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Abstract

Bacterial spot (BS), incited by Xanthomonas campestris pv. vesicatoria (Xcv), is one of the

most serious diseases of pepper. For a comparative analysis of defense responses to Xcv

infection, we performed a transcriptomic analysis of a susceptible cultivar, ECW, and a

resistant cultivar, VI037601, using the HiSeqTM 2500 sequencing platform. Approximately

120.23 G clean bases were generated from 18 libraries. From the libraries generated, a total

of 38,269 expressed genes containing 11,714 novel genes and 11,232 differentially

expressed genes (DEGs) were identified. Functional enrichment analysis revealed that the

most noticeable pathways were plant-pathogen interaction, MAPK signaling pathway—

plant, plant hormone signal transduction and secondary metabolisms. 1,599 potentially

defense-related genes linked to pattern recognition receptors (PRRs), mitogen-activated

protein kinase (MAPK), calcium signaling, and transcription factors may regulate pepper

resistance to Xcv. Moreover, after Xcv inoculation, 364 DEGs differentially expressed only

in VI037601 and 852 genes in both ECW and VI037601. Many of those genes were classi-

fied as NBS-LRR genes, oxidoreductase gene, WRKY and NAC transcription factors, and

they were mainly involved in metabolic process, response to stimulus and biological regula-

tion pathways. Quantitative RT-PCR of sixteen selected DEGs further validated the RNA-

seq differential gene expression analysis. Our results will provide a valuable resource for

understanding the molecular mechanisms of pepper resistance to Xcv infection and improv-

ing pepper resistance cultivars against Xcv.

Introduction

Bell pepper (Capsicum annuum L.), an important member of the Solanaceae family, is one of

the most important vegetable crops in China and many other countries [1]. It is rich in
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antioxidant compounds, such as capsanthin and capsaicin, which are essential for human

health [1]. In the past few decades, many research efforts have been carried out to increase pep-

per production because of its high nutritional and commercial value. However, pepper pro-

duction has not achieved its potential yield due to biotic stresses, like bacterial spot disease and

anthracnose, and abiotic stresses like drought and salinity [2–4]. Thus, it is necessary to take

more rigorous steps to improve the productivity of pepper.

Bacterial spot (BS), caused by gram-negative plant pathogenic bacterium Xanthomonas
campestris pv. vesicatoria (Xcv), is a severe disease of pepper, resulting in the reduction in

quality and quantity of the yield in many pepper production areas, especially during periods

of high temperatures and high moisture [5, 6]. Xcv infection usually leads to dark lesions on

the foliage and fruit of the plant. Besides, lesions coalescence and leaf death could occur in

severe cases [7]. The occurrence of BS has been reported all over the world, such as the

USA, north-western Nigeria and Saudi Arabia [8–11]. BS has also occurred in China and

has become more and more serious in recent years, especially in southern China. The

method for controlling BS relies upon an integrated approach, which includes intensive

copper-based bactericidal application, crop rotation strategies, seed treatment and use of

resistant cultivars [7]. However, the most cost-effective and environmentally sustainable

solution is to use resistant varieties. Moreover, the copper-tolerance of Xanthomonas strains

is continuously enhanced [7]. Thus, it is particularly necessary to breed disease-resistant

varieties [11].

The development of BS resistant commercially valuable cultivars through molecular

breeding has been going on for many years. Until now, five non-allelic dominant hypersen-

sitive resistance genes, Bs1-Bs4, Bs7 and two recessive non-hypersensitive resistance genes,

bs5 and bs6, have been used in pepper [7, 12, 13]. While Bs2, Bs3, Bs4 and Bs7 have been

cloned, for their molecular markers for marker-assisted selection (MAS) were developed [5,

14–17]. Also, bs5 has been mapped and its linked markers are available [18]. These five

dominant loci (Bs1-Bs4, Bs7) have been shown to confer resistance to Xcv in a gene-for-

gene manner [5, 7, 13–17, 19]. The executor R gene Bs1 in the resistant genotype VI037601

of the pepper species Capsicum annum L. confers disease resistance to Xcv strain 23–1 har-

bouring the avirulence gene avrBs1 [7]. Each of these single dominant genes described

above individually confers resistance to several races of Xcv. However, each resistance gene

can be overcome by specific races of the bacteria in field-grown plants [7]. A deeper under-

standing of the responses of plant hosts to bacterial infection in pepper will contribute to

accelerate the molecular breeding process and to tackle the issue of the possible evolution of

BS pathogens.

RNA-seq has been proven to be a robust and cost-effective tool for examining the quantity

and sequences of RNA using next-generation sequencing (NGS), which has been widely used

to study global expression profiles and reveal differentially expressed genes (DEGs) involved

in resistance pathways under biotic and abiotic stress, such as in pepper [20–25]. In the case of

BS stress mechanism, several transcriptomic studies have also been performed using microar-

rays and RNA-seq technique in tomato [26, 27].

However, a genome-wide and comprehensive analysis of genes respond to Xcv infection is

not yet available in pepper. Therefore, in the present study, the transcriptome of two contrast-

ing pepper genotypes (ECW and VI037601) inoculated with Xcv was sequenced using Illumina

paired-end sequencing technology. We identified thousands of DEGs, which were evaluated

by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses. Our findings could help explore the resistance-genes and biological pathways associ-

ated with the pepper bacterial spot disease, and in understanding the molecular mechanisms

of pepper plants’ defenses against Xcv.
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Materials and methods

Plant materials and pathogen inoculation

Two bell pepper genotypes, VI037601 and Early Calwonder (ECW), were used for transcrip-

tomic analysis provided by World Vegetable Center, Thailand (https://avrdc.org/). Plants were

grown under standard glasshouse conditions for 16 h lighting at 25˚C/ 8 h darkness at 20˚C in

a relative humidity of approximately 60%. Xcv strain 23–1 was grown at 28˚C on nutrient agar

medium for two days, and then scraped into sterile water to make a suspension with a concen-

tration of 2×108 cfu/ml. The suspension was inoculated using a syringe on the abaxial leaf sur-

face near the midrib of the third to fifth pepper leaves to form a 1.5-2cm diameter water-

soaked area, when plants were at the five leaves stage. The leaf fragments within 2 cm of the

Xcv infection site, were collected for RNA isolation at 0h, 6h and 24h post- inoculation (hpi),

respectively. Pepper leaves of respective varieties at 0 hpi were used as control. Samples were

collected from ECW and VI037601 leaves 0–2 cm away from the inoculation point at three dif-

ferent inoculation time points (0, 6, and 24 hours), which were named as ECW_0H, ECW_6H,

ECW_24H, VI037601_0H, VI037601_6H, and VI037601_24H, respectively. The samples were

immediately placed in liquid nitrogen and stored at -80˚C for RNA extraction and further

analysis. Fifteen leaves randomly selected from five different plants were polled as a biological

replicate. Three independent biological replicates were prepared for each treatment.

RNA extraction, library construction and transcriptome sequencing

Total RNA was extracted from 18 leaf tissue samples, including 3 replicates of each treatment

condition (3 time points × 2 genotypes), using the Trizol Reagent (Life Technologies, Califor-

nia, USA) according to the manufacturer’s instructions, and then treated with TURBO DNase

I (Promega, Beijing, China) to remove genomic DNA contamination. The integrity and con-

centration of all RNA samples were examined by the 2100 Bioanalyzer (Agilent Technologies,

Inc., Santa Clara, CA, USA) and 1.2% agarose gel electrophoresis. The prepared total RNA

samples were sent to Frasergen Bioinformatics Co., Ltd (Wuhan, China) where the cDNA

library was constructed using NEBNext1 Ultra™ RNA Library Prep Kit for Illumina1 (NEB,

E7530) according to the manufacturer’s instructions. In brief, the first-strand and the second-

strand cDNA were synthesized using approximately 250~300 bp RNA inserts, which were

fragmented by the enriched mRNA. After end-repair/dA-tail and adaptor ligation, the suitable

fragments of double-strand cDNA were isolated by Agencourt AMPure XP beads (Beckman

Coulter, Inc.), and then enriched by PCR amplification. Finally, the purity and quality of the

libraries were measured by Agilent 2100 Bioanalyzer and Qubit 2.0. The eighteen cDNA librar-

ies prepared were sequenced by Biomarker Technologies (Wuhan, China) using the Illumina

HiSeq 2500 platform with pair-end 150 nt. RNA-seq was performed as previously described

[23]. The transcriptome sequencing data from this study were available from the NCBI SRA

database under BioProject accession number PRJNA693027.

Transcriptome analysis using reference genome-based reads mapping

The quality check was performed to eliminate low quality reads with the only adaptor,

unknown nucleotides> 5%, or Q20< 20% using SOAPnuke-2.1.0 [28]. The high-quality clean

reads that were filtered from the raw reads were mapped to the reference genome of cultivated

pepper Zunla-1 (C. annuum L.) (https://www.pnas.org/content/111/14/5135) with TopHat 2.0

software [29–31]. Potential duplicate molecules were removed by examining aligned records

from the aligners in BAM/SAM format [32]. Fragments per kilobase of transcript per million
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fragments mapped read (FPKM) values were used to calculate the gene expression levels based

on Cufflinks software [33].

Identification and functional analysis of DEGs

DEGs were identified using DEGseq2 in the four comparisons of ECW_6H-vs-ECW_0H,

ECW_24H-vs-ECW_0H, VI037601_6H-vs-VI037601_0H and VI037601_24H-vs-

VI037601_0H [34]. The fold change of genes was calculated based on the ratio of the FPKM

values. The genes with an absolute value of |log2(fold change)|�1 and the false discovery rate

(FDR) values <0.05 were accepted to represent significant DEGs, which were used for further

analysis.

To acknowledge the putative functions and pathways of the DEGs in above four compari-

sons, GO functional enrichment analysis was performed with Blast2GO (version 3.0) (https://

www.blast2go.com/) [35]. KEGG pathways analysis of DEGs was carried out using Cytoscape

software (version 3.2.0) (https://cytoscape.org/) with the ClueGO plugin by a hypergeometric

test and the Benjamini-Hochberg FDR correction (FDR� 0.05) [36].

Identification of transcription factors (TFs)

Transcription factors were identified using PlantTFDB (http://planttfdb.gao-lab.org/), which

included the sequences of 58 plant transcription factor families from 165 plant species [37].

The unigene sequence was compared with the transcription factor database by BLASTx align-

ment, and the gene with the best E-value less than 10−5 was selected as the annotation informa-

tion of the unigenes.

Quantitative RT-PCR (qRT-PCR) analysis

To validate the RNA-Seq data, the relative expression levels of randomly selected DEGs were

examined by quantitative Real-time PCR (qRT-PCR). The corresponding mRNA sequences of

the selected genes were searched from the Sol Genomics Network (SGN) (https://www.solge-

nomics.net/). All primers for qRT-PCR were designed according to the transcript sequences

using Primer Premier 5.0 (http://www.premierbiosoft.com/). The primers used in this experi-

ment are listed in S11 Table. Approximately 2 μg of total RNA was isolated from infected leaves

of ECW and VI037601 by TRIzol reagent, which was used to synthesize the cDNA through the

cDNA synthesis kit (TransGen, Beijing, China) according to the manufacturer’s instructions.

Quantitative RT-PCR (qRT-PCR) was performed in 96-well plates on Thermo Fisher Scientific

Biosystems QuantStudio 5 Real-Time PCR system (Applied Biosystem, MA, USA) using SYBR

Premix Ex Taq™ Kit (Takara, Dalian, China). The protocols of qRT-PCRs were used as follows:

95˚C for 5 min, followed by 40 cycles of 95˚C for 10 s, 58˚C for 20 s, and 72˚C for 15 s, plus

melting curves to verify PCR products. Ubiquitin-conjugating protein CaUbi3 (Accession

Number: AY486137.1) was used as an internal reference [38]. Samples were collected as previ-

ous in this study, and three independent biological replicates were analyzed. The relative expres-

sion level of the selected genes was calculated with the 2-ΔΔCT method [39].

Results

RNA sequencing of pepper leaves after Xcv infection and assembly of

transcriptome

First, to confirm the resistance of ECW and VI037601 to Xcv, an injection inoculation was car-

ried out. The results showed that the symptoms were similar between resistant and susceptible

plants by 24 hours post inoculation (hpi) (Fig 1). However, a hypersensitive response (HR)
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symptom was observed in VI037601 containing the R gene Bs1 at 24 hpi, whereas cultivar

ECW presented no HR symptom at either timepoints, indicating that VI037601 and ECW

may have different responses to Xcv infection at the transcriptome level (Fig 1).

To accurately evaluate the comparative expression of genes in ECW and VI037601, eighteen

cDNA libraries were used for RNA sequencing. Approximately 120.23 G clean bases were gen-

erated using an Illumina HiSeq 2500 sequencing platform. After quality control, each library

contained between 22,079,427 to 27,158,399 clean read pairs. GC contents were ranged from

Fig 1. Reaction patterns of ECW and VI037601 to Xcv strain 23–1. 0, 6 hpi and 24 hpi represented 0 hour, 6 hours

and 24 hours post Xcv inoculation with a needleless syringe, respectively.

https://doi.org/10.1371/journal.pone.0240279.g001
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43.5% to 44.0% (S1 Table). The number of clean reads, 91%-94% were mapped to the pepper

reference genome Zunla-1 (S1 Table). A total of 38,269 expressed genes, including 11,714

novel genes, were identified in this study (S2 and S3 Tables). There were 34,459, 34,699,

34,541, 34,727, 35,074, and 34,947 expressed genes in ECW_0H, ECW_6H, ECW_24H,

VI03760_0H, VI03760_6H, and VI03760_24H, respectively (S3 Table).

Expression analysis and identification of differentially expressed genes

To investigate the expression patterns of genes in pepper leaves during the different stages

after Xcv infection, a total of 11,232 DEGs were identified in ECW and VI037601 at 6 hpi

and 24 hpi, including 3,361 novel differentially expressed genes (S4 Table). Among them,

1,306 (1,186 up regulated and 120 down regulated) and 8,006 (4,328 up regulated and 3,678

down regulated) DEGs were found at 6 hpi and 24 hpi in ECW, respectively. 3,229 (2,713

up regulated and 516 down regulated) and 7,562 (3,984 up regulated and 3,578 down regu-

lated) DEGs were identified at 6 hpi and 24 hpi in VI037601, respectively (Fig 2A and 2B

and S4 Table). However, 999 (920 commonly up regulated and 73 commonly down regu-

lated) and 2,274 (1,953 commonly up regulated and 290 commonly down regulated) DEGs

overlapped at 6 hpi and 24 hpi in ECW and VI037601, respectively (Fig 2A and S4 Table).

Interestingly, 852 overlapping DEGs were found in ECW and VI037601 post Xcv inocula-

tion (Fig 2A and S5 Table), and 364 DEGs were specific differentially expressed in

VI037601 post Xcv inoculation at different time points (Fig 2A and S5 Table). Overall, the

resistant genotype, VI037601, had greater number of DEGs at 6 hpi, especially up regulated

DEGs whereas the susceptible genotype ECW had greater number of DEGs at 24 hpi (Fig

2A and 2B) suggesting that the host plant response to Xcv infection is different between the

two genotypes. Moreover, these DEGs might contain the disease resistance gene(s), such as

Bs1, which conferred resistance to Xcv in VI037601.

Fig 2. Expressional analysis of DEGs in ECW and VI037601 leaves at 6 hours and 24 hours post Xcv inoculation with Xcv. (A) Numbers of DEGs at 6 hpi and 24

hpi in ECW and VI037601, or between ECW and VI037601 at different time points. (B) Numbers of up- and down- regulated DEGs at 6 hpi and 24 hpi in ECW and

VI037601, respectively.

https://doi.org/10.1371/journal.pone.0240279.g002
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Functional enrichment analysis of DEGs

In total, 6,334 of 11,232 DEGs in the four comparisons (ECW_6H-vs-ECW_0H, ECW_24H-

vs-ECW_0H, VI037601_6H-vs-VI037601_0H and VI037601_24H-vs-VI037601_0H) were

annotated with GO terms and assigned to three categorie (Fig 3 and S6 Table). The DEGs in

VI037601_6H-vs-VI037601_0H were most enriched in defense response (GO:0006952), pro-

tein phosphorylation (GO:0006468), protein modification process (GO:0036211) in BP catego-

ries, integral component of membrane (GO:0016021) and intrinsic component of membrane

(GO:0031224) in CC categories, protein kinase activity (GO:0004672), protein serine/threo-

nine kinase activity (GO:0004674), and transcription factor activity, sequence-specific DNA

binding (GO:0003700) in MF categories (Fig 3C and S6 Table). GO functional enrichment

analysis of the ECW_6H-vs-ECW_0H group revealed a similar classification as the

VI037601_6H-vs-VI037601_0H group (Fig 3A and S6 Table). The DEGs in VI037601_24H-

vs-VI037601_0H were most enriched in single-organism process (GO:0044699), single-organ-

ism metabolic process (GO:0044710), carbohydrate metabolic process (GO:0005975), second-

ary metabolic process (GO:0019748) in BP categories (Fig 3B). Catalytic activity (GO:0003824)

and oxidoreductase activity (GO:0016491) dominated MF categories (Fig 3D and S6 Table).

The similar GO enrichment classification to VI037601_24H-vs-VI037601_0H groups were

also found in ECW_24H-vs-ECW_0H (Fig 3B and S6 Table). These processes associated with

disease resistance were enriched, indicating that the corresponding genes of these significant

terms might play important roles in resistance to Xcv inoculation.

The significant KEGG enrichment pathways categories in the four comparisons were repre-

sented in this study. DEGs were significantly enriched in phenylalanine metabolism

(ko00360), phenylalanine, tyrosine and tryptophan biosynthesis (ko00400), phenylpropanoid

biosynthesis (ko00940), flavonoid biosynthesis (ko00941), stilbenoid, diarylheptanoid and gin-

gerol biosynthesis (ko00945), glutathione metabolism (ko00480), biosynthesis of unsaturated

fatty acids (ko01040) and MAPK signaling pathway (ko04016) in the four comparisons (Fig 4

and S7 Table). Plant-pathogen interaction (ko04626), ubiquinone and other terpenoid-qui-

none biosynthesis (ko00130), and monoterpenoid biosynthesis (ko00902) were enriched in

ECW_6H-vs-ECW_0H and VI037601_6H-vs-VI037601_0H (Fig 4 and S7 Table). However,

plant hormone signal transduction (ko04075), synthesis and degradation of ketone bodies

(ko00072), and fatty acid metabolism (ko01212) were enriched in ECW_24H-vs-ECW_0H

and VI037601_24H-vs-VI037601_0H (Fig 4 and S7 Table). Terpenoid backbone biosynthesis

(ko00900), synthesis and degradation of ketone bodies (ko00072), and fatty acid metabolism

(ko01212) were enriched in ECW_24H-vs-ECW_0H and VI037601_6H-vs-VI037601_0H.

Moreover, many “Metabolism process” were also enriched in 24 hpi in ECW and VI0378601,

such as carbon metabolism (ko01200), biosynthesis of amino acids (ko01230), starch and

sucrose metabolism (ko00500), arginine and proline metabolism (ko00330), and porphyrin

and chlorophyll metabolism (ko00860) (Fig 4 and S7 Table). These results indicated that the

different expression patterns of DEGs in significant KEGG enrichment pathway categories in

ECW and VI037601 helped to determine the functions of DEGs and screen of candidate resis-

tance genes, which was responsible for the resistance to Xcv in VI037601.

Transcriptional changes in response to Xcv infection

Many genes play a critical role in recognizing pathogen-associated molecular patterns

(PAMPs) and subsequently activating plant defense mechanisms in response to pathogen

attacks, such as kinases, pathogenesis-related (PR) protein, oxidoreductase and E3 ubiquitin-

protein ligase [23, 40]. In this study, 541 pattern recognition receptors (PRRs), 30 MAPK, 246

resistance proteins (R Proteins), and 83 calcium signaling genes were identified by searching

PLOS ONE Transcriptome analysis of pepper in response to Xanthomonas campestris pv. vesicatoria

PLOS ONE | https://doi.org/10.1371/journal.pone.0240279 March 11, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0240279


Fig 3. GO enrichment of DEGs in ECW and VI037601 post inoculation. GO classification of DEGs in group ECW_6H-vs-ECW_0H (A),

group ECW_24H-vs-ECW_0H (B) and VI037601_6H-vs-VI037601_0H (C) and VI037601_24H-vs-VI037601_0H (D). The DEGs are

summarized in three main categories: biological process (BP), cellular component (CC) and molecular function (MF). The X-axis indicates the

number of genes and Y-axis indicates the GO terms.

https://doi.org/10.1371/journal.pone.0240279.g003
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the keywords in the gene annotation (S8 Table). Among these DEGs, 24 protein kinases, 13

disease resistance proteins and 4 receptor-like proteins were specific differentially expressed in

VI037601 post Xcv inoculation (S9 Table). We also found that Capana00g000272 (calcineurin

B-like protein), Capana04g001405 (carboxylesterase), Capana09g000319 (aldehyde dehydro-

genase), and Capana09g000326 (glycosyltransferase) were significantly differentially expressed

in VI037601 post Xcv inoculation, but almost not expressed in ECW (S5 Table). Moreover, 83

overlapping differentially expressed kinase response genes, including 13 LRR receptor-like ser/

thr protein kinase, were identified and up regulated in ECW and VI037601 at 6 hpi and 24 hpi

(Fig 5A and S9 Table). Besides that, 30 common DEGs encoding other disease response

Fig 4. The significantly enriched KEGG pathway of DEGs in the four comparisons.

https://doi.org/10.1371/journal.pone.0240279.g004
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proteins were also identified in ECW and VI037601 at 6 hpi and 24 hpi, such as disease resis-

tance proteins, pathogenesis-related proteins and receptor-like proteins (Fig 5A and S9 Table).

Interestingly, all of these DEGs were up-regulated at different time points after Xcv inoculation

in ECW and VI037601 (Fig 5A and S9 Table). Other overlapping BS disease response genes,

including 21 DEGs encoding cytochrome P450, 9 DEGs encoding E3 ubiquitin-protein ligase,

3 DEGs encoding oxidoreductase and 11 DEGs encoding chitinase were also differentially

expressed and their expression levels increased after Xcv infection in ECW and VI037601 (Fig

4B and S9 Table). However, the expression analysis of Bs resistance genes showed that bs2
(Capana09g000438) and bs3 (Capana02g001306) were not/hardly expressed in pepper leaves

before and after Xcv inoculation. Furthermore, the expression of their homologs did not

change significantly (S3 Table).

Fig 5. Heatmaps of the overlapping differentially expressed genes (DEGs) associated with disease resistance in ECW and VI037601 after Xcv inoculation.

(A) DEGs encoding receptor like protein, protein kinase, disease resistance protein, proteinase inhibitor and pathogenesis-related protein. (B) DEGs encoding

peroxidase, oxidoreductase and cytochrome P450. The color gradient represents the normalized FPKM value (Z-score) of DEGs (high expression (red) and low

expression (blue)).

https://doi.org/10.1371/journal.pone.0240279.g005
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The response of differentially expressed transcription factors to Xcv

infection

In plants, transcription factors (TFs) play important roles in the regulation of different physio-

logical and biochemical programs in response to plant-pathogen interaction [23]. In our study,

551 DEGs involving 53 TF families were identified, which included 69 zinc finger proteins

(ZFPs), 65 ethylene-responsive transcription factor (ERFs), 64 MYB, 32 NAC, and 46 WRKY

TFs (S10 and S12 Tables). Among them, most DEGs were up regulated in the four groups (S10

Table). Moreover, 21 TFs, including ZFPs, MYB, WRKY and ERFs were specific differentially

expressed in VI037601 post Xcv inoculation (S9 Table). These identified TFs might be likely to

perform an important role in pepper -Xcv interaction. Besides that, 63 putative overlapping TFs

were differentially expressed in ECW and VI037601 after Xcv infection (Fig 6 and S9 Table).

Interestingly, among these differentially expressed TFs, all DEGs encoding MYB, WRKY, ethyl-

ene responsive factor (ERFs), HSF, MYB, and bHLH TFs were up regulated after Xcv infection

in ECW and VI037601, except for Capana06g001119 (ERF), Capana09g000142 (ERF), and

Capana02g003201(ZFPs) (Fig 6 and S9 Table). Thus, enhanced activity of these up-regulated

TFs suggests that they may be regulated in multiple ways by cis-acting sequences in response to

Xcv infection. Nevertheless, different down regulated DEGs might also play an important role

by negatively regulating the pepper immunity upon Xcv infection in ECW and VI037601.

Validation of RNA-seq data by qRT-PCR

To confirm the accuracy of RNA-seq data, transcriptional levels of 16 randomly selected DEGs

representing a wide range of expression levels and patterns were detected in ECW and

VI037601 post Xcv inoculation by qRT-PCR analysis (Fig 7). Among these 16 selected genes,

majority of these DEGs were associated with massive defense response processes including

receptor kinase (Capana01g001931 and Capana09g001638), protein kinase (Capana00g002502

and Capana03g000831), pathogenesis-related genes (Capana03g004445 and Capa-

na04g001453), ERF (Capana01g000661), MYB TF (Capana05g002225), NAC TF (Capa-

na07g001015), WRKY TF (Capana09g001251 and Capana00g000056), zinc finger protein

transcription factor (Capana12g000773), disease resistance protein (Capana12g002356), and

secondary metabolite biosynthesis (Capana01g001748, Capana04g000463 and Capa-

na10g002483) (Fig 7). The fold changes varied in RNA-Seq and qPCR analyses. However, the

expression data provided by qRT-PCR were following the profiles detected by RNA-seq at all

time points in ECW and VI037601. These results suggested the reliability of RNA-seq to ana-

lyze the transcriptome of resistant and susceptible plants after Xcv infection.

Discussion

Plants are exposed to a myriad of pathogenic microorganisms during their lifespan, including

bacteria, fungi, viruses and nematodes, all of which try to acquire nutrients from the host plant

for their advantage [41]. BS caused by Xcv is a very serious global disease, which has caused

enormous yield and economic losses in pepper production, especially in regions with a warm

and humid climate. In response to bacterial attack, plants deployed various defense responses,

which were mainly activated by two branches of their immune system. One was the transmem-

brane pattern recognition receptors (PRRs) that initiated immune responses upon recognition

of extracellular pathogen-associated molecular patterns (PAMPs). It was common to many

kinds of microbes. The other was the products of resistance (R) genes that specifically recog-

nized corresponding pathogen effectors, which were regarded as avirulence (Avr) factors [42].

Previous study revealed that cultivar carried Bs1 was considered as a resistant material to BS
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Fig 6. Heatmaps of the overlapping differentially expressed transcription factor genes (DEGs) in ECW and

VI037601 post Xcv inoculation. The color gradient represents the normalized FPKM value (Z-score) of DEGs (high

expression (red) and low expression (blue)).

https://doi.org/10.1371/journal.pone.0240279.g006
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due to hypersensitive response reaction to Xcv containing avrBs1, while non-hypersensitive

reaction in response to infiltration of the bacterial suspension into leaf tissues appeared in

ECW [43], which was consistent with the results in this study (Fig 1). However, the molecular

mechanism of VI037601 and ECW in response to Xcv infection was unclear. In this study,

Fig 7. qRT-PCR based validation of DEGs in response to Xcv inoculation at different time intervals. Right ordinate (in red) represents the FPKM value of

RNA-Seq. Left ordinate (in blue) represents the relative expression level of qRT-PCR. The expression level of genes in ECW at 0 hpi was set as 1.0, and other

samples were calculated accordingly. The abscissa represents 0 hour, 6 hours and 24 hours (from left to right) post Xcv inoculation in ECW and VI037601. Data

were represented as mean ± SD for three biological replicates.

https://doi.org/10.1371/journal.pone.0240279.g007
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RNA-seq technique was used to identify the DEGs associated with disease response during

Xcv infection in the leaves of ECW and VI037601. The Q30 of clean reads in 18 samples were

at least 89.3% and the mapping ratio of samples to the reference genome was above 91% (S1

Table), indicating that the quality of sequencing data was reliable. Here, the average products

of each sample was 6.9 Gb exceeding the sample with 4.9 Gb successfully used to gain insight

into CMV infection genes [23], indicating that the sequencing depth was sufficient for the

transcriptome coverage. Although the fold change of the gene in qRT-PCR analysis was incon-

sistent with that in RNA-Seq. The trend of change was consistent in qRT-PCR and RNA-Seq,

which indicated that the RNA-seq data was reliable for analyzing the transcriptome of resistant

and susceptible plants after Xcv inoculation (Fig 7). Therefore, our transcriptome data is com-

petent to analyze the defense-related genes and pathways against to Xcv in pepper.

Plants have an innate immunity system to defend themselves against pathogens by a number

of mechanisms, such as hypersensitive response (HR), induction of genes encoding PR and/or

induced biosynthesis of secondary metabolites [44, 45]. The functional analysis of DEGs in

ECW and VI037601 post Xcv inoculation demonstrated that many biological processes were

influenced by pathogen infection (Fig 4 and S7 Table). Many disease resistance pathways were

most enriched at 6 hpi in both ECW and VI037601, such as defense response (GO:0006952),

protein phosphorylation (GO:0006468), protein modification process (GO:0036211), protein

kinase activity (GO:0004672), protein serine/threonine kinase activity (GO:0004674), and tran-

scription factor activity, sequence-specific DNA binding (GO:0003700). Moreover, many sec-

ondary metabolic pathways such as oxidoreductase activity (GO:0016684), acting on peroxide

as acceptor (GO:0016684), peroxidase activity (GO:0004601), chitinase activity (GO:0004568),

chitin binding (GO:0008061), chitin catabolic process (GO:0006032), and chitin metabolic pro-

cess (GO:0006030) were enriched at 24 hpi both in ECW and VI037601 (Fig 3 and S6 Table).

Similar results were obtained in the previous study of tomato in response to infection by

Xanthomonas perforans Race T3 [27]. The expression of these defense response genes induced

the synthesis of secondary metabolites, which could inhibit the spread of Xcv in peppers. How-

ever, the number of enriched DEGs in VI037601 were more than twice the number of enriched

DEGs in ECW in many significantly enriched GO terms, such as defense response, protein

phosphorylation, protein modification process, protein serine/threonine kinase activity and

transcription factor activity, sequence-specific DNA binding (Fig 3 and S6 Table). These DEGs

might conferred the resistance of VI037601 to Xcv.
In plants, HR is a form of programmed cell death (PCD) at the site of pathogen infection,

which is closely related to active resistance [46]. Previous studies showed that Bs2 and Bs3 were

only expressed in BS resistant pepper post Xcv inoculation, which could trigger HR [16, 17].

Here, transcriptome profiling analysis results showed that bs2 (Capana09g000438) and bs3
(Capana02g001306) were not/hardly expressed in pepper leaves before and after Xcv inocula-

tion (S3 Table). Moreover, the expression of their homologs also did not change significantly

(S3 Table). The results indicated that Bs1 gene that conferred resistance to Xcv in VI037601

may not be a homolog of Bs2 and Bs3. However, many proteins kinases/enzymes encoded by

DEGs were involved in defense-related gene induction and innate immunity, such as those that

activate genes coding for the receptor-like kinases (RLKs), NAC TFs, WRKY TFs, pathogene-

sis-related protein and chitinase, as reported previously [23, 47–49]. In this study, 1,599 poten-

tially defense-related genes linked to pattern recognition receptors (PRRs), mitogen-activated

protein kinase (MAPK), calcium signaling, and transcription factors may regulate pepper resis-

tance to Xcv. Moreover, 364 DEGs including protein kinase, oxidordeuctase, TFs and uncharac-

terized proteins were specific differentially expressed in VI037601 post Xcv inoculation, such as

Capana02g003523 (receptor-like protein kinase), Capana02g000918 (WRKY), Capa-

na12g000410 (peroxidase) and Capana01g000533 (uncharacterized protein) (S5 and S9 Tables).
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Interestingly, Capana00g000272 (calcineurin B-like protein), Capana04g001405 (carboxylester-

ase), Capana09g000319 (aldehyde dehydrogenase) and Capana09g000326 (glycosyltransferase)

were also specifically expressed in VI037601, and the expression of which was significantly up-

regulated after Xcv inoculation (S5 Table), indicating that they might play an important role in

response to Xcv infection in VI037601. Receptor-like kinases are key pattern recognition recep-

tors in response to pathogens [50]. Our findings also showed that many receptor-like kinases

were significantly differentially expressed in ECW and VI037601, such as G-type lectin S-recep-

tor-like serine/threonine-protein kinase (Capana07g002260) and LRR receptor-like serine/thre-

onine-protein kinase (Capana03g000831), which were up regulated in ECW and VI037601 post

Xcv inoculation (Fig 4 and S5 and S8 Tables). RLKs were important signaling components that

played key roles in adapting to numerous biotic and abiotic stresses as well as in regulating

plant growth and development [42, 51]. Generally, the mitogen-activated protein kinase

(MAPK) cascades were initiated by the stimulated receptors. After a series of cascades reactions,

activated MAPKs phosphorylated their substrates, most of which were enzymes and transcrip-

tion factors, thereby triggering downstream responses [52].

WRKY TFs as the substrates of MAPKs can be regulated by MAPKs at transcriptional and/

or post-translational levels [53–55]. For instance, OsWRKY53 was activated by OsMPK3 and

OsMPK6 through transcriptional induction and phosphorylation in the process of pathogen

infection, thereby enhancing rice resistance to pathogens [52, 56]. Here, 17 WRKY TFs were

also up-regulated in ECW and VI037601 post Xcv inoculation (Fig 5 and S5, S9 and S10

Tables), which might be induced by MAPKs. Up-regulated expression of these WRKY TFs

could activate downstream disease response genes or hormones pathway-related genes to pro-

tect against pathogen infection [40]. Besides, many studies showed that TFs that contain the

NAC domain played pivotal roles in the regulation of the transcriptional reprogramming asso-

ciated with plant stress responses, such as abiotic stress response and pathogen defense [57].

These NAC proteins might positively regulate plant defense responses by activating PR genes.

One such example is ATAF1, which positively regulated penetration resistance to biotrophic

fungus Blumeria graminis f.sp. hordei (Bfh) [58]. OsNAC6, ONAC066, ONAC122, ONAC131,

and OsNAC4 have been validated to be involved in defense responses against pathogen attack

[59–62]. Here, the homologs of these NAC TFs were upregulated post Xcv inoculation in

ECW and VI037601, such as Capana06g001739, Capana05g000569 and Capana11g001813 (S9

and S10 Tables). MYB TFs also played important roles in response to pathogen infection.

Overexpression of SmMYB44 in eggplant increased the resistance to bacterial wilt [63]. Previ-

ous study showed that TFs from the stress-related families ERFs, bZip, MYB and WRKY

closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria in Cit-
rus sinensi [48]. Here, two MYB TFs were differentially expressed in VI037601, while three

MYB TFs were up-regulated in both VI037601 and ECW post Xcv inoculation (Fig 6 and S9

and S10 Tables), which might play pivotal roles in non-host response to Xcv.
Moreover, phytohormones serve as key factors in plant responsiveness to stresses, and hor-

mone-responsive genes are often used to qualitatively and quantitatively evaluate disease resis-

tance responses during pathogen infection [64–68]. Plant resistance to biotrophic pathogens is

positively regulated by ethylene and is negatively regulated by the auxin signal transduction

pathway [64, 65]. Ethylene-responsive transcription factors mediated disease resistance was

demonstrated in Arabidopsis and tomato against Botrytis cinerea and Ralstonia solanacearum,

respectively [66–68]. Phytohormones were also involved in the non-host response of Citrus
sinensis to Xanthomonas campestris pv. vesicatoria [69]. Here, 112 DEGs involved in plant hor-

mone signal transduction were identified (S8 Table), and the results showed that almost DEGs

involved in ABA, ETH, GA, and SA signal transduction were up regulated, while most DEGs

participated to IAA and CTK signal transduction were down regulated after Xcv inoculation
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(S8 Table). Thus, these DEGs might implicate their roles in the regulation of transcriptional

reprogramming associated with the response to Xcv in pepper.

Conclusions

In this study, we performed a transcriptome analysis to reveal the defense related genes and

pathways of resistant and susceptible pepper varieties after Xcv inoculation. A total of 120.23

Gb clean bases were generated and 11,232 DEGs were identified in 18 libraries. DEGs involved

in PRRs, MAPK signaling, calcium signaling, phytohormone signaling pathways, TFs path-

ways and secondary metabolism, which were reported previously as relevant to defense

response, were explored. To our best knowledge, this is the first study that examined global

transcriptional changes in pepper plants infected with Xcv, which provides new knowledge

and ideas for improving of peppers to avoid BS.
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