatment,
reducing muscle-specific DUX4 expression and DUX4-mediated
toxicity have become attractive goals for FSHD therapy (Bao
et al., 2016; Bouwman et al., 2020; Cohen et al., 2020). Indeed, a
number of genetic methods have been employed to achieve one or
both of these, including oligonucleotide-based strategies to

knockdown DUX4 transcript levels or reduce DUX4 protein
activity, and genome editing to correct FSHD-associated
mutations. The pre-clinical development of these strategies
and others has shown much promise, and identifies possible
candidates for clinical trials. Compared to pharmaceutical and
cell-based interventions, genetic treatments target the root cause
of the disease (i.e., DUX4) and are thus expected to lead to more
effective or far-reaching therapeutic effects. In this article, we
review the various genetic approaches that have been developed
for FSHD therapy, discuss the challenges they may be facing on
their way to the clinic, and offer some potential solutions as well
as directions for future research.

DUX4 EXPRESSION AND FSHD

Much of the complexity associated with FSHD genetics comes
from the curious location of DUX4 in the genome. The DUX4
gene is part of the D4Z4 macrosatellite repeat array at
chromosome 4q35, which is typically 11–100 repeats long in
healthy individuals (Gabriëls et al., 1999; Lemmers et al., 2010).
There is a homologous D4Z4 repeat array at chromosome 10q26,
but mutations in this region have not been linked to FSHD
(Bakker et al., 1995; Deidda et al., 1995; Lemmers et al., 2010).
Each D4Z4 repeat contains the first two exons of DUX4, with the
entire open reading frame of the gene in exon 1 (Gabriëls et al.,
1999) (Figure 1).DUX4 has other exons downstream of the array;
the full-length isoform that contributes to FSHD pathology ends
at exon 3 (Snider et al., 2010; Himeda and Jones, 2019). Only

FIGURE 1 | Activation of DUX4 expression in FSHD. The DUX4 gene is located in the D4Z4 macrosatellite repeat array at chromosome 4q35. Each D4Z4 repeat
(yellow triangles) contains DUX4 exons 1 and 2 (solid boxes; orange, open reading frame); exon three is found downstream of the last repeat in the array. The D4Z4 array
is normally 11–100 repeats long and hypermethylated (purple line) in healthy individuals. Contractions of this array or mutations in genes coding for epigenetic regulators,
in the 4qA haplotype, disrupt the silencing of DUX4 (dotted purple line) and lead to its aberrant expression in skeletal muscle.
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exons from the last D4Z4 repeat contribute to the DUX4mRNA,
and a polyadenylation signal (PAS) at exon 3 is required to
stabilize the pathogenic DUX4 transcript, a feature that is only
present in the disease-permissive 4qA haplotype (Lemmers et al.,
2002; Lemmers et al., 2004; Lemmers et al., 2010). Finally, the
4q35 D4Z4 repeat array is normally hypermethylated, which
keeps the DUX4 gene repressed in most adult tissues (Hewitt
et al., 1994). Two mechanisms activate DUX4 expression in
FSHD: D4Z4 repeat array contraction, and mutations in genes
coding for epigenetic regulators (Figure 1). These cause
approximately 95% (FSHD1) and 5% (FSHD2) of cases,
respectively (Wang and Tawil, 2016). Despite vast differences
in their underlying genetics, FSHD1 and FSHD2 are clinically
indistinguishable, implying that aberrant DUX4 expression is the
key genetic event leading to FSHD pathogenesis.

In FSHD1, contraction of the 4qA D4Z4 array to ≤10 repeats
activates DUX4 expression by increasing chromatin accessibility
and promoting DNA hypomethylation in the region (van
Overveld et al., 2003; Hewitt, 2015). It was previously thought
that individuals with ≤10 D4Z4 repeats in one 4qA chromosome
form a homogeneous FSHD1 population, but it is now known
that this is not the case. Clinical variability is high in individuals
with 7–10 D4Z4 repeats, with most cases ranging from mild to
asymptomatic (Ricci et al., 2013; Lemmers et al., 2015). This
spread of phenotypes is attributed to inter-individual differences
in D4Z4 methylation, indicating that factors other than array
contraction may be more important in determining disease
penetrance within this repeat range (Van Overveld et al., 2005;
Lemmers et al., 2015). Conversely, penetrance is more complete
in individuals with 1-6 D4Z4 repeats. Disease severity is also
roughly inversely correlated with repeat count in these patients,
e.g. those with the severe early-onset form of FSHD typically have
1-3 D4Z4 repeats (Lunt et al., 1995; Ricci et al., 2013; Nikolic et al.,
2016). Considering the 1–10 D4Z4 repeat range, it appears that
the lower the number of repeats present, the less contribution
factors other than contraction size have in influencing the FSHD1
phenotype.

Unlike in FSHD1, moderately-sized D4Z4 arrays are observed
in FSHD2. On average, FSHD2 patients have 12–16 D4Z4 repeat
units on at least one 4qA chromosome, which is at the shorter end
of the range that characterizes the general population (de Greef
et al., 2010; Himeda and Jones, 2019). However, at our current
level of understanding, D4Z4 array size has little to do with
FSHD2 development. Instead, the majority of FSHD2 patients
(∼80%) carry mutations in SMCHD1, which codes for a protein
involved in maintaining repressive chromatin architecture
(Lemmers et al., 2012); others have mutations in DNMT3B or
LRIF1, which code for a DNA methyltransferase or an interactor
of SMCHD1, respectively (van den Boogaard et al., 2016;
Hamanaka et al., 2020). These mutations lead to D4Z4
hypomethylation independent of D4Z4 array size, creating a
permissive environment for DUX4 expression on the 4qA
chromosome. One study showed that the extent of D4Z4
hypomethylation correlated with disease severity in FSHD2, at
least for SMCHD1 mutation carriers (Lemmers et al., 2015).
Because of their role in D4Z4 methylation, SMCHD1 and
DNMT3B are also genetic modifiers for FSHD1, leading to

cases with characteristics of both FSHD1 and FSHD2 (Sacconi
et al., 2013; van den Boogaard et al., 2016; de Greef et al., 2018;
Sacconi et al., 2019).

GENETIC THERAPIES FOR FSHD

Figure 2 summarizes the genetic therapies that have been
developed for FSHD, which are covered in the following
sections. Briefly, we have potential genetic therapies targeting
DUX4 at the DNA, RNA, and protein levels. There are also
therapies that focus on inhibiting the effects of DUX4-mediated
toxicity, thereby modifying the disease phenotype.

Oligonucleotide Therapies
Depending on their structure and chemistry, oligonucleotides can
inhibit DUX4 expression in a variety of ways. One of the most
extensively tested for FSHD are antisense oligonucleotides (AOs),
single-stranded nucleic acid analogues that can bind target
mRNA sequences by Watson-Crick base-pairing. There are
two kinds of AOs. The first are those that reduce gene
expression by interfering with mRNA splicing and processing
(Lim and Yokota, 2018). These AOs act as steric blockers,
preventing factors from accessing critical sequences in the
mRNA such as splice sites, and are usually
phosphorodiamidate morpholino oligomers (PMOs) or
phosphorothioated 2′-O-methyl RNAs (2′-OMePS). The
second are those that reduce gene expression by inducing
target mRNA degradation (Lim and Yokota, 2020). The AOs
in this group are gapmers, fully phosphorothioated
oligonucleotides that have a central DNA stretch flanked by
bases of modified chemistry, e.g. locked nucleic acids (LNA)
or 2′-O-methoxyethyl RNAs (2′-MOE). When a gapmer binds its
target mRNA, a DNA/RNA hybrid is created in the middle of the
AO that is recognized by ribonuclease H, which proceeds to bind
the hybrid and cleave its RNA portion.

AOs of both kinds have successfully inhibited DUX4
expression in patient-derived cells and FSHD mouse models
(Table 1). PMOs and 2′-OMePS AOs targeting splice acceptor
sites for DUX4 exons 2 and 3 (Figure 3) gave 30–90% DUX4
mRNA knockdown (at 10 and 50 nM tested doses) in myotubes
from treated primary patient myoblasts (Vanderplanck et al.,
2011; Ansseau et al., 2017). Corresponding reductions in DUX4
downstream target gene expression and DUX4-positive nuclei, as
well as improvements in muscle cell morphology, were observed.
AOs targeting the exon 3 splice acceptor site were particularly
more effective, one of which was tested in mice as a vivo-PMO
(Ansseau et al., 2017; Derenne et al., 2020). Vivo-PMOs are
PMOs that have been covalently linked to an octaguanidine
dendrimer for improving uptake in tissues (Morcos et al.,
2008). Mice transduced with DUX4 constructs at the tibialis
anterior (TA) were intramuscularly (i.m.) injected at the same
muscle with 10 μg of the vivo-PMO, which led to 30-fold lower
DUX4 expression than the control vivo-PMO-treated leg by semi-
quantitative RT-PCR, 10 days after treatment (Ansseau et al.,
2017). Histopathological improvements were observed in another
study using the same AO (Derenne et al., 2020). PMOs have also
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been used to target the PAS in exon 3 (Figure 3), which knocked
down DUX4 transcript expression in immortalized patient-
derived myotubes by 25–52% at a 50 nM dose (Marsollier
et al., 2016) and in a xenograft FSHD mouse model by nearly
100% with a 20-μg injection (Chen et al., 2016a). Reduced
expression of DUX4 downstream target genes, transcriptomic-
level restoration, and loss of DUX4-positive nuclei were observed
in vitro; treatment showed no significant improvements in muscle
cell fusion, however.

Our group has recently published on the efficacy of using
gapmers for inhibiting DUX4 mRNA expression. We designed
LNA gapmers to target sites at DUX4 exons 1 and 3 (Lim et al.,
2020b), as well as 2′-MOE gapmers to target only sites at exon 3
(Lim et al., 2020a) (Figure 3). The LNA and 2′-MOE gapmers
targeted overlapping sequences at exon 3, upstream of the PAS.
All gapmers knocked down DUX4 mRNA levels almost
completely (∼99%) at 100 nM and by more than 50% at
10 nM regardless of chemistry in immortalized patient-derived
myotubes. This demonstrates an increased potency of gapmers
compared to steric-blocking AOs, perhaps due to the direct
nature of transcript degradation induced by the gapmers.
More sustained knockdown of DUX4 downstream target genes
was observed for LNA than 2′-MOE gapmers at 10 nM. LNA
gapmer treatment also restored more FSHD signature genes upon
RNA sequencing analysis, hinting that LNA gapmers may be the

more potent of the two in terms of DUX4 knockdown. Focusing
on exon 3-targeting gapmers, we saw improvements in muscle
cell fusion and size, as well as minimal to no effects on potential
off-target genes in vitro. A separate study also found that
treatment with one of the 2′-MOE gapmers increased
membrane repair in immortalized patient myoblasts (Bittel
et al., 2020). One gapmer from each chemistry was also tested
in the FLExDUX4 model, which carry a stably integrated, Cre-
inducible DUX4 transgene (Jones and Jones, 2018). Non-induced
FLExDUX4 mice exhibit low levels of DUX4 expression
mimicking what is seen in patient muscle cells, and was used
for preliminary studies. Significant DUX4 knockdown was
induced in these mice following three 20-μg i.m. TA
injections, at 70–84% for the LNA gapmer and 65% for the
2′-MOE gapmer, on average.

Another class of oligonucleotide therapy is RNA interference
(RNAi), which makes use of small interfering RNAs (siRNAs) or
microRNAs (miRNAs) (Table 2). Unlike AOs, siRNAs and
miRNAs require association with effector proteins to reduce
target gene expression. siRNAs targeting DUX4 promoter
elements or exons (Figure 3) knocked down DUX4 transcript
levels by 50–90% in vitro, with corresponding restorative effects
on DUX4 downstream targets (Vanderplanck et al., 2011; Lim
et al., 2015). Interestingly, siRNAs against the promoter likely
inhibited DUX4 expression through epigenetic silencing at the

FIGURE 2 | Summary of genetic approaches for the treatment of FSHD. The approaches covered in this review are depicted above. Ultimately, all focus on
reducing DUX4 expression, DUX4 protein activity, or the effects of DUX4-mediated toxicity. (1) Targeted gene repression with CRISPR/dCas9-KRAB; (2) correction of a
SMCHD1 mutation with CRISPR/Cas9; (3) gene knockdown with antisense oligonucleotides; (4) gene knockdown/silencing with RNA interference; competing with
DUX4 activity through (5) DNA aptamers, (6) introduction of proteins homologous or similar to DUX4, and (7) DNA decoys; (8) gene knockdown/silencing of DUX4
downstream targets; (9) gene knockdown/silencing of genetic modifiers of DUX4 expression or DUX4-mediated toxicity (10) delivery of genes coding for proteins that
ameliorate DUX4-mediated toxicity or secondary features of FSHD pathology.
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DNA level, since 2′-MOE gapmers against the same region did
not affectDUX4 transcript levels (Holoch andMoazed, 2015; Lim
et al., 2015). Meanwhile, one group screened a large number of
miRNAs (Figure 3) and found two targeting exon 1 (mi1155,

mi405) to knock down DUX4 expression the best at >75% in
DUX4-luciferase reporter cells (Wallace et al., 2012;Wallace et al.,
2018). Treatment of DUX4-transduced mice (i.m., TA) with 3 ×
1010 adeno-associated viruses (AAVs) carrying mi405 constructs

TABLE 1 | Summary of results from pre-clinical studies on antisense oligonucleotides for DUX4 knockdown.

Study Chemistry DUX4 target Model DUX4 knockdown
(dose)

Other results

Vanderplanck
et al. (2011)

2′-OMePS Ex2 SA, Ex3 SA Primary FSHD myoblasts,
differentiated post-treatment

30% (ex2 SA, 50 nM),
50% (ex3 SA, 10 nM)

Reduced TP53 levels, TRIM43 expression

Marsollier et al.
(2016)

PMO Ex3 PAS, down-
stream elements

Immortalized FSHD myotubes 25–52% (50 nM) Reduced DUX4 downstream gene expression;
fusion not affected

Chen et al.
(2016a)

PMO Ex2 SA,
Ex3 PAS

Primary FSHD myotubes Not assessed Reduced DUX4+ nuclei, DUX4 downstream
gene expression (only for PAS PMOs);
transcriptomic improvements

Ex3 PAS FSHD xenograft mice, 1x e.p. into
xenograft, evaluated 2 weeks post-
treatment

∼100% (20 μg) Reduced DUX4 downstream gene expression

Ansseau et al.
(2017)

2′-OMePS Ex2 SA, Ex3 SA Primary aFSHD and dFSHD
myoblasts, differentiated post-
treatment

∼90% (ex2 SA, 50 nM;
ex3 SA, 10 nM)

Reduced DUX4+ nuclei; saw improvements in
size (in aFSHD but not dFSHD myotubes)

Vivo-PMO Ex3 SA AAV-DUX4 mice, 1x i.m. TA,
evaluated 10 days post-treatment

30-Fold lower than
control vivo-PMO

None

Derenne et al.
(2020)

Vivo-PMO Ex3 SA DUX4 IMEP mice, 1x i.p., evaluated
1 week post-treatment

Not assessed 2.5-fold decrease in histological lesion
compared to non-treated

Lim et al. (2020b) LNA gapmer Ex1, Ex3 Immortalized FSHD myotubes ∼100% (100 nM) Reduced DUX4 downstream gene expression;
partial transcriptomic restoration; improved
muscle cell fusion/size

Ex3 FLExDUX4 mice, 3x i.m., evaluated
1 or 7 days post-treatment

84% (1 day, 20 μg/i.m.),
70% (7 days, 20 μg/i.m.)

Gapmer uptake observed in and between
muscle fibers

Lim et al. (2020a) 2′-MOE
gapmer

Ex3 Immortalized FSHD myotubes ∼100% (100 nM) Reduced DUX4 downstream gene expression;
partial transcriptomic restoration; improved
muscle cell fusion/size

Ex3 FLExDUX4 mice, 3x i.m., evaluated
1 day post-treatment

∼65% (20 μg/i.m.) None

2′-OMePS, phosphorothioated 2′-O-methyl RNAs; PMO, phosphorodiamidate morpholino oligomer; LNA, locked nucleic acid; 2′-MOE, 2′-O-methoxyethyl; Ex, exon; SA, splice
acceptor; PAS, polyadenylation signal; e.p., electroporation; i.m., intramuscular injection; i.p., intraperitoneal injection; TA, tibialis anterior; AAV, adeno-associated virus; IMEP,
intramuscular injection and electroporation of naked plasmid DNA; aFSHD, atrophic FSHD myotubes; dFSHD, disorganized FSHD myotubes.

FIGURE 3 | Overview of DUX4 regions that have been targeted by oligonucleotide therapies. The structure of the DUX4 gene is shown at the top (arrow indicates
promoter region; boxes, exons; lines, introns; orange, open reading frame; red, polyadenylation signal), and the regions that have been targeted by antisense
oligonucleotides (green) or RNA interference (purple) are shown at the bottom. Approximate locations are shown, and the figure is not to scale. Note that Ansseau et al.
(2017) used the same oligonucleotides as Vanderplanck et al. (2011).DUX4 structure was based on information from Ensembl, transcript ID ENST00000569241.5.
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reduced DUX4 mRNA expression by 64%, and DUX4 protein
levels by 90% (Wallace et al., 2012). Histopathology was
improved with this miRNA, but not with mi1155 that instead
showed signs of overt toxicity (Wallace et al., 2018).

Oligonucleotides can also be designed to target the DUX4
protein. Double-stranded DNA decoys containing the DUX4
binding motif have recently been developed to sequester and
prevent DUX4 from activating its downstream targets (Mariot
et al., 2020). Indeed, the expression levels of DUX4 downstream
targets ZSCAN4 and TRIM43 were knocked down by 39–91% in
primary patient myotubes upon treatment with these decoys. The
DNA decoys were also tested in AAV-DUX4 mice, where
administration either by intramuscular electroporation or
AAV delivery led to decreased expression of Tm7sf4, another
DUX4 downstream target. On a related note, single-stranded
DNA aptamers have recently been developed with high,
preferential affinity to the DUX4 DNA-binding domain
(Klingler et al., 2020). However, these aptamers have yet to be
tested for their therapeutic potential. Developing oligonucleotides
for targets other than DUX4 may be useful as well. For instance,
PITX1 is a direct transcriptional target of DUX4 whose
overexpression induces an FSHD-like dystrophic phenotype in
mice (Dixit et al., 2007; Pandey et al., 2012). Intravenous injection
of AOs against Pitx1 in Pitx1-transgenic mice improved grip
strength and decreased muscle pathology (Pandey et al., 2014).
FRG1 is another direct transcriptional target of DUX4, whose
knockdown by RNAi reversed dystrophic histopathology and
improved treadmill performance in FRG1-overexpressing mice
(Bortolanza et al., 2011; Ferri et al., 2015). It would be interesting
to see if similar effects could be observed if these strategies were
used to treat DUX4-overexpressing mouse models such as
FLExDUX4 (Jones and Jones, 2018), the doxycycline-inducible
iDUX4pA (Bosnakovski et al., 2017a; Bosnakovski et al., 2020), or
the tamoxifen-inducible TIC-DUX4 (Giesige et al., 2018).

CRISPR
The bacterial defense system based on clustered regularly
interspaced short palindromic repeats (CRISPR) has been

adapted and developed to become perhaps one of the most
revolutionary tools for targeted genome editing to date. In its
most common configuration, CRISPR has two basic components:
an endonuclease for cleaving DNA (the CRISPR-associated or
Cas protein), and an RNA molecule that associates with this
enzyme and tells it where in the genome to cut (the guide RNA or
gRNA) (Jinek et al., 2012; Jiang and Doudna, 2017). The gRNA is
designed complementary to the target DNA site, which
additionally has to have a protospacer-adjacent motif sequence
nearby to facilitate Cas binding (Mojica et al., 2009; O’Connell
et al., 2014). Upon binding of the gRNA-Cas complex, a double-
stranded break is introduced into the target DNA. This break is
subsequently resolved by non-homologous end joining or
homology-directed repair, which create random insertions/
deletions or precise edits at the site, respectively, and form the
basis of CRISPR-based genome editing.

CRISPR has been previously used to correct an FSHD2-
associated SMCHD1 mutation, a missense variant in intron 34
that introduced an out-of-frame 53-bp pseudoexon in the final
transcript (Goossens et al., 2019). CRISPR/Cas9 with gRNAs
against the intronic sequences flanking this pseudoexon restored
the SMCHD1 reading frame and increased wild-type SMCHD1
expression in primary and immortalized patient myotubes,
resulting in reduced DUX4 mRNA expression. It has been
suggested that CRISPR be used to edit the permissive 4qA to
the restrictive 4qB haplotype (Cohen et al., 2020), but attempts on
realizing this approach have not yet been reported in the
literature. In addition to genome editing, CRISPR can also be
used for the targeted modulation of gene expression. Using a
catalytically-deficient version of Cas9 (dCas9) fused to a KRAB
transcriptional repressor, together with gRNAs against the DUX4
promoter or exon 1, one group achieved ∼45%DUX4 knockdown
in myotubes differentiated from treated primary patient
myoblasts (Himeda et al., 2016). A trend toward increased
chromatin repression of the DUX4 gene at the contracted
locus was observed. When dCas9-KRAB was used with gRNAs
solely targeting DUX4 exon 3 or various regions within/upstream
of the D4Z4 repeat sequence, no significant DUX4 knockdown

TABLE 2 | Summary of results from pre-clinical studies on RNA interference for DUX4 knockdown.

Study Approach DUX4 target Model DUX4
knockdown

(dose)

Other results

Vanderplanck
et al. (2011)

siRNA Ex2 SA, Ex3 SA Primary FSHD myoblasts, differentiated
post-treatment

80% (ex3 SA,
10 nM)

Reduced DUX4, Atrogin1, TP53, protein levels,
and MuRF1+ nuclei; improved muscle size

Wallace et al.
(2012)

miRNA Ex1 DUX4-luciferase reporter HEK293 cells >50% (dose not
given)

Reduced DUX4 protein levels

Ex1 AAV-DUX4 mice, 1x i.m. TA, evaluated
2–4 weeks post-treatment

64% (3 × 1010

particles)
Reduced DUX4 protein levels (90%); improved
histopathology; lack of caspase-3+ myofibers;
improved grip strength

Lim et al. (2015) siRNA Promoter, Ex1, In2,
downstream elements

Primary FSHD myoblasts, differentiated
post-treatment

Up to ∼50–90%
(100 pmol)

Reduced DUX4+ nuclei, ZSCAN4 expression

Wallace et al.
(2018)

miRNA Ex1, Ex2, Ex3 DUX4-luciferase reporter HEK293 cells Up to >75% (dose
not given)

Reduced DUX4 protein levels (up to >75%)

Ex1 AAV-DUX4 mice, 1x i.m. TA/isolated
limb perfusion, evaluated at various
timepoints post-treatment

Not assessed One miRNA was more toxic than the other
upon histological evaluation

siRNA, small interfering RNA; miRNA, microRNA; Ex, exon; In, intron; SA, splice acceptor; i.m., intramuscular injection; TA, tibialis anterior; AAV, adeno-associated virus.
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was observed. The same group used dCas9-KRAB to inhibit the
expression of other genes—BRD2, BAZ1A, KDM4C, and
SMARCA5—which led to about 40–60% DUX4 knockdown in
primary patient myotubes (Himeda et al., 2018). These genes
code for epigenetic regulators, and were previously identified
from an RNAi screen as candidates whose knockdown lowered
DUX4 transcript levels without negatively impacting the
expression of genes involved in muscle development or
homeostasis. On a related note, CRISPR/Cas9 has itself been
employed for a genome-wide knockout screen to search for genes
whose loss-of-function was protective against DUX4 cytotoxicity
(Lek et al., 2020). Hypoxia signaling pathway members were
identified as the most promising candidates, in accordance with
the role of oxidative stress in DUX4-mediated pathogenesis
(Dmitriev et al., 2016; Denny and Heather, 2017; Lim et al.,
2020c).

Other Approaches
Preliminary findings from basic research studies are providing
solid foundations for the development of more strategies for
FSHD therapy. One interesting approach is to use other proteins
to compete with DUX4 activity. DUX4-s is a short isoform of
DUX4 that contains only the first 159 N-terminal amino acids of
the protein, spanning both homeodomains (Mitsuhashi et al.,
2018). It is non-pathogenic, and its expression has been detected
in both healthy and FSHD skeletal muscle (Snider et al., 2010;
Geng et al., 2011; Mitsuhashi et al., 2018). Since DUX4-s shares
the exact same homeodomains as full-length DUX4, it is thought
that overexpression of the former will prevent the latter from
binding its usual genomic targets. Indeed, co-injection of DUX4-s
and full-length DUX4 mRNA at a 20:1 ratio into fertilized
zebrafish eggs decreased embryo mortality rates to ∼10%,
improved musculature, and led to 70% of embryos having an
overall normal phenotype (Mitsuhashi et al., 2013). In contrast,
eggs injected with only full-length DUX4 mRNA had an embryo
mortality rate of ∼40%, and less than 20% of resulting embryos
were phenotypically wild-type. As the physiological functions of
DUX4-s are unknown, more research into this area may help
further develop this approach as an FSHD therapy. The DUX4
homeodomains are also highly similar and functionally
interchangeable with those of PAX7 (Bosnakovski et al.,
2017b). Overexpression of Pax7 or its homolog Pax3
considerably improved viability in DUX4-inducible C2C12
cells (Bosnakovski et al., 2008). This rescue was diminished in
a dose-dependent manner whenDUX4 expression was induced at
higher levels, indicating that Pax7 or Pax3 may be exerting their
effects via competition with the DUX4 protein. Although
promising, pre-clinical testing of DUX4-s and PAX7/3 in
FSHD mouse models have yet to be performed.

Research into understanding FSHD biology or DUX4-
mediated cytotoxicity has also uncovered more potential
targets for therapy. These include genes involved in apoptosis
(CDKN1A, MYC), immune response activation (RNASEL,
EIF2AK2), and epigenetic regulation (H3.X, H3.Y), to name a
few (Lim et al., 2020c). As previously mentioned, RNAi and
CRISPR screens have been instrumental in adding to this list by
identifying genetic modifiers of DUX4 expression (Himeda et al.,

2018; Lek et al., 2020). Modulating the expression of these genes,
either by oligonucleotide- or CRISPR-based approaches, may be
therapeutic avenues worth investigating. Developing treatments
to alleviate FSHD symptoms may be beneficial as well. For
instance, AAV delivery of a follistatin gene construct into
TIC-DUX4 FSHD model mice (i.m.) increased mass and
improved strength in injected muscles (Giesige et al., 2018).
Follistatin is an inhibitor of myostatin, which in turn is a
known inhibitor of muscle growth (Rodino-Klapac et al.,
2009). It is important to note though that follistatin did not
reverse DUX4-induced histopathology in treated mice,
suggesting that treatments directed at secondary pathological
features of FSHD are probably not curative and may be more
useful when administered in conjunction with DUX4-targeting
genetic therapies.

CHALLENGES FOR FSHD GENETIC
THERAPIES

The development of genetic therapies for FSHD is at a relatively
young phase, with most pre-clinical work limited to in vitromodels.
Only a handful of these experimental therapies have moved on to in
vivo testing (Table 1), of which only one was evaluated for its
efficacy in ameliorating FSHD symptoms (Wallace et al., 2012;
Wallace et al., 2018). This may be explained by the lack of
appropriate FSHD animal models at the time, an effort that was
largely hindered by the lethal effects of DUX4 (DeSimone et al.,
2020). Various groups have since capitalized on using conditional
methods to overexpress DUX4 in mice, allowing for more refined
control of DUX4 toxicity and ushering in the production of FSHD
animal models amenable to pre-clinical study (Bosnakovski et al.,
2017a; Bosnakovski et al., 2020; Giesige et al., 2018; Jones and Jones,
2018). With the impending progression of FSHD genetic therapies
into in vivo testing, certain challenges will have to be considered and
overcome to ensure treatment success not only in animal models
but also and ultimately in patients. We consider challenges relevant
to oligonucleotide- and CRISPR-based therapies, as these have
advanced the most in pre-clinical development.

Delivery is perhaps one of the largest hurdles these therapies
have to face in vivo. In order for genetic therapies to work, they will
have to reach their target DNA/RNA sequences in the nuclei of their
target cells. Preliminary work using AOs for instance have shown
that levels of DUX4 knockdown in vivo are not usually as high as
those observed in vitro (Wallace et al., 2012; Ansseau et al., 2017;
Lim et al., 2020a; Lim et al., 2020b). The same divide in vitro and in
vivo efficacy has been observed for similar genetic approaches in
other muscular disorders, such as Duchenne muscular dystrophy
(DMD) (Echigoya et al., 2017; Lim et al., 2019; Nguyen and Yokota,
2019). For oligonucleotide therapies, much of the challenge will be
to get them into muscle cells and, once inside, to have them
successfully escape from endosomes and reach the nucleus
(Juliano, 2016). This is especially problematic for charge-neutral
chemistries such as PMOs (Summerton and Weller, 1997), which
are not readily recognized by cell surface receptors nor are they
particularly disruptive toward cell membranes. Conjugation of cell-
penetrating entities to oligonucleotides in order to enhance cellular
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uptake and endosomal escape are actively being investigated, as are
the use of non-viral delivery vehicles like lipid nanoparticles,
polymeric nanocarriers, and exosomes (Dominska and
Dykxhoorn, 2010; Juliano, 2016; Tong et al., 2019). Chemically
modifying the oligonucleotides themselves to appear more
recognizable to muscle cell surface receptors is currently being
looked into as well (Dominska and Dykxhoorn, 2010; Juliano, 2016;
Tong et al., 2019). Viral vectors may be applicable for RNAi
strategies using miRNAs or shRNAs, but their immunogenicity
will have to be carefully considered when delivered in vivo.

CRISPR components, on the other hand, have mostly been
delivered using viral vectors. This has mostly been effective, except
for two major concerns: the packaging limit into viruses and
immunogenicity. The SpCas9 (the most used Cas variant) gene
construct is ∼4.2 kb long, which is quite near the packaging
capacity of AAVs at ∼4.4–4.7 kb (Wu et al., 2010; Tong et al.,
2019; Wilbie et al., 2019). Use of a two-vector delivery system has
been necessary at times, one for Cas9 and another for the gRNA/s.
How this division exactly affects CRISPR efficacy is still poorly
understood, but could be unfavorable when considering that we
have to maximize the likelihood of all CRISPR components being
present in the same nuclei—a challenge that is perhaps made more
difficult by the syncytial nature ofmaturemuscle cells and the fact that
only a very few nuclei actually express DUX4 (Tassin et al., 2013).
Lentiviral and retroviral vectors have larger capacities at 7–10 kb, but
are prone to inducing unwanted integration of their cargo into the
host genome (Tong et al., 2019). Adenoviral vectors have even larger
capacities at about 36 kb, and are emerging as effective vehicles for
CRISPR delivery (Ehrke-Schulz et al., 2017; Tong et al., 2019;
Ricobaraza et al., 2020). The discovery of smaller Cas variants
such as CjCas9 (2.95 kb gene size) is also helping overcome this
packaging limit (Kim et al., 2017). However, due to their
immunogenicity, there is always the risk of complications and so
the use of immunosuppressive agents remain important, especially
since responses may still be activated at high doses of virus, and
individual reactions to viral agents are difficult to predict (Tong et al.,
2019; Xu et al., 2019; Shirley et al., 2020). Non-viral delivery
approaches, similar to those described for oligonucleotide therapies,
are also being developed for CRISPR to overcome both issues of
packaging and immunogenicity (Lino et al., 2018; Wilbie et al., 2019).

Safety is another concern. Oligonucleotide and CRISPR therapies
can be toxic through hybridization-dependent or -independent
means (Frazier, 2015). One aspect of hybridization-dependent
toxicity is off-target gene knockdown/knockout/editing, resulting
from the recognition of non-target sequences that share imperfect
complementarity with a given oligonucleotide or gRNA. Only a few
studies on DUX4-targeting therapies have examined off-target
effects—dose-dependent knockdown was found in some non-
target genes, whereas no effect was observed in others (Lim et al.,
2020a; Lim et al., 2020b). A more thorough analysis of off-target
effects is recommended for future studies, perhaps using genome- or
transcriptome-wide approaches (Kim et al., 2015; Tsai et al., 2015;
Yoshida et al., 2019). Fortunately, the specificity of these genetic
therapies is constantly being improved through chemical
modification or by performing in silico screens to predict the off-
targeting potential of certain oligonucleotide sequences prior and in
addition to in vitro testing (Kamola et al., 2015; Tycko et al., 2016;

Hendling and Barišić, 2019; Wang et al., 2019). In the case of
CRISPR, splitting the Cas enzyme into two interdependent halves
and limiting the duration of Cas activity via self-restricting
mechanisms have emerged as possible approaches to reduce the
chance of off-target effects (Ran et al., 2013; Shen et al., 2014; Moore
et al., 2015; Chen et al., 2016b).

Hybridization-dependent toxicity can also come from on-target
effects. This is not much of an issue for the FSHD-associated DUX4
isoform, since it is not supposed to be expressed in the first place, and
its expression appears to be muscle-specific (Himeda et al., 2014).
Non-pathogenic DUX4 isoforms are, however, expressed in healthy
tissues (Snider et al., 2010; Himeda and Jones, 2019). As the
physiological functions of these isoforms are currently unknown,
it would be hard to predict the consequences of their reduced
expression. Regardless, as a form of caution, genetic therapies
should be designed to preferentially target skeletal muscle or
regions specific to the pathogenic DUX4 isoform. Use of viruses
with muscle-specific tropism or ligand-directed oligonucleotides/
non-viral delivery vehicles can help ensure tissue-specific treatment
(Juliano, 2016). As for target sequence design, exon 3 is the region
most specific to the pathogenic, full-length DUX4 isoform. Most
oligonucleotide therapies target this exon and so are not particularly
concerning; however, therapies targeting other exons, the DUX4
promoter region, or D4Z4 sequences on other tissues will have to be
closely monitored for potential adverse effects. Another on-target
effect is the potential integration of genetic material from viral
delivery vectors—however, this threat can be minimized by using
AAVs or non-viral delivery methods.

On the other hand, hybridization-independent toxicity refers to
effects caused by the therapies themselves that are not attributed to
their intended sequence-dependent genetic activities. Certain
secondary structures on oligonucleotides and gRNAs can be
recognized by pattern recognition receptors and lead to an innate
immune response (Agrawal and Kandimalla, 2004; Kim et al., 2004;
Lee and Yokota, 2013; Kim et al., 2018; Wienert et al., 2018; Wilbie
et al., 2019). The formation of such structures therefore has to be
considered during the sequence design process for these modalities.
Pre-existing adaptive immunity against Cas proteins is also common
in the population (Chew, 2018; Crudele and Chamberlain, 2018;
Wagner et al., 2019). Whereas Cas proteins are now being
engineered to become less immunogenic (Ferdosi et al., 2019;
Mehta and Merkel, 2020), efforts to reduce the persistence of Cas
activity as described previously are also potential solutions. Aside
from immune response activation, hepatotoxicity and
nephrotoxicity have been previously linked to phosphorothioated
AOs (Frazier, 2015). This toxicity has been partially attributed to the
propensity of AOs to bind cellular proteins (Brown et al., 1994; Liang
et al., 2015; Kakiuchi-Kiyota et al., 2016; Shen et al., 2018).
Accordingly in one study, chemical modifications that reduced
the overall protein-binding affinity of gapmers prevented
hepatotoxicity in mice, without sacrificing therapeutic efficacy
(Shen et al., 2019). Certain sequence patterns have also been
found to correlate with the hepatotoxic potential of
oligonucleotides (Hagedorn et al., 2013; Burdick et al., 2014). The
development of predictive in silico tools may help prevent the
integration of such sequences during oligonucleotide design
(Hagedorn et al., 2013); use of in vitro screening for potential
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AO toxicity prior to therapeutic evaluation would be recommended
(Dieckmann et al., 2018; Shen et al., 2019).

Another challenge to consider is thatDUX4 expression is very rare
in skeletal muscle, only detected in 1/1000 or 1/200 nuclei in FSHD
myoblasts andmyotubes, respectively (Snider et al., 2010; Tassin et al.,
2013). This poses an issue when evaluating the efficacy of DUX4-
targeting therapies, by preventing a robust read-out of DUX4
knockdown. This explains why some studies have instead opted to
useDUX4-transfectedmodels, whichmay create an overly toxic, non-
representative environment compared to what is seen in patients.
Fortunately, we now have robust protocols that enable reliable
detection of endogenous DUX4 mRNA levels, based on real-time
quantitative reverse transcription PCR or RNA in situ hybridization
(Lim et al., 2020b, Lim et al., 2015; Amini Chermahini et al., 2019).
Induction of endogenousDUX4 expression using media supplements
such as KOSR has been likewise helpful (Pandey et al., 2015). DUX4
protein detection has shown some success, owing to the development
of good antibodies (Dixit et al., 2007; Snider et al., 2010; Geng et al.,
2011), but may remain a challenge in certain conditions when
considering the potentially short half-life of the DUX4 protein
(Geng et al., 2011; Rickard et al., 2015) or the proposed stochastic
model ofDUX4 expression inmuscle cells (Snider et al., 2010; Rickard
et al., 2015). Of course, evaluating effects on DUX4 downstream
transcriptional targets or FSHD biomarkers as proxies for DUX4
knockdown remain options for therapeutic evaluation.

Finally, one has to recognize the unique clinical presentation of
FSHD when translating these genetic therapies into patients. One of
the most distinctive features of FSHD is its asymmetric phenotype
(Wang and Tawil, 2016). We are far from understanding how this
occurs—what determines which parts of the muscle get affected first,
why certain muscle groups are spared more than others, why the
pattern of muscle weakness differs between patients, and so on. The
best strategy at the moment would probably be to develop an
approach that equally benefits all muscle groups. This requires that
therapeutic efficacy be evaluated in representative muscles across the
body during in vivo testing, and not only on commonly assessed
muscles such as the TA. If anything, therapeutic effects on muscles in
the upper parts of the body have to be prioritized, given their early
involvement in FSHD (Wang and Tawil, 2016). Another approach
would be to administer genetic therapies locally, injecting only the
affected muscles. While this takes advantage of the patchy nature of
FSHDpathology, thismethod requires a way to reliably locate affected
muscle areas and may not be practical if too many muscles have
become involved; it will also not improve the state of any
extramuscular symptoms. Needless to say, developing therapies
that would address the unique characteristics of FSHD would
require the use of animal models that resemble the disease fairly
well. As previously mentioned, recent advancements in the
conditional control of DUX4 expression have helped us get closer
to generating such models, resulting in mice with dystrophic
histopathology, impaired muscle strength, and asymmetric muscle
degeneration similar to those seen in patients (DeSimone et al., 2020).
Due to the inducible nature of DUX4 expression in these models, the
severity of resulting phenotypes is also tunable, allowing for
therapeutic testing in a variety of disease states. This is a rather
helpful aspect, considering the wide variability in disease presentation
seen in patients with FSHD.

CONCLUSION

The discovery of DUX4 as the genetic cause of FSHD has greatly
accelerated efforts not only to understand the disorder but also
to treat it. As we have seen, DUX4 has proven itself to be a useful
target for genetic therapy. Oligonucleotide- and CRISPR-based
approaches have demonstrated the feasibility of DUX4
knockdown in reversing muscle-specific FSHD pathology,
with promising preliminary results in vitro and in vivo.
However, there is much to be done before these therapies
can reach the patients they are meant for. Challenges in
delivery, efficacy, safety, and in dealing with the unique
pathology of FSHD all have to be taken into consideration in
vivo. The field can use the lessons learned from the application
of these therapies in other muscular disorders to help overcome
such hurdles. Development of alternative genetic approaches for
FSHD therapy should also be encouraged. For instance,
strategies to interfere with DUX4 transcription factor activity
or to modulate the expression of genes that impart protection
against the cytotoxicity of DUX4 appear to have therapeutic
potential. The ongoing identification of genes involved in FSHD
pathogenesis by basic research and transcriptomic studies are
providing new targets for genetic therapies as well. Finally,
although FSHD is predominantly a skeletal muscle disease, it
will be necessary to create therapies that address its
extramuscular symptoms, especially since these tend to
manifest in the more severe cases of the disease. Further
investigations into both the pathological and physiological
roles of DUX4 in other tissues are steps toward achieving
this goal. Such studies should also help us better assess the
possible effects of DUX4-targeting genetic therapies in non-
muscle tissues. Appreciating all the work that has been
accomplished thus far, we have certainly come a long way in
the development of genetic therapies for FSHD. With continued
efforts from both basic and translational research teams in the
FSHD community, it may only be a matter of time until we see
these therapies making their way into clinical trials.
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