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A B S T R A C T   

Background: Cholangiocarcinoma is a malignant invasive biliary tract carcinoma with a poor 
prognosis. Anoikis-related genes are prognostic features of a variety of cancers. However, the 
value of prognostication and therapeutic effect of anoikis-related genes in cholangiocarcinoma 
have not been reported. The aim of this research was developing an ARGs signature associated 
with cholangiocarcinoma patients. 
Methods: We introduced transcriptome data to discover genes that were differentially expressed in 
cholangiocarcinoma. Subsequently, WGCNA was utilized to screen critical module genes in 
reference to anoikis. The univariate Cox, Lasso regression and Kaplan-Meier survival were 
executed to build a prognostic signature. We further performed gene functional enrichment, 
immune microenvironment and immunotherapy analysis between two risk subgroups. Finally, 
the pRRophetic algorithm was applied to compare the half inhibitory concentration value of 
several drugs. 
Results: A grand total of 1844 genes with differential expression related to the chol-
angiocarcinoma patients were identified. Furthermore, we obtained 2678 key module genes 
related to anoikis. Then, a prognostic signature was developed using the 6 prognostic genes 
(FXYD2, PCBD1, C1RL, GMNN, LAMA4 and HACL1). Independent prognostic analysis showed 
that risk score and alcohol could function as separate prognostic variables. We found cetain 
distinction in the immune microenvironment between the two risk subgroups. Moreover, 
immunotherapy evaluation showed that the anoikis-related gene signature could be applied as a 
therapy predictor. Finally, Chemotherapeutic drug sensitivity results showed that the low-risk 
group responded better to bosutinib, gefitinib, gemcitabine, and paclitaxel, while the high-risk 
group responded better to axitinib, cisplatin, and imatinib. 
Conclusion: The prognostic signature comprised of FXYD2, PCBD1, C1RL, GMNN, LAMA4 and 
HACL1 based on anoikis-related genes was established, which provided theoretical basis and 
reference value for the research and treatment of cholangiocarcinoma.  
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1. Introduction 

Cholangiocarcinoma (CHOL) is a highly aggressive cancer of the biliary tract, characterized by its malignant and invasive nature 
and generally poor prognosis [1]. It can be classified based on tumor location, with two primary subtypes: intrahepatic chol-
angiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA) [2]. ECCA, in turn, can be further categorized into perihilar 
cholangiocarcinoma (pCCA) and distal cholangiocarcinoma (dCCA) based on its specific location [3]. Its occurrence has grown over 
the previous thirty years, making it the second most frequent primary liver tumor [4]. Usually starting slowly, the subsequent clinical 
signs of CHOL are frequently nonspecific, which mostly connected to biliary obstructions resulting from tumors. Most patients receive 
a standard diagnosis during the intermediate or advanced disease stages or when there are distant metastases present. Although 
various treatment options are available, CHOL still has a poor prognosis, with a median overall survival (OS) of 12–31 months [5,6]. 
Therefore, the development of new treatment approaches is desperately needed for CHOL patients with advanced or metastatic 
disease. 

The anoikis process is a form of apoptosis due to the breakage of cell-extracellular or cell-cell matrix attachments that contributes to 
maintaining tissue homeostasis by taking away misplaced or shed cells [7]. Anoikis is mostly caused by the interplay of two pathways 
of apoptosis, such as disruption of mitochondria or activation of cell surface death receptors [8]. Anoikis was first seen in epithelial 
cells and endothelial cells, which is considered a crucial mechanism for invasion and metastasis of cancer [9]. The resistance to anoikis 
can help isolated cells bypass the death signaling pathway, enabling cells to survive under unfavorable conditions [10]. Studies have 
reported that anoikis-related genes (ARGs) are prognostic features in glioblastoma, endometrial carcinoma, lung adenocarcinoma, 
head and neck squamous cell carcinoma, osteosarcoma [11–15]. However, the value of prognostication and therapeutic effect of ARGs 
in CHOL have not been reported. 

Therefore, this study aimed to identify anoikis-related biomarkers in CHOL and established ARGs-related risk signatures to forecast 
the survival of CHOL patients. The prognostic characteristics in this study provided a theoretical basis for improving prognostic 
prediction and selection of treatment approaches for CHOL patients. 

2. Materials and methods 

2.1. Data source 

RNA-seq data of E-MTAB-6389 dataset (training set) were collected from EMBL-EBI database, which included 31 normal samples 
and 75 CHOL samples. GSE107943 (validation set) was obtained from Gene Expression Omnibus (GEO), which included 27 normal 
samples and 30 CHOL samples. 35 anoikis-related genes (ARGs) were sourced from MsigDB [16]. 

2.2. Analysis of differential genes 

The ‘limma’ package [17] was utilized to identify the differentially expressed genes (DEGs) between normal group and CHOL group 
in E-MTAB-6389 dataset. The adj.P.value < 0.05 and |log2FC|>1 was determined as the threshold. The ‘ggplot2’ package was 
employed to generate a volcano plot illustrating the DEGs [18]. A heatmap was created to display the top 20 DEGs, featuring the top 10 
down-regulated and top 10 up-regulated genes. 

2.3. Weighted gene coexpression network analysis (WGCNA) 

Next, the WGCNA [19] was conducted to select the key module genes with anoikis as a clinical trait. Initially, we clustered the 
samples and subsequently eliminated outliers to ensure the precision of the analysis. We adopted the Euclidean distance as a metric for 
the calculation and applied a hierarchical clustering approach in which the COMPLETE algorithm was used for the calculation. 
Subsequently, we constructed a trait heatmap and sample dendrogram, then determined the soft threshold. Gene similarity was 
calculated based on adjacency, and the phylogenetic tree among genes was generated. Using the dynamic tree cutting algorithm, 
modules were segmented, setting the minModuleSize at 100. We filtered significant module genes using |Cor|>0.3 and P < 0.05. 
Finally, the key module genes were retained by |GS|>0.2 and |MM|>0.5. 

2.4. Functional exploration of intersection genes 

The overlapping genes between DEGs and module genes were identified using a Venn diagram. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of intersection genes were conducted via clusterProfiler package 
[20]. P < 0.05 was selected as criteria. 

2.5. Risk score-based subgroup analysis of patients with CHOL 

The E-MTAB-6389 dataset (n = 75) was defined as the training cohort. The univariate Cox regression was performed on the 
candidate genes by using the ‘coxph’ function in the R package, and 6 genes associated with prognosis were screened out in E-MTAB- 
6389 dataset, where P < 0.05 was considered statistically significant. The ‘glmnet’ package was utilized to employ a least absolute 
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shrinkage and selection operator (LASSO) regression algorithm, aiming to prevent overfitting during analysis [21] and further build 
the risk signature. The risk score model calculating formula was: risk score =

∑n
i=1βi ∗ xi. In this formula, β refers to the regression 

coefficient and X refers to the expression value of the gene. Using the median value of the risk score acquired from each sample, CHOL 
patients with survival information were separated into two risk subgroups (high- and low-). The prognostic accuracy of the model was 
assessed by Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves (1, 3, 5 years). At the same time, the 
GSE107943 was regarded as an external verification for the risk model. Ulteriorly, we analyzed the correlation between clinico-
pathological factors (gender, vascular lnvasio, necrosis, diagnosic symptor, alcohol, infection, cirrhosis and survival) and the risk 
model in E-MTAB-6389 dataset by comparing the risk score under different clinical information. 

2.6. Clinical nomogram model 

RiskScore, gender, vascular lnvasio, necrosis, diagnosic symptor, alcohol, and cirrhosis were enrolled into univariate and multi-
variate Cox analysis to authenticate independent prognostic predictors. The ‘rms’ package was employed to create a nomogram 
incorporating prognostic genes, enabling the prediction of CHOL patient survival. Evaluation of the predictive capacity was conducted 
through calibration curve analysis. 

2.7. Functional enrichment analysis 

Likewise, the ‘limma’ package was utilized to calculate the DEGs between two risk subgroups (adjusted P.value < 0.05). Then, GO 
and KEGG was applied to show the function of DEGs. 

2.8. Immune feature estimation and chemotherapy analysis 

We used single sample gene set enrichment analysis (ssGSEA) algorithm to calculate the expression status of 28 immune cells 
infiltrated in CHOL microenvironment. Specifically, we used a background reference gene set of 28 immune cells for ssGSEA immune 
infiltration analysis. These gene sets were obtained from the published literature and we used log2 normalization during data pro-
cessing [22]. Following that, correlation coefficients between immune cells and prognostic genes were computed and Spearman’s 
correlation analysis between risk scores and immune cells was performed. Using the ‘ggplot2’ package, the expression of some immune 
checkpoints within two risk-groups was analyzed. We further analyzed the difference in Tumor Immune Dysfunction and Exclusion 
(TIDE) scores between high and low risk groups. Finally, the half inhibitory concentration (IC50) of several drugs for each CHOL 
sample was calculated by pRRophetic package [23]. 

2.9. Statistic analysis 

Analyses of public data were performed using the R programming language, and differential analysis comparisons were performed 
using the Wilcox test. All results were considered statistically significant when P < 0.05. 

Fig. 1. Flow chart of the study.  
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3. Results 

3.1. Identification of DEGs and module genes related to anoikis in CHOL 

The flowchart of the study was presented in Fig. 1. 1844 DEGs were identified in CHOL, 982 of which were down-regulated and 862 
of which were up-regulated (Fig. 2A). We selected the top 10 down-regulated and top 10 up-regulated genes to display in heatmap 
(Fig. 2B). To seek out key modules linked to anoikis, we carried out a WGCNA. There were no outlier samples, according to sample 
clustering data (Fig. 2C). The optimal soft threshold was 3. As the mean connectivity tended towards 0, the ordinate scale-free fit index, 
signed R2 approached the critical value of 0.85 (red line) (Fig. 2D). The sample and trait heat map were shown in Fig. 2E. The dynamic 
tree cut algorithm yielded a total of 7 modules (Fig. 2F). And then, MEblack and MEturquoise module were markedly correlated with 
anoikis (Fig. 2G). Thus, 2678 key module genes related to anoikis were obtained (|GS| > 0.2, |MM| > 0.5). Furthermore, 1270 anoikis- 

Fig. 2. Identification of DEGs and module genes related to anoikis in CHOL. (A) Heatmap and (B) volcano plot of differentially expressed genes in 
CHOL. (C) Sample clustering tree. (D) Screening of the soft threshold power. Scale independence (left). Mean connectivity (right). The horizontal 
axes are all soft thresholds, the vertical axis of the left figure is the scale free topological model fitting index, and the vertical axis of the right figure 
is the mean connectivity. (E) Hierarchical clustering tree. Different colors are used below to distinguish different modules, and above are the results 
of gene clustering. (F) Heatmap of module-trait correlations. The horizontal axis is the anoikis score, the vertical axis is the different modules, and 
the main part is the correlation heat map, with blue indicating negative correlation and red indicating positive correlation. In each corresponding 
individual grid, the value is the correlation coefficient. The larger the absolute value of the coefficient, the stronger the correlation. The median 
significance P value in the brackets. The smaller the P value, the more significant the result. (G) Screening of key module genes. MEblack filtered 
results (left). MEtruquoise filtered results (right). (H) The intersection of the differential genes in CHOL and the key module genes of anoikis was 
visualized by Venn diagram. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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related differential genes (AKR-DEGs) were obtained (Fig. 2H). In addition, the functional enrichment analysis was performed. The GO 
analyses indicated their primary involvement in the small molecule catabolic process and organic acid catabolic process (Fig. 3A). 
However, we found that extracellular matrix-related structures were enriched in cellular component (CC), and we speculated the 
corresponding function of the extracellular matrix was likely to be related to anoikis. The KEGG analysis suggested that a predominant 

Fig. 3. Functional enrichment analysis of 1270 anoikis-related differential genes (AKR-DEGs). (A) GO enrichment bar plot. The horizontal axis is the 
number of genes enriched in GO entries, and the vertical axis is the corresponding entry name. The red-blue gradient represents the change in the 
significance P value. The smaller the value, the more significant the result. (B) KEGG chord diagram. Different colors distinguish different KEGG 
entries, and gene names are enriched to the corresponding pathways. P < 0.05 is considered to be statistically significant. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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enrichment of AKR-DEGs within the cytochrome P450 pathway (Fig. 3B). 

3.2. Prognostic signature based on AKR-DEGs 

Univariate Cox regression analysis and LASSO regression analysis and LASSO algorithm were utilized for excavate prognostic DEGs 
in E-MTAB-6389 dataset (Fig. 4A–C). Finally, we discovered 6 genes: FXYD Domain Containing Ion Transport Regulator 2 (FXYD2), 
Pterin-4 Alpha-Carbinolamine Dehydratase 1 (PCBD1), Complement C1r Subcomponent Like (C1RL), Geminin DNA Replication In-
hibitor (GMNN), Laminin Subunit Alpha 4 (LAMA4) and 2-Hydroxyacyl-CoA Lyase 1 (HACL1). They were selected as prognostic 
anoikis-related genes for building a prognostic signature. Then, the CHOL patients were segregated into two risk groups: high and low 
risk (Fig. 4D). Principal components analysis (PCA) result indicated that six prognostic genes could distinguish two risk subgroups 
(Fig. 4E). Significantly, we observed notable survival discrepancies between the two risk groups, with patients in the high-risk CHOL 
group exhibiting poorer survival rates (Fig. 4F). For further assessment of the model’s reliability, the Area Under Curve (AUC) of the 
model in forecasting 1-, 3-, 5-year survival of CHOL patients was 0.87, 0.86, and 0.82 in the EMBL-EBI database, indicating the risk 
model can forecast the survival outcomes of CHOL patients (Fig. 4G). Next, we further validated the risk model in the external 
validation dataset (GSE107943). In line with the results generated from the E-MTAB-6389 dataset, CHOL patients in high-risk group 
had awful OS (Fig. 4H). AUC of the 1 -, 3 - and 5-year was basically greater than 0.6 (Fig. 4I). 

3.3. Independent prognostic analysis for CHOL patients 

By comparing risk scores for subgroups with different clinicopathological features, we observed a significant difference in the risk 
scores concerning survival outcomes. (Fig. 5A). The results of Cox analysis demonstrated that both alcohol consumption and the risk 
score functioned as independent prognostic factors (P < 0.05) (Fig. 5B–C). The nomogram was generated, and the calibration curves 
confirmed the efficacy of the risk model’s performance (Fig. 5D–E). 

3.4. Analysis of immune infiltration and therapy 

We obtained 105 DEGs in two risk groups through differential analysis, including 66 down-regulated and 39 up-regulated genes 
(Fig. 6A). We selected the top 10 down-regulated and top 10 up-regulated genes to display in heatmap (Fig. 6B). Furthermore, the GO 
analyses highlighted that these genes primarily functioned within the extracellular matrix (Fig. 6C). The KEGG results indicated that 
these genes were predominantly associated with the apoptosis pathway and Mucin type O-glycaan biosynthesis pathway (Fig. 6D). We 
then analyzed the expression status of 28 types of immune cells (Fig. 6E). Remarkably, seven immune cell abundances exhibited 
significant differences, including central memory CD4+T cell, central memory CD8+T cell, effector memory CD8+T cell, Myeloid- 
derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), regulatory T cells (Tregs) and Type2 T helper (Th2) cell. We 
conducted further analysis to examine the correlation between prognostic genes and the scores of 28 immune cell types (Fig. 6F). In 
addition, we found a strong correlation between Activated dendritic cell and risk scores (Fig. S1). We found a negative correlation 
between FXYD2, PCBD1, GMNN and immune cells, while LAMA4, C1RL, HACL1 were positively correlated with immune cells. 
Additionally, we assessed the variations in expression among some immune checkpoint molecules (Fig. 7A). Pearson correlation 
analysis revealed that Galectin 9 (LAGLS9) and Programmed Cell Death 1 Ligand 2 (PDCD1LG2) showed a notable positive correlation 
with the risk scores (Fig. 7B). We further found no significant difference in TIDE scores in the high-low risk group, suggesting that 
immune checkpoint blockade (ICB) therapy may be of little significance to the risk model (Fig. 7C). Furthermore, we conducted an 
analysis on the IC50 difference of several drugs which were frequently used in cancer between two subgroups (Fig. 7D). The results 
showed that the low-risk group had a higher response to Bosutinib, Gefitinib, Gemcitabine, and Paclitaxel while the high-risk group 
had a better response to Axitinib, Cisplatin, and Imatinib. 

3.5. Expression validation of prognostic genes 

The expression patterns of prognostic genes were separately analyzed within both the training and validation sets. We discovered 
that the expression value of C1RL, HACL1 and PCBD1 in the normal group were higher than those detected in the CHOL group. 
However, FXYD2, GMNN and LAMA4 showed the opposite trend (Fig. 8A–B). 

4. Discussion 

As a malignancy with a poor prognosis, a critical need exists for research into novel molecular biomarkers associated with the 
treatment and personalized prognosis prediction of CHOL patients. Anoikis is an apoptotic process as a result of loss or improper cell 

Fig. 4. Evaluation and validation of anoikis-related genes signature in training set and validation set. (A) Univariate cox forest plot showed 6 genes 
related to prognosis. (B–C) The LASSO Cox regression model to identify the most robust anoikis-related signatures. (D) Distribution of the risk score 
(left) and the survival status (right) in training set. (E) PCA scatter plot. (F) K-M curves for OS in training set. (G) Time-dependent ROC curves at 1- 
3- and 5- year for OS in training set. (H) K-M curves for OS in validation set. (I) Time-dependent ROCcurves at 1- 3- and 5- year for OS in validation 
set. P < 0.05 is considered to be statistically significant. 
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Fig. 5. Independent prognostic analysis for CHOL patients. (A) Distribution of risk scores for different clinical indicators. From left to right and top 
to bottom: gender, vascular invasion, necrosis, diagnostic symptoms, alcohol consumption, infection, cirrhosis, and survival. N means the feature is 
absent, Y means the feature is present. Univariate (B) and multivariate (C) Cox regression analyses to assess the relationship between the riskScore 
and clinical indicators and OS in the training set. (D) Predicting survival probability by building a nomogram using ARGs. (E) Nomogram calibration 
curve. The horizontal axis represents the death risk predicted by the nomogram, and the vertical axis represents the actual death. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns: The difference is not significant. 
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adhesion [24]. It is commonly dysregulated in a range of illnesses and ensures physiologically relevant processes of development and 
tissue homeostasis [25]. In order to prevent apoptosis and preserve pro-survival signals, cancer cells exhibit deregulation of anoikis 
execution, which also facilitates the growth of distant organ metastases [26]. Anoikis resistance is also responsible for treatment failure 
in many cancers. Therefore, it is essential to investigate the worth of ARGs in CHOL in order to improve the prognosis of patients. 

In this study, we first discovered 1270 ARGs differentially expressed in CHOL using public database data and WGCNA. Then, the 
Cox and Lasso regression models were used to further screen out 6 ARGs related to prognosis, and a prognosis prediction signature 
based on the 6 ARGs was constructed. And we used gene expression to construct a nomogram that has aided in prognostic prediction. 

Fig. 6. Functional enrichment and immune infiltration analysis of differential genes between high and low risk groups. (A) Volcano plot and (B) 
heatmap of differentially expressed genes in different risk groups. (C) GO enrichment bar plot. (D) KEGG enrichment bubble plot. (E) Differential 
immune cell identification in high-risk and low-risk groups. (F) Correlation analysis between ARGs and immune cell infiltration. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns: The difference is not significant. 
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We also researched the relationship between immune cells, immune checkpoints, and immunotherapy and drug therapy in relation to 
risk scores. 

Interestingly, we found that the underlying functions of ARGs were diverse; for instance, mutations causing hyper-
phenylalaninemia, hypomagnesemia, and diabetes have been linked to PCBD1, a gene that encoded a moonlighting protein [27]. It 
was reported that PCBD1 was involved in hepatocellular carcinoma progression as it regulated the dimerization of HIF1-α and 
increased the transcriptional potency of HIF1-α [28]. In addition, studies have demonstrated that HNF1β-mediated FXYD2 promoter 
activation was increased in the presence of PCBD1 [29]. PCBD1 might be involved in the development of CHOL by enhancing the 
activity of FXYD. One of the transmembrane proteins belonging to the FXYD family, which was primarily engaged in controlling 
Na+/K + -ATPase, was encoded by the gene FXYD2. This protein might also participated in the development of tumors [30]. Studies 
have shown that Na+/K + -ATPase was a target in the induction process of epithelial-to-mesenchymal transition (EMT) mediated by 
transforming growth factor (TGF)-β1 [31], and the activation of EMT was often beneficial to the anoikis resistance of tumors [32]. We 
speculated that FXYD2 affected EMT and anoikis resistance by regulating Na+/K + -ATPase, thus improving the prognosis of CHOL. 

Fig. 7. Analysis of risk scores and immunotherapy and drug therapy. (A) Box plot showed the correlation between common immune checkpoints 
and risk scores. (B) Correlation analysis of differential immune checkpoints (LAGLS9, PDCD1LG2) with risk scores. (C) TIDE analysis results. Scatter 
plot of correlation between riskScore and TIDE prediction score (left). Analysis of differences in TIDE prediction score between high and low risk 
groups (right). (D) Boxplots showed the difference in IC50 values of Axitinib, Bosutinib, Cisplatin, Docetaxel, Gefitinib, Gemcitabine, Imatinib and 
Paclitaxel in different risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: The difference is not significant. 
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Through sequencing analysis, we discovered that increased expression of PCBD1 and FXYD2 was linked to a better prognosis, which 
might be confirmed this speculation. GMNN was responsible for producing a protein that was crucial for the regulation of the cell cycle. 
Researchers have found that GMNN acted as a suppressor of tumors by preserving genome stability, but its over-expression was related 
to genome instability and was considered an oncogene [33]. It has been shown that GMNN is involved in ATM/ATR and p53-mediated 
DNA repair, cell cycle and apoptosis [34]. As an indicator of the proliferation of cells, GMNN has been reported to be linked to 
apoptosis regulation, including Bcl2 and activated caspase-3 [34], which were important players in the anoikis pathway [26]. In our 
study, its expression increased in CHOL and it was considered to be a protective gene. It might promote tumor anoikis by regulating 
apoptotic molecule in CHOL and we will maintain our focus on studying the role of this gene in the future. 

As for C1RL, which was responsible for facilitating the proteolytic cleavage of HP/haptoglobin within the endoplasmic reticulum 
[35]. In molecular role, C1RL protein acts as the active form of a serine hydrolase [36]. Studies have shown that C1RL expression in 
glioblastoma was associated with decreased tumor purity and higher infiltration of M2 macrophage, which was related to poor 
prognosis [37]. In renal cell carcinoma [38], C1RL was considered to be involved in its occurrence and development, but in hepa-
tocellular carcinoma [39], notably, patients with high C1RL expression has a better prognosis. In addition, C1RL was found to be a 
protective gene in CHOL in our study, and it was positively correlated with immune cell abundance. We speculated that it had the 
potential to improve patient outcomes by regulating the immune response. HACL1 was an essential enzyme in the peroxisomal 
α-oxidation of phytanate [40]. It had been reported that HACL1 might take part in hepatic cholestasis through the signaling pathway 
connected to PPAR-α [41]. Our study found that decreased expression of HACL1 in patients with CHOL was associated with worse 
prognosis. However, the exact mechanism of action needs more explorations, we will continue to focus on the function of this gene in 
the future. A laminin family member, LAMA4 was abundantly distributed in the basement membranes of many organs [42]. There is 
ample evidence linking it to the emergence of various cancers. For instance, the elevated level of LAMA4 was indicative of liver cancer 
invasion and metastasis [43]. In renal cell carcinoma, LAMA4 promoted tumor cell migration by inducing the expression of integrin 
α5β1 through the ILK/FAK/ERK pathway [44]. Notably, the development of EMT in oral squamous cell carcinoma results in a switch 
from laminin α5 chain production to laminin α4 chain synthesis, which enables the tumor cells to break free from strong adherence to 
the extracellular matrix or basement membrane [45]. Our research findings also demonstrated that LAMA4 was a substantial risk 
element for CHOL, and patients with higher LAMA4 expression tended to have a worse prognosis. This elevated LAMA4 expression 
might facilitate the resistance to anoikis by triggering changes in integrins and promoting EMT. 

To explore the underlying functions or mechanisms of gene signatures in CHOL, we conducted functional enrichment analysis. 
KEGG enrichment analysis showed that the selected genes were mostly enriched in apoptosis, mucin O-type-glycan biosynthesis, ECM- 
receptor interaction, TNF signaling pathway, etc. First, abnormal apoptosis often leads to the occurrence of cancer. Apoptosis relies on 
the activation of different signaling pathways, but these signaling pathways were often dysregulated in cancer [46]. Secondly, ab-
normalities in mucin O-type-glycan were considered to be a crucial element in the emergence of epithelial diseases. In tumors, they 
were often accompanied by changes in the structure and quantity of mucin O-type-glycan, forming tumor-specific glycan structures 
[47]. Their imbalance offers molecular insights into the initiation and advancement of cancer [48]. In addition, TNF was tumor ne-
crosis factor, which was considered a cytokine with well-known anti-cancer properties [49]. Studies have shown that TNF family 
members were related to angiogenesis in CHOL [50]. 

There is no doubt that the tumor microenvironment plays a major role in the pathogenesis of cancer, so we further investigated the 
relation between risk scores and immune infiltration. We discovered that CHOL patients in the high-risk group had higher tumor 
immune cell infiltration. Although central and effector memory CD4/CD8+T cells were thought to exert anti-tumor effects [51], it 
seemed plausible that patients in the high-risk group had an immune milieu with a stronger tumor-suppressive response. For instance, 
MDSCs were believed to play a role not only in directly facilitating immune evasion but also in fostering tumor invasion through 

Fig. 8. Expression validation of prognostic genes. (A) Boxplots showed differences in expression levels of prognostic genes in the training set. (B) 
Boxplots showed differences in expression levels of prognostic genes in the validation set. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: 
The difference is not significant. 
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various non-immune mechanisms [52]. Studies have shown that high abundance of pDC in the tissue surrounding iCCA tumors was 
related to shorter OS and greater likelihood of recurrence, and pDC infiltration might indicate immune tolerance in the peritumoral 
microenvironment [53]. 

And it was reported that the cancer cells secrete TGF-β1, leading to the induction of Tregs in biliary tract cancer, thus establishing 
an immune-suppressive microenvironment and supporting progression of tumors [54]. In addition, Th2-related mast cells were 
considered pertinent players in CHOL formation and might facilitate tumor growth by acting as promoters of angiogenesis [55]. 
Furthermore, although TIDE scores did not differ across the risk groups, but we found that LAGLS9 and PDCD1LG2 were highly 
expressed in the high-risk group in CHOL and were positively linked to the risk score. According to reports, LGALS9 binds to Tim-3 and 
induces apoptosis by inducing T-helper 1 cell death via intracellular calcium current. Thus, this leads to induction of immune tolerance 
and inhibition of T-helper 1 and T-helper 17 cells responses [56]. It was demonstrated that inhibiting the LGALS9/Tim-3 pathway 
elicits anti-tumor immune responses and hampers the development of tumors [57]. Additionally, it has been indicated that binding of 
PDCD1LG2 to PD-1 significantly inhibits T cell receptor-mediated proliferation and cytokine production by T cells [58]. Tanegashima 
et al. [59] indicated that the expression of PDCD1LG2 in tumor cells played a crucial role in evading anti-tumor immunity. The 
abnormal expression of these two immune checkpoints in CHOL might be beneficial to tumor immune evasion and might be used as 
potential immunotherapy targets for subsequent research. 

Furthermore, we evaluated the significance of the anoikis-related gene signature in terms of drug sensitivity. We found that the low- 
risk patients were more sensitive to Bosutinib, Gefitinib, Gemcitabine, and Paclitaxel, while the high-risk group showed greater 
sensitivity to Axitinib, Cisplatin, and Imatinib. Gemcitabine was a cell cycle-specific chemotherapeutic agent whose cytotoxic effect 
lied in the inhibition of DNA synthesis. Studies have shown that its combination with cisplatin has become the first-line chemotherapy 
regimen for CHOL [60]. Considering the results above, the construction of the signature is beneficial to guide the selection of clinical 
medications. 

In summary, this study was the first to explore the prognostic value of ARGs in CHOL and create a signature of anoikis-related 
prognostic genes. This signature performed well in predictions and can be used to create individualized treatment plans for CHOL 
patients. In light of the limited existing research in this domain, our study not only provided fresh insights and avenues for future 
investigation regarding anoikis in CHOL but also served as a pivotal reference point for the exploration of innovative therapeutic 
approaches. These findings expand our understanding of the prognostic value in CHOL, bolstering the advancement of personalized 
medicine and precision healthcare. However, it is important to acknowledge the limitations inherent in our research. One key limi-
tation is that our results are primarily based on data obtained from public databases, which may vary in terms of quality, consistency, 
and reliability. Thus it can lead to results that can overlap like survival analysis. Finally, this study has not yet fully elucidated the effect 
of ARGs on anoikis and the regulatory mechanism of CHOL, and further experimental research is needed to explore it. We will continue 
to monitor the role of these genes. 
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