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A framework to analyze opinion 
formation models
Carlos Andres Devia1* & Giulia Giordano1,2

Comparing model predictions with real data is crucial to improve and validate a model. For opinion 
formation models, validation based on real data is uncommon and difficult to obtain, also due to 
the lack of systematic approaches for a meaningful comparison. We introduce a framework to assess 
opinion formation models, which can be used to determine the qualitative outcomes that an opinion 
formation model can produce, and compare model predictions with real data. The proposed approach 
relies on a histogram-based classification algorithm, and on transition tables. The algorithm classifies 
an opinion distribution as perfect consensus, consensus, polarization, clustering, or dissensus; these 
qualitative categories were identified from World Values Survey data. The transition tables capture the 
qualitative evolution of the opinion distribution between an initial and a final time. We compute the 
real transition tables based on World Values Survey data from different years, as well as the predicted 
transition tables produced by the French-DeGroot, Weighted-Median, Bounded Confidence, and 
Quantum Game models, and we compare them. Our results provide insight into the evolution of real-
life opinions and highlight key directions to improve opinion formation models.

During the past 30 years, the study of opinion formation has attracted growing attention1–7. An opinion formation 
model is a mathematical model aimed at reproducing the evolution of opinions within a population in a given 
time interval. Several opinion formation models have been proposed, where opinions can be continuous8,9 or 
discrete10,11 variables, and can evolve in discrete12,13 or in continuous14,15 time in a deterministic13 or stochastic16 
way, over an underlying interaction graph that can be time-varying17–19, directed, weighted, or signed20. Opin-
ions can be uni- or multi-dimensional21,22. When studying the behaviors emerging from these models, the 
focus is not on individual opinions, but on the overall evolution of opinions in the entire population. Denoting 
as opinion distribution the collection of all the opinions within a population at a given time instant, opinion 
formation models address two main questions: (i) given a set of parameters and an initial opinion distribution, 
what will be the opinion distribution after some time? and (ii) under which circumstances will a desired opinion 
distribution be achieved? The answers depend on the chosen model. For instance, the French-DeGroot model is 
guaranteed to asymptotically achieve perfect consensus (all individuals share the very same opinion) if the graph 
is strongly connected2. For a structurally balanced digraph, the Altafini model predicts polarization (presence of 
two opposed opinion groups) if the digraph is strongly connected20,23 and consensus (all individuals have almost 
the same opinion) near the origin, if it has a spanning tree24,25. When bounded confidence is added to the model, 
then clustering (presence of several distinct opinion groups) is a likely outcome26. In addition, we call dissensus 
a practically uniform distribution of the opinions.

We identified perfect consensus, consensus, polarization, clustering and dissensus as qualitative categories 
of opinion distributions that emerge in real life. They recurrently appear in the results of the World Values 
Survey27–29, conducting global surveys every 5 years; in particular, we monitored the answers to 30 questions 
(regarding values, behavior, and ethics) asked to participants in 25 countries in three occasions separated by 
roughly 5 years, corresponding approximately to the years 2010 (wave 5), 2015 (wave 6), and 2020 (wave 7).

A complete opinion formation model should be able to produce, with the appropriate parameter choice, each 
of the qualitative opinion distribution categories found in actual societies, as well as each of the possible transi-
tions, from one category to the others, that occur in reality. Here, we introduce a framework to systematically 
check whether this is the case.

First, we introduce a histogram-based classification algorithm to associate an opinion distribution with a 
qualitative category. Histogram-based classification has been used in many fields, especially related to image 
processing30,31; yet, to the best of our knowledge, this is the first time it is adopted in an opinion-dynamics setting. 
Second, we construct a transition table to visualize how opinion distributions evolve over time from an initial to 
a possibly different final qualitative category.
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The proposed framework (which leverages histogram-based classification to associate opinion distributions 
with qualitative categories, and transition tables to capture the evolution of opinions over time) allows to assess 
and analyze opinion formation models and compare their prediction with real data. We demonstrate our novel 
approach by applying it to models already proposed in the literature. In particular, we compare real-world data, 
representing opinion distributions at different sampling times (waves) taken from the World Values Survey27–29, 
with the predictions provided by various well-known opinion formation models: French-DeGroot12,13, Weighted 
Median32, Bounded Confidence33–35, and Quantum Game36 models.

An extensive literature deals with model comparison based on Bayesian analysis: Bayes factor37–39, Bayes-
ian evidence40, and Bayesian methods such as the Lv measure41. Model comparison statistics42 can be based on 
the information criterion43 or the deviance information criterion44. These statistical model comparisons aim at 
selecting the model that fits at best a given data set. Conversely, simulation-based model comparison directly 
compares the outcomes of two or more models without fitting real data45,46. As a main novelty, we propose a 
peculiar simulation-based framework that compares opinion formation models not in their ability to reproduce 
a given data set, but in their capability to generate a spectrum of qualitative behaviours that is as broad as the one 
observed in real life.

Our results provide insight into real-life opinion evolution and comparatively assess different opinion forma-
tion models. They reveal that, while all transition between qualitative categories occur in reality, existing models 
can only yield some peculiar transitions and are characterized by a bias towards consensus that cannot be found 
in real opinion data.

The paper is structured as follows. First, we introduce the proposed framework to analyze opinion formation 
models and compare their predictions with real data: we describe our approach to classify opinion distributions 
and our framework allowing a systematic comparison between model predictions and real-life opinions. Then, we 
showcase examples of application of the proposed approach to well-studied existing opinion formation models, 
whose predictions are compared with real-life opinion data from the World Values Survey: we show that real 
transition tables highlight some characteristic features of opinion evolution in real life, and we compare the 
predicted transition tables with the real ones for different opinion formation models, including both classical 
and quantum models.

Results
We denote as opinion the level of agreement with a statement. The opinions that an individual can have belong 
to the interval [−1, 1] , where the values −1 , 0, and 1 respectively denote complete disagreement, indifference, 
and complete agreement with the statement. Given a population of N individuals, each having an opinion about 
a statement, the collection of the opinions of all the individuals in the population yields an opinion distribution, 
which belongs to one of our identified qualitative categories, exemplified in Fig. 1: perfect consensus, consensus, 
polarization, clustering, and dissensus. Their mathematical definitions, provided in the following, are inspired 
by these informal definitions (where by absolute majority we denote more than 50% of the population):

•	 Perfect consensus the absolute majority chooses the very same opinion;
•	 Consensus the absolute majority chooses approximately the same opinion;
•	 Polarization the absolute majority is split between two ‘distant’ opinions;
•	 Clustering the absolute majority is split between two or more groups;
•	 Dissensus the majority of the opinions are uniformly distributed.

These categories of opinion distributions capture an increasing level of inhomogeneity. When all the individuals 
have the exact same opinion (perfect consensus), there is perfect homogeneity. Starting from perfect consensus, 
progressively increasing inhomogeneity leads to consensus, polarization, clustering, and lastly dissensus. When 
every opinion is held by the same number of people (perfect dissensus), inhomogeneity is maximal and no 
preference whatsoever can be identified.

Figure 1.   Examples of real-life opinion distribution histograms, taken from the World Values Survey data, 
classified as perfect consensus, consensus, polarization, clustering, and dissensus by the proposed histogram-
based classification algorithm. The vertical axis represents the normalized bin counts H̃ . The dotted lines mark 
thresholds T1 (green) and T2 (red). The bins are colored according to the histogram classification algorithm: 
green if the normalized bin count is larger than T1 ; blue if it is smaller than T2 ; red if it is between T1 and T2 . The 
parameter values we adopted to perform the classification are: M = 10 , B = 3 , K = 3 , T1 = 50 , and T2 = 12.
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Opinion distribution classification.  An opinion distribution can be visualized as a histogram with M 
bins, which can then be classified so as to determine to which qualitative category the opinion distribution 
belongs. This process is performed by our proposed histogram-based classification algorithm. 

1.	 Input the positive integers M , B < M and K ≤ M − 2 , and the thresholds T1 , T2 with 0 < T2 < 50 ≤ T1 < 100

.
2.	 Partition the [−1, 1] interval in M bins of equal width.
3.	 Count how many opinions fall in each bin. Denote by H(k) the number of opinions in bin k ( 1 ≤ k ≤ M).
4.	 Normalize the bin counts so they add up to 100. Denote the normalized bin counts by H̃(k).
5.	 Classify each bin as green, blue, or red: bin k is green if H̃(k) > T1 ; blue if H̃(k) < T2 ; red otherwise.
6.	 Compute the number of groups; a group is formed by consecutive green or red bins. For each group, compute 

the number of bins, and the normalized group count, which is the sum of all the normalized bin counts of the 
bins belonging to the group.

7.	 Classify the histogram according to the following criteria:

•	 Perfect consensus if there is a green bin;
•	 consensus if there is one group, with at most B bins, and with normalized group count larger than 50;
•	 Polarization if there are two groups, each with at most B bins, with at least K  bins in between, whose 

normalized group counts add up to more than 50;
•	 Clustering if there are two or more groups, each with at most B bins, whose normalized group counts 

add up to more than 50;
•	 Dissensus otherwise.

The parameters M , B , K , T1 , and T2 allow the proposed classification to be tuned according to the problem at 
hand, thus taking into account possible differences in the interpretation of our proposed qualitative categories.

In our case study, M = 10 is a natural choice, since the data from the World Values Survey27–29 comes from 
Likert 10-scale questions. Parameter B represents the ‘level of closeness’ required to state that a group of people 
share a ‘similar’ opinion: we set B = 3 . Polarization is defined as the presence of two groups with significantly 
opposing views; the required ‘level of opposition’ is encoded by the parameter K . Two groups at a distance less 
than K would represent clustering, since the opinions are not very different, while two groups at a distance K 
or more represent two significantly opposing views, and hence polarization. The value K = M − 2 would mean 
that extreme opposition is needed to define polarization; in this paper, we choose K = 3 . The threshold T1 
defines perfect consensus: we choose T1 = 50 to capture all instances where the absolute majority (more than 
50%) shares a single opinion. The threshold T2 discriminates between significantly numerous opinion groups 
and ‘white noise’ residual opinions. A low T2 leads to the appearance of multiple groups with more than B bins, 
while a high T2 leads to interpreting significant opinion groups as white noise: in both cases, the classification is 
biased towards dissensus. After repeated numerical experiments, the intermediate value of T2 = 12 was selected 
and can be seen as a robust choice, because varying T2 between 10 and 14 gave comparable classification results.

Figure 1 shows examples of real-life opinion distribution histograms, taken from the World Values Survey 
data, representative of our proposed qualitative categories.

Model predictions versus real opinions: a framework for systematic comparison.  The proposed 
histogram-based classification approach allows us to systematically associate a given opinion distribution, which 
can be either real (e.g. survey data) or predicted by an opinion formation model, with a qualitative category. An 
opinion distribution is a static snapshot; to study opinion formation, we need to understand how opinion distri-
butions can evolve over time. We introduce transition tables to capture the possible qualitative categories of final 
opinion distribution that can be obtained, after some time, starting from various categories of initial opinion 
distribution. A transition table is a matrix whose rows (respectively, columns) are associated with the qualita-
tive category of initial (respectively, final) opinion distribution: entry (i,  j) represents the number of opinion 
distributions that evolve from an initial configuration belonging to category i to a final configuration belonging 
to category j, where i and j can be either perfect consensus, consensus, polarization, clustering, or dissensus. To 
systematically compare the outcome of a given opinion formation model with real opinion data collected at two 
different time instants, we proceed as follows: 

1.	 Classify the real initial opinions,
2.	 Let them evolve according to the opinion formation model, and produce the predicted final opinions,
3.	 Classify the predicted final opinions,
4.	 Using the classification of real initial opinions and predicted final opinions, construct the predicted transition 

table,
5.	 Classify the real final opinions,
6.	 Using the classification of real initial opinions and real final opinions, construct the real transition table, and
7.	 Compare the two transition tables.

As an example, we assess the Bounded Confidence model (BCM)8,9,33–35, with confidence radius 0.3, along with 
the answers, provided by 500 people, to four questions of the World Values Survey both in wave 5 (2010) and 
wave 6 (2015). The four initial opinion distributions (wave 5) are classified by our algorithm as perfect consen-
sus, perfect consensus, polarization, and clustering, respectively. Taking these opinion distributions as initial 
conditions, the Bounded Confidence model yields predicted opinion distributions that our algorithm respectively 
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classifies as perfect consensus, perfect consensus, perfect consensus, and clustering. Hence, two opinion distribu-
tions are predicted to remain perfect consensus, one to change from polarization to perfect consensus, and one 
to remain clustering, as summarized in the predicted transition table in Fig. 2 (left). The real transition table in 
Fig. 2 (right) can be constructed by considering the real final opinion distributions (wave 6) for the same four 
questions, which are classified as clustering, polarization, polarization, and dissensus, respectively.

Comparing real and predicted transition tables allows us to evaluate the model, identify its shortcomings and 
suggest ways to improve its realism. Furthermore, real transition tables provide qualitative understanding of how 
the actual opinion distributions can evolve within the population in the considered time interval.

Real transition tables highlight features of opinion evolution.  We analyzed in total 2025 real opin-
ion distributions, corresponding to World Values Survey answers to 30 questions in 25 countries in waves 5, 
6, and 7, approximately corresponding to years 2010, 2015, and 202027–29; not all questions were asked in all 
countries, hence there are 675 opinion distributions for each wave. The orange panels in Fig. 3 show the quali-
tative classification of all the opinion distributions in each wave. The number of opinion distributions belong-
ing to each qualitative category does not change significantly in different waves and a recurrent pattern can 
be observed: dissensus is consistently the most common outcome, followed by perfect consensus and then by 
clustering, by consensus and finally by polarization, which is invariably the least common outcome. Figure 3 
also reports the real transition tables from wave 5 to 6, and 6 to 7, which evidence that, in spite of the observed 
recurring pattern, opinion distributions themselves do not tend to remain in the same category. On the contrary, 
there are several examples of opinion distributions that move from a category to almost any of the others: the real 
transition tables indicate that, in real life, opinion distributions can evolve from any category to any other. The 
likelihood of evolving towards a different qualitative category can be assessed by comparing the sum of diagonal 
and off-diagonal entries in the transition tables: from wave 5 to wave 6, these numbers are 368 and 307 respec-
tively, indicating that around 45% of the opinion distributions move to a different qualitative category; from 
wave 6 to wave 7, these numbers are 381 and 294 respectively, hence the probability of change has decreased to 
roughly 44% . Interesting similarities emerge in the patterns of the two transition tables: corresponding entries 

Figure 2.   Simple example to illustrate the proposed approach: based on the answers to 4 questions 
administered to 500 people in two consecutive survey waves, the accuracy of the Bounded Confidence Model 
(BCM) can be assessed by comparing the predicted transition table (left) with the real transition table (right). 
In the tables P.C. is perfect consensus, Co is consensus, Po is polarization, Cl is clustering, and Di is dissensus. 
This example is simply aimed at showcasing how the approach works, so any model could have been chosen; the 
BCM was selected because it is a widely used, well-known and well-studied model.
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often have close values, or at least the same order of magnitude, which seems to suggest that the likelihood of 
evolving from a qualitative category to another changes slowly over time.

Predicted transition tables and model comparison.  Starting from the opinion distributions in wave 
5 and wave 6, we generated the next wave results predicted by six different opinion formation models: French-
DeGroot (FG), Weighted-Median (WM), Bounded Confidence with confidence radius 0.1 (BC1), 0.3 (BC2), 
and 0.7 (BC3), and Quantum Game (QG). Figure  4 shows the obtained average predicted transition tables, 
from wave 5 to 6 (left) and from wave 6 to 7 (right): each reported transition table is the average over 75 tables, 
computed for different population size, directed graph topology, and initial opinion assignment (details are in 
the Materials and Methods section and Supplementary Information). The shade of blue quantifies the variability 
across the 75 tables represented by the difference between the maximum and minimum value for each cell across 
all 75 transition tables. The exact variability value for each cell in the transition tables for all the methods can be 
found in Tables 10 and 11 of the Supplementary Information.

The French-DeGroot (FG) model behaves as expected, with a clear trend towards perfect consensus, evi-
denced not only by the average transitions but also by the low difference. However, it is interesting to note that 
not all final opinions result in perfect consensus, some produce consensus, and in exceptional circumstances dis-
sensus. There are two explanations for these cases. First, in large interaction graphs it takes more time to achieve 
perfect consensus because, even if the graph is strongly connected, only few edges may be responsible for that 
strong connectivity, thus the graph could have two or more ‘pseudo clusters’. The second reason is that, if the 
opinion towards which agents converge is in the middle of two histogram bins, it may happen that the two adja-
cent bins to that converging opinion are equally populated, thus resulting in consensus and not perfect consensus.

The Bounded Confidence models with confidence radius r = 0.1 (BC1) and r = 0.7 (BC3) also behave as 
expected: for the BC1 model, the confidence radius is so small that most of the edges vanish in the first step 
and then the opinions remain the same, hence the transition table is a diagonal matrix. On the other hand, the 
BC3 model produces exclusively perfect consensus. The reason why BC3 produces perfect consensus always, 
while the same does not happen with FG, is that BC3 creates more edges in the interaction graph. Hence it is 
possible to assume that after a few time steps the interaction graph is complete, and then the convergence to a 
single opinion is much faster, resulting in perfect consensus. It is also interesting to note that BC1 and BC3 are 
the models showing the smallest variability (difference of zero).

The Bounded Confidence model with an intermediate value of confidence radius r = 0.3 (BC2) is biased 
towards perfect consensus, but allows some instances of polarization, clustering and dissensus to evolve into 
polarization or clustering. A larger confidence radius (with respect to BC1) yields strongly connected subgroups 
of individuals that achieve perfect consensus among them: if there are only two subgroups with sufficiently dis-
tant opinions, polarization occurs, otherwise the model produces clustering, which is the most likely outcome 
of the two. No consensus outcomes are generated, because, once the opinions are sufficiently close, they evolve 
into perfect consensus. For this model, varying population size, graph topology, and initial opinion assignment 
appears to have little impact, as seen in a maximum difference of 5.

The Weighted Median (WM) model exhibits a very rich behaviour. Although biased towards perfect con-
sensus, it can produce every transition except the ones from perfect consensus and consensus to polarization, 
and from perfect consensus to clustering. This wide range of outcomes is accompanied by a high sensitivity with 
respect to varying population size, graph topology, and initial opinion assignment, which is the highest across all 
considered models. The bias towards perfect consensus is expected, given the fact that the WM model is based 
on the cognitive dissonance theory and conformist tendencies.

Finally, the Quantum Game (QG) model presents a very interesting transition table. There is a tendency 
towards consensus, which is consistent with the fact that agents can only Change, Keep, and Agree, hence there 
is no disagreement mechanism. However, the randomness with which agents are chosen to interact, along with 
the dependence of the payoff matrices on the opinion distance, also produces a clustering behaviour (a bounded 
confidence effect). Therefore, when the initial distribution is perfect consensus, most agents will interact with 
each other, but the final opinion will be almost the same, resulting in perfect consensus; when the initial distribu-
tion is consensus, then there is a tendency to perfect consensus, but the agents that are not in the consensus bins 
can move other agents away, resulting in some clustering; when the initial distribution is polarization, there is a 
greater chance of producing polarization or clustering, due to the bounded confidence effect, and this pattern is 

Figure 3.   Real transition tables: The 675 real opinion distributions emerging from the World Values Survey27–29 
waves 5, 6, and 7 are qualitatively classified as perfect consensus (P.C.), consensus (Co), polarization (Po), 
clustering (Cl), and dissensus (Di) in the orange panels. The transition tables show the qualitative evolution of 
opinion distributions between these waves, highlighting how each qualitative category of opinion distributions 
could evolve into the various other categories.
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also present when the initial conditions correspond to clustering or dissensus. Another interesting observation is 
that the QG model can evolve with a lower ‘speed of change’. The facts that only two agents are chosen to interact 
at each time step and that they may not change opinion creates the possibility that, in a considerable fraction of 
time steps, the opinions do not change, in contrast with the other ‘classic’ opinion formation models, where the 
opinions are constantly changing.

Figure 4.   Average predicted transition tables from wave 5 to 6 (left), and 6 to 7 (right) for the six considered 
models. Each table entry contains the average of the corresponding values in the 75 computed transition tables, 
obtained for different population sizes, graph topologies, and initial opinion assignments. The variability of these 
values, in terms of the difference between the maximum and minimum value across all 75 tables, is denoted by 
the shade of blue. A cell with light blue color  represents half the maximum difference for that model, and 
a cell with dark blue color  represents the maximum difference for the model. The value of the difference 
represented by these shades of blue is reported to the right. A white cell means that all values are identical for all 
75 tables.
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Discussion
Several opinion formation models have been proposed in the literature, often based on well-studied socio-
logical and psychological principles, such as social conformity theory47,48, credibility49, biases50–52, trust53,54, 
strong and weak ties55,56, moral foundations57, expertise58, stimulus-response theory59, stimulus-object-response 
theory60, ‘back-fire’ effect61,62 and ‘boomerang’ effect63, among many others. Significant effort has been devoted 
to analysing opinion formation models, but their predictions are rarely compared with real data. A notable 
exception is the Friedkin-Johnsen model, which has been validated on numerous experiments with small and 
medium-size groups6,7,22,64,65. However, comparing the model results with large scale data is a challenging task for 
several reasons, including the difficulty in collecting large amounts of reliable opinion distributions at subsequent 
time instants and in gathering information about the topology of the corresponding interaction network7, as 
well as the lack of systematic approaches for a high-level comparison between qualitative model outcomes and 
real data. Despite the difficulties, comparison with real data is crucial to assess the usefulness of a model and to 
identify possible directions for improving it.

We have proposed a qualitative framework to assess opinion formation models by systematically comparing 
their predictions with large-scale data sets taken from real-life surveys. First, we have introduced a qualitative 
classification of opinion distributions into five categories that account for increasing heterogeneity: perfect con-
sensus, consensus, polarization, clustering and dissensus. Then, we have constructed transition tables to capture 
how an initial opinion distribution, belonging to a given category, can evolve over time into a final opinion 
distribution belonging to a possibly different category. The accuracy of an opinion formation model can be 
evaluated by comparing the real transition table, which displays the evolution between survey data taken in two 
subsequent occasions, with the predicted transition table, which displays the prediction generated by the model 
starting from initial survey data.

Our analysis of real opinion data from the World Values Survey27–29, shown in Fig. 3, provides insight into 
the evolution of real-life opinions, and in particular reveals that: 

1.	 In real life, all possible transitions can occur.
2.	 The fraction of opinion distributions of each qualitative category appears to remain almost constant in each 

wave.
3.	 About half of the opinion distributions remain of the same category in subsequent waves.

Therefore, a fully realistic opinion formation model should be able to produce, with suitably chosen parameters, 
opinion distributions that recreate these three features. In particular, it should produce opinion distributions 
belonging to all the identified qualitative categories, starting not only from random initial conditions, but also 
from initial opinion distributions of each qualitative category.

Comparing real and predicted transition tables helps cast light onto the discrepancy between the evolution 
of real opinions and the predicted evolution generated by opinion formation models, thus identifying aspects of 
real-life opinion evolution that opinion formation models are not yet able to capture well, and suggesting direc-
tions to design improved and more realistic models. In particular, while the real transition tables are almost full 
matrices (Fig. 3), the predicted transition tables are typically sparse (Fig. 4): the models are inherently unable 
to yield some of the transitions observed in real data. Among the considered models, the Bounded Confidence 
model with intermediate confidence radius and the recently proposed Weighted-Median and Quantum Game 
models appear to be the most flexible, able to generate the richest variety of transitions and behaviors. However, 
there is still room for improvement.

The comparison between real and predicted transition tables highlights that improved opinion formation 
models should include flexible mechanisms able to both leave the opinion distribution category unchanged and 
produce any of the other distribution categories, under appropriate circumstances. We summarize some key 
observations, pointing at directions to improve existing models so as to match opinion transitions observed in 
real life. 

1.	 Most models exhibit a strong agreement bias, resulting in an unrealistic tendency towards (perfect) consen-
sus. This tendency could be mitigated by considering, e.g., the Friedkin-Johnsen model66, which takes into 
account not only individual self-confidences, but also individual susceptibilities to social influence; these 
additional parameters are however extremely challenging to estimate, especially in large-scale interaction 
networks.

2.	 There is no direct mechanism to produce dissensus, clustering or polarization starting from (perfect) con-
sensus; however, these transitions do happen in real life. At the expense of the simplicity of the model, sto-
chastic and random effects could be introduced through a noise component, representing the individuals’ 
free will and the unpredictability of their decisions7. The heterogeneity of the opinion distribution can also 
be increased by the presence of signed weights.

3.	 Most often, in the models the opinions change fast and significantly, typically converging towards an equi-
librium state, whereas in real data there are plenty of examples of opinion distributions that remain almost 
constant and continue to change very slowly. This suggests that, as recently observed67, most of the actual 
social dynamics lead to transient, non-equilibrium phenomena: ad-hoc models should be developed to cap-
ture this effect. In this context, understanding the timescale of phenomena influencing opinion formation 
is crucial to map the time of model simulation to the time of real-world opinion evolution, a still unresolved 
challenge67.

4.	 Random initial opinion distributions are typically used when analyzing, or numerically simulating, opin-
ion formation models. However, as shown in survey results27–29, this is not realistic: opinions tend to have 



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13441  | https://doi.org/10.1038/s41598-022-17348-z

www.nature.com/scientificreports/

characteristic qualitative distributions, which should be taken into account when evaluating opinion forma-
tion models. The critical role of initial conditions in opinion formation models has been pointed out as a 
long-overlooked problem67: different initial conditions can lead to grossly different final states and it is then 
fundamental to assign the initial opinion distribution appropriately, which remains an open challenge, in 
particular when large-scale interaction networks are considered.

We hope that the systematic evaluation tool we have provided, which can be used by researchers to gain insight 
into the features of real-life opinion evolution and to analyze existing or future opinion formation models, 
assessing their ability to reproduce real-life opinion data taken from any existing or future suitable dataset, 
can support the development of increasingly realistic opinion formation models. Other possible datasets that 
could be successfully used within the proposed framework are, for instance, the European Values Study68 and 
the Eurobarometer69.

Methods
Graphs and opinions.  A directed graph (digraph) G with N vertices can be represented by a set of vertices 
V = {1, . . . ,N} and a set of weighted edges E ⊆ {(i, j) : i, j ∈ V } , where each edge (i, j) from vertex j to vertex i 
is associated with a real number (weight) wij . In the context of opinion dynamics, the vertices correspond to indi-
viduals, each associated with a time-varying opinion (individual i has opinion xi ) and wij represents the influence 
that individual j exerts over individual i. In all the models we consider, the influence is positive (or zero, when no 
edge connects the two individuals) and all the influences exerted over an individual add up to a maximum value 
normalized to 1. Also, each individual is assumed to have self-confidence wii > 0 , for all i ∈ V , which represents 
the persistence of belief in its own opinion. For our simulations, we generated strongly connected digraphs with 
small-world properties through the Watts-Strogatz algorithm70. For the French-DeGroot and Weighted-Median 
models the weights wij were randomly generated.

Opinion formation models.  All the opinion formation models we consider evolve in discrete time, with 
opinions belonging to the set [−1, 1] . They are agent based models, in which every individual or agent has a per-
sonal opinion. The opinion of agent i at time k is denoted as xi(k) . Here we summarize the opinion update rules 
for the considered models: French-DeGroot, Weighted-Median, Bounded Confidence, and Quantum Game. 
These models were chosen because they are directly comparable, while for instance the Altafini model20,71 would 
require a signed graph, and the Friedkin-Johnsen model66 would require additional susceptibility coefficients. 
Also, the French-DeGroot and Bounded Confidence models are well known “benchmark” models that have 
been used as a basis for several extensions and refinements72,73.

The decision to evolve the models over small-world networks is backed up by a significant body of 
literature74–76 and is based on the fact that the two main features of small-world networks (high clustering coef-
ficient and low average path distance) are typically observed in real-life interactions.

French‑DeGroot model2,12,13.  At every time step, the opinions of each individual are updated according to the 
rule:

Weighted‑Median model32.  At every time step, only the opinion of a single individual is updated. This indi-
vidual is chosen randomly and moves to the opinion of another individual selected as follows:

where x∗ ∈ {x1(t), . . . , xN (t)} is the opinion satisfying

If more than one opinion satisfies these inequalities, then x∗ is taken as the opinion closest to xi(t).

Bounded confidence model9.  This model is similar to the French-DeGroot model; however, at every time step, 
agent i is influenced by agent j if and only if |xi − xj| ≤ r , where r is the confidence radius. Mathematically the 
model evolves according the the following equation:

where Ni = {j ∈ V : |xi(t)− xj(t)| ≤ r} . We consider three versions of the Bounded Confidence model, each 
with a different confidence radius: r = 0.1 , r = 0.3 and r = 0.7.

Quantum game model36.  In this model, at each time step, two randomly chosen agents interact pairwise. At 
each interaction, the agents have three options: Keep (keep their opinion), Change (take the other agent opin-

xi(t + 1) =
∑

j∈V
wijxj(t), ∀i ∈ V .

xi(t + 1) = x∗,

∑

j:xj(t)<x∗
wij ≤

1

2
, and

∑

j:xj(t)>x∗
wij ≤

1

2
.

xi(t + 1) = |Ni|−1
∑

j∈Ni

xj(t), ∀i ∈ V ,
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ion), and Agree (take an intermediate opinion). The action each agent decides to take depends on the pay-
off. In this quantum model the payoff matrices depend on parameters a, b, c and the initial entangled state 
|ψin� . For the simulations shown in the paper the values of the parameters were a = 1 , b = 3 , c = 1 , and 
|ψin� =

√
1/2|00� + (1/2)|11� + (1/2)|22� , as in one of the examples in the original paper36, so that the opinion 

formation law reduces to:

•	 If d ≤ 0.25 , then the unique Nash Equilibrium is to Agree, hence the new opinion of both agents is the mean 
of their previous opinion.

•	 If d > 0.25 , then the Nash Equilibrium with greatest payoff is to Keep, hence the new opinion of both agents 
is the same as their previous opinion;

where d is the opinion distance between agents. For more details, the reader is referred to the original work 
proposing the model36.

Data Availability
The raw data used in this paper is freely available in the World Value Survey database27–29. The datasets generated 
from the raw data, from which the paper conclusions are drawn are available at https://​giuli​agior​dano.​dii.​unitn.​
it/​docs/​papers/​Frame​work_​to_​Analy​ze_​Opini​on_​Forma​tion_​Models-​Code.​zip.

Code availability
Simulation experiments, visualisation, and analysis were performed in MATLAB. The code necessary to perform 
the simulations that produce the results shown in the paper is available at https://​giuli​agior​dano.​dii.​unitn.​it/​
docs/​papers/​Frame​work_​to_​Analy​ze_​Opini​on_​Forma​tion_​Models-​Code.​zip, together with the supplementary 
material that explains the code usage.
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