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Abstract: Studying tissue-independent components of cancer and defining pan-cancer subtypes
could be addressed using tissue-specific molecular signatures if classification errors are controlled.
Since PAM50 is a well-known, United States Food and Drug Administration (FDA)-approved and
commercially available breast cancer signature, we applied it with uncertainty assessment to classify
tumor samples from over 33 cancer types, discarded unassigned samples, and studied the emerging
tumor-agnostic molecular patterns. The percentage of unassigned samples ranged between 55.5%
and 86.9% in non-breast tissues, and gene set analysis suggested that the remaining samples could
be grouped into two classes (named C1 and C2) regardless of the tissue. The C2 class was more
dedifferentiated, more proliferative, with higher centrosome amplification, and potentially more
TP53 and RB1 mutations. We identified 28 gene sets and 95 genes mainly associated with cell-cycle
progression, cell-cycle checkpoints, and DNA damage that were consistently exacerbated in the
C2 class. In some cancer types, the C1/C2 classification was associated with survival and drug
sensitivity, and modulated the prognostic meaning of the immune infiltrate. Our results suggest
that PAM50 could be repurposed for a pan-cancer context when paired with uncertainty assessment,
resulting in two classes with molecular, biological, and clinical implications.

Keywords: tumor-agnostic classification; PAM50; uncertainty assessment; gene expression; cell-cycle

1. Introduction

Molecular classification of cancer has been a central topic for decades, because it gen-
erates grounds for biological research and is directly linked to the development of specific
therapies for distinct subtypes—a key element of precision medicine [1]. Cancer stratifi-
cation has traditionally been structured in a tissue-based manner; however, pan-cancer
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approaches that define subtypes irrespective of their tissue of origin can improve our under-
standing of the central biological features driving cancer [2], and may enable the extension
of known therapeutic approaches from one cancer type to others. For example, tumor-
agnostic biomarkers such as micro-satellite instability, oncogenes like NTRK1, NTRK2, and
NTRK3, and the recently United States Food and Drug Administration (FDA)-approved
tumor mutation burden, are used for tumor-agnostic patient stratification and therapeutic
decisions. Cancer molecular classification is one of the main goals of The Cancer Genome
Atlas (TCGA) project [3], which offers thousands of tumor samples from multiple cancer
types that enable exploring shared molecular patterns and stratification criteria. In line
with the TCGA goals, it becomes crucial to study whether molecular profiles can effectively
categorize samples regardless of the tissue of origin, to determine if molecular subtypes can
be delineated to disentangle tissue-specific from tissue-independent components of disease,
and also to evaluate if there are predictive expression-based signatures for genomic events
that transcend tissues. Facing such inquiries may help in the design of new strategies—or
in the repurposing of existing ones—to stratify and treat patients.

In the search for molecular classification criteria able to subdivide any cancer type
into relevant subtypes, FDA-approved molecular signatures initially developed for a
particular tissue, like PAM50 [4,5], may serve as a starting point and speed up the process
of obtaining a kit useable in the clinic. PAM50 is a well-known molecular signature that
classifies breast cancer samples into luminal A (LumA), luminal B (LumB), basal-like (Basal)
and Her2-enriched (Her2e) subtypes. Interestingly, this breast cancer classification has
shown parallelisms with the molecular landscape observed in bladder, pancreatic, lung,
and ovarian cancer [6–11]. Moreover, PAM50 has been used to classify diverse carcinomas
into Basal, LumA, and LumB subtypes, revealing a luminal/basal contrast with biological
and potential translational relevance [12]. All those findings suggest that tissue-specific
molecular signatures may be useful to reveal tissue-independent components of cancer
development and progression, and that PAM50 is a particularly interesting candidate.

Despite those results, there are several shortcomings in the previous uses of PAM50.
First, it was applied without uncertainty assessment even though it may misclassify around
30% of breast cancer samples [13], which could result in biased or spurious results. Second,
Her2e subtype was dismissed even though ERBB2 has been reported as a factor with
therapeutic implications in ovarian, gastric, and esophageal cancer [14]. Moreover, Her2e
has a distinctive profile independent of ERBB2 amplification [15], suggesting its relevance
even in cancers lacking ERBB2 enrichment. Last, PAM50 has only been applied to epithelial
tissues assuming that it reflects their natural luminal/basal epithelial organization [16];
however, its relevance to non-epithelial tumors has not been explored.

We aimed to evaluate if tissue-specific molecular signatures can be applied in a pan-
cancer context and reveal broad molecular patterns with biological and clinical relevance
that transcend tissues. Specifically, we used the PAM50 signature with an uncertainty
assessment method to build a tumor-agnostic classification criterion that was associated
with well-known cancer processes, prognosis, and drug sensitivity, and modulated the
prognostic ability of the immune infiltrate.

2. Methods
2.1. Study Design

First, primary tumor samples of 33 different cancer types (including non-epithelial
tissues) from TCGA were confidently classified into the LumA, LumB, Her2e, and Basal
subtypes. Second, gene set analysis was used to study the pan-cancer differences between
those subtypes. The results prompted us to propose a new classification based on PAM50
and permutation-based confidence for molecular classification (PBCMC) [13,17]. Third, the
proposed classification was validated on 1449 tumor samples of six cancer types from Gene
Expression Omnibus (GEO) [18,19] and on 1018 cell line profiles from the Genomics of
Drug Sensitivity in Cancer project (GDSC) [20]. Finally, and serving as further validation,
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the proposed classification was characterized in all databases in terms of pathways, gene
expression, survival, drug sensitivity, and interaction with the immune infiltrate.

2.2. Data Acquisition and Pre-Processing

TCGA data were downloaded with TCGA assembler [21], and raw counts and tran-
scripts per million (TPM) were obtained for expression data. Normalization factors for
raw counts data were calculated by trimmed mean of M-values (TMM) with EdgeR pack-
age [22]. Raw counts expression data were transformed to log2(counts per million + 0.5)
(CPM) when required, as specified in the following sections. Cancer types were abbre-
viated according to TCGA study abbreviations (Table S1). GEO data were downloaded
with GEOquery package [23], features without entrez identifier were removed, repeated
entrezids were averaged, and quantile normalization was applied. GDSC expression data
were downloaded as Robust Multi-array Average (RMA) normalized expression data for
cell lines. Annotation provided as symbol was converted to entrezid with the org.Hs.eg.db
package [24], features without valid entrezid were removed, and duplicated entrezids were
averaged. GDSC cell lines were split into cohorts according to TCGA cancer type classifica-
tion (Table S2). Cell lines without available classification and cohorts with less than 4 cell
lines were removed. Drug screening data was obtained from GDSC1 and GDSC2 datasets.

2.3. Sample Classification and Immune Infiltrate Estimation

The normalized and transformed CPM data was used for classification purposes. The
PAM50 algorithm and uncertainty assessment analysis was performed with the PBCMC
R package [17] using the standard settings, and samples with low classification certainty
(hereafter “unassigned samples”) were removed from further analyses to prevent spurious
or biased results. TPM data were used to estimate the immune infiltrate using MIXTURE
algorithm [25] with LM22 signature [26].

2.4. Gene Set Enrichment and Differential Gene Expression

Two kinds of gene set analysis were performed: Gene Set Variation Analysis (GSVA) [27]
and the Massive and Integrative Gene Set Analysis (MIGSA) [28]. GSVA calculates an
enrichment score for each gene set in each sample, resulting in data that can be explored
with dimensional reduction analysis like t-distributed Stochastic Neighbor Embedding
(t-SNE) [29]. MIGSA combines over-representation and functional scoring gene set analysis,
resulting in a p-value for each gene set, for each comparison (basal against Her2e, basal
against luminal A, basal against luminal B, etc.), in each cohort. The use of MIGSA was
restricted to cohorts with at least eight samples per subtype in each comparison, following
the author´s suggestion. For both methods, a total of 1195 gene sets with lengths between
15 and 500 genes from MSigDB [30] were tested (50 for KEGG [31], 188 for Oncogenic
pathways [30] and 957 for Reactome [32]). Expression data were filtered to discard genes
that had less than 1 CPM in more than half of the samples within each cohort. For TCGA,
raw count data (not counts per million) were used for MIGSA and GSVA algorithms. The
simple enrichment analysis (SEA) parameters of MIGSA were adjusted for each cohort to
achieve a percentage of differentially expressed genes of approximately five percent. The
gene set p-values obtained with MIGSA were adjusted with Benjamini andand Hochberg
correction within each cohort. The differential gene expression analysis was performed
with limma package [33] with log fold change = 0, using voom function for RNA-seq count
data with TMM normalization factors, and adjusting the resulting p-values with Benjamini
andand Hochberg method.

2.5. Signatures

Gene signatures were used with entrez gene identifiers when available, else entrezids
were obtained from gene symbols using org.Hs.eg.db package. Genes without a valid
entrezid were discarded. Signature scores were calculated according to Equation (2),
except for the CA20 signature scores which were calculated using Equation (3). Wilcoxon
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signed-rank test was used to test the significance of the differences between classes, using
Benjamini and Hochberg correction for multiple testing within each database. Tumor-
normal differences were studied on TCGA participants with tumor and normal paired
samples, calculating for each participant and signature a difference according to Equation
(1). Tumor-normal differences between classes were tested with Wilcoxon signed-rank test,
and Benjamini and Hochberg correction was performed within each database.

2.6. Equations

To quantify the difference between tumor and normal samples, a general equation
was used in all instances:

D(T, N)p = Vpt − Vpn (1)

where D(T, N)p is the difference between the tumor and the normal samples, and Vpt
and Vpn are the signature values (Vs) of participant “p” for the tumor “t” and normal “n”
samples, respectively.

The signature value (except for the CA20 signature) for each sample was calculated as
the average of the normalized GSVA scores or normalized gene expression:

Vs =
∑k

i=1 esi

k
(2)

where V(s) is the signature value for sample “s”, esi is the z-score (normalized) value of
the “i-th” GSVA gene set score or expression of the “i-th” gene for sample “s”, and “k”
represents the number of genes or gene sets in the signature.

The CA20 signature value for each sample was calculated as the sum of the expression
of the signature genes, centered by the median expression of the cohort and scaled by the
standard deviation of the cohort:

Vs =
∑k

i=1 esg − m
σ

(3)

where V(s) is the signature value for sample “s”, eg is the expression of gene “g” from the
signature in sample “s”, “m” is the median expression of all the genes in the cohort, “σ”
is the standard deviation of the expression of all the genes in the cohort, and “k” is the
number of genes in the signature.

2.7. Survival Analysis

Cox proportional hazards models were used. Considering that most randomly
generated molecular signatures are associated with survival in breast and other cancer
types [34,35], the performance of a classification needs to be compared to the performance
of classifications based on randomly selected genes. To generate classifications based on
random selection of genes, first, a set of 50 genes was randomly selected from the whole
pool of genes; second, a principal component analysis was performed using the genes
z-scores, and the samples were divided into two categories using as cut point the median
of the first principal component; and third, a random subset of samples was selected so
that the final number of samples matches the number of samples in the binary classification
under study. That process was repeated 5000 times for each cohort, and we use the term
“V-score” to refer to the proportion of those repetitions that showed a more prominent
hazard ratio and smaller p-value than the ones observed with the classification under study.

2.8. Drug Analysis

A simple lineal model was adjusted for each drug in each cancer type to model the
ln(IC50) as a function of class (C1/C2). Within each cancer type, p-values were adjusted
with Benjamini and Hochberg correction. Shapiro–Wilk’s and Levene’s tests were used
in each model to check the model assumptions. Model p-values were adjusted within
each cohort using Benjamini and Hochberg method. Only drugs with adjusted model
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p-value < 0.01, Shapiro–Wilk’s p-value > 0.05, and Levenne’s test > 0.05 were considered
significantly different between classes.

3. Results
3.1. Two Molecular Classes Emerge in All Tissues

PAM50 combined with PBCMC was used on TCGA cohorts, discarding unclassified
samples in order to work only with good representatives of the subtypes (i.e., confidently
classified samples). The proportion of unclassified samples was 26% for breast cancer in
accordance to previous studies [13], and between 55.5% to 86.9% (median 71%) for the
remaining cancer types (Table S3). Such high proportions of unclassified samples suggest
that using a tissue-specific molecular signature in other tissues needs an uncertainty
assessment method in order to prevent spurious results. Interestingly, gynecological cancer
types (CESC, UCEC, OV, and UCS) that have been clustered with BRCA based on a pan-
cancer multi-omic approach [36] had high percentages of unclassified samples (86.9%,
68.9%, 75.5%, and 86%, respectively), demonstrating that the proportion of unclassified
samples is not necessarily associated with molecular similarity.

We then compared the four PAM50 subtypes (LumA, LumB, Her2e and Basal) to one
another using the MIGSA and GSVA methods to search for pathways that transcend tissues.
We chose the gene set analysis approach instead of differential gene expression because
this approach can account for the genetic heterogeneity between cohorts, providing more
concordant results in this pan-cancer scenario [28,37,38]. The GSVA results in TCGA data
suggest that PAM50 subtypes can be grouped into two major classes (Figure 1a), where
LumA samples can be distinguished from the rest of the subtypes, while LumB, Her2e,
and Basal tend to overlap with each other. These two classes can also be observed in
non-epithelial cancer types, proving that PAM50 classification does not necessarily reflect
the luminal/basal organization of epithelial tissues as reported in another study [16]. The
same two classes emerged from MIGSA results (Figure 1b), because a group of gene sets
consistently differentiates LumA from any of the other subtypes irrespective of the cohort,
and no group of gene sets differentiates LumB, Her2e, or Basal from each other consistently
across cohorts.

Therefore, in TCGA data, both GSVA and MIGSA suggest that the samples classified
with PAM50 and uncertainty assessment fall into two major classes: C1 comprising LumA
samples, and C2 comprising LumB, Her2e, and Basal samples. The consistency of the
results across tumor types encouraged us to propose a classification strategy based on
PAM50 and uncertainty assessment: first apply PAM50 with an uncertainty assessment
algorithm (PBCMC) discarding samples with low classification certainty, then LumA
samples constitute the C1 class, and LumB, Her2e, and Basal constitute the C2 class.

This classification proposal obtained on TCGA cohorts was then validated on GEO
and GDSC datasets. The selected cancer types from GEO were bladder (GSE48075 [6]),
colon (GSE39582 [39]), and gastric cancer (GSE66229 [40]) as epithelial types; and follicular
lymphoma (GSE127462 [41]), glioblastoma multiforme (GSE122586 [42]), and uterine sar-
coma (GSE119041 [43]) as non-epithelial types. We did not use MIGSA at this stage due to
the limited number of samples (less than 8 in each subtype). The GSVA enrichment scores
for individual samples were calculated and analyzed with t-SNE dimensional reduction,
and the results resembled the TCGA results (Figure 1a): LumA samples seem to constitute
one group, while the union of LumB, Her2e, and Basal samples seem to represent another
group (Figure 2). This was observed even in non-epithelial cancer types, confirming that
the two proposed classes (rather than the four PAM50 subtypes) seem to be identifiable in
a pan-cancer context. The proposed classification for all the samples and cell lines included
in this study can be found in Table S4.
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Figure 1. PAM50 classification across The Cancer Genome Atlas (TCGA) cohorts. (a) T-distributed Stochastic Neighbor
Embedding t-SNE projection of Gene Set Variation Analysis (GSVA) individual sample scores. Scores were normalized
within each cohort. (b) Massive and Integrative Gene Set Analysis (MIGSA) results comparing PAM50 subtypes to one
another. Each column contains the cohort results indicated in the bottom row and the pair of subtypes indicated with colors
at the top. Each row corresponds to a particular gene set. Enriched gene sets are those with p-adjusted < 0.05.

Figure 2. PAM50 classification across Gene Expression Omnibus (GEO) and Genomics of Drug Sensitivity in Cancer (GDSC).
GSVA individual sample scores were standardized within each cohort and displayed using a t-SNE projection.
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3.2. Cell-Cycle Checkpoints and Progression Pathways Drive the Differences between C1 and
C2 Classes

To validate the proposed classes, they were studied at the gene set level using MIGSA
to compare C1 with C2 in 27 cohorts from TCGA and 6 from GEO (only cohorts with at
least 8 samples in each class were used). Out of the 1195 gene sets analyzed, 126 were
differentially enriched between C1 and C2 in more than half of the studied cohorts, with
28 gene sets differentially enriched in at least 30 out of the 33 cohorts (Table S5). Therefore,
these 28 gene sets represent key functional differences between C1 and C2 in most cancer
types. Since not all cohorts could be studied with MIGSA, GSVA was used on all cohorts to
explore enrichment patterns. The GSVA enrichment scores of the 28 selected gene sets were
consistently higher in C2 than in C1 across all cohorts (Figure 3), evidencing the existence
of these two classes in all cancer types. Most of those 28 gene sets are associated with cell-
cycle checkpoints and progression. For example, the gene sets G2/M checkpoint, activation
of ATR in response to replication stress, and mitotic spindle checkpoint indicate alterations in
pathways associated with cell-cycle-arrest in response to DNA damage, which are central
alterations in cancer [44]. Other gene sets, like resolution of sister chromatid cohesion, E2F
targets, polo-like kinase mediated events, and mitotic G1 phase and G1/S transition indicate
alterations in pathways related to cell-cycle progression.

Figure 3. Gene set analysis of C1 and C2 classes across cohorts. The heatmaps show the standardized
GSVA enrichment score of each sample (in columns) for each of the 28 selected gene sets (in rows), in
cohorts from TCGA, GEO, and GDSC.

Cell-cycle checkpoints and cell-cycle progression pathways are closely associated
with proliferation, and together they represent some of the most fundamental differences
between normal cells and cancer cells [45,46]. Since these features differentiate C1 from
C2, we wondered which class presents a molecular profile more similar to normal cells.
To address this question, we used TCGA participants with paired tumor and normal
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tissue samples, restricting the analysis to cohorts with at least two samples in each class—
resulting in 10 cohorts. For each participant, the difference between the tumor and normal
sample was calculated (methods: Equation (1)), where the value for each sample was the
average of the 28 normalized GSVA scores of the selected gene sets (methods: Equation (2)).
In all analyzed cohorts, the tumor-normal difference in the C1 class was smaller than in
the C2 class (Figure 4a) and was significant in five cohorts (Wilcoxon signed rank test
with Benjamini and Hochberg correction for multiple comparisons, p < 0.05). Therefore,
compared to normal tissue, the C2 class presented a greater difference between normal and
tumor samples in terms of cell-cycle checkpoints, cell-cycle progression, and response to
DNA damage pathways, which suggests a more aggressive and proliferative profile [47].

Figure 4. Tumor-normal differences in TCGA participants. Each dot represents the difference between a tumor sample
and its paired normal tissue sample, according to the average GSVA enrichment score of the 28 selected gene sets (a), the
average expression of the 95 core genes (b), or the scores for the proliferation, CA20, TP53, and RB signatures (c–f). The
p-values were obtained with the Wilcoxon signed rank-test.

3.3. A Tumor-Agnostic Set of Genes Differentiate C1 from C2 Classes

To characterize the C1 and C2 classes at the gene expression level, we performed a
differential gene expression analysis on each cohort to compare these classes. In order to
be consistent with the pathway analysis, only cohorts with at least eight samples in each
class were used, resulting in 33 cohorts (27 from TCGA and 6 from GEO). The number
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of genes present in all TCGA, GEO, and GDSC databases was 8364, 1273 of which were
differentially expressed in at least half of the analyzed cohorts (Table S6), and 95 were
significantly more expressed in C2 than C1 in 30 out of the 33 cohorts (Table S6, Figure 5).
Among these 95 genes, only 14 are used by the PAM50 signature, which are among the
21 genes described by Parker as separating luminal A from the other subtypes in breast
cancer [4]. The differences observed in the 33 analyzed cohorts could also be observed in
the remaining TCGA and GDSC cohorts (Figure 5), showing that these 95 genes represent
the core differences between C1 and C2 classes in most cancer types, and, in line with the
gene set results, they are mostly enriching retinoblastoma, cell-cycle, DNA replication, and
DNA damage response pathways (Table S7).

Figure 5. Expression of the 95 core genes in C1 and C2 classes across cohorts. Genes are arranged in
rows and samples in columns. Expression values are standardized within each cohort.

The differences between tumor and normal samples in terms of the 95 core genes
were studied similarly to what was explained in the gene set analysis section (methods:
Equations (1) and (2)). Analogously to the pathway results, the molecular profile of
the C1 class was more similar to normal samples, while the C2 class presented a higher
expression of the 95 core genes (Figure 4b).

3.4. The C1/C2 Classification Is Associated with Proliferation, Centrosome Amplification, TP53,
and Retinoblastoma Pathways

Gene set and gene expression analyses revealed that the main differences between C1
and C2 are associated with cell-cycle progression, cell-cycle checkpoints, and DNA damage
response. To further validate and characterize the proposed classification, we studied
some well-known biological processes for which we could find previously published
molecular signatures.
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The differences between C1 and C2 observed so far were closely associated with
proliferation, which is probably the most fundamental trait of cancer [46] and an important
contributor to treatment response [48]. Therefore, we studied proliferation using an in-vitro
derived signature with 110 genes with prognostic power and potential predictive value
in breast, renal, and lung cancer [49]. Another significant difference between the C1 and
C2 classes is spindle checkpoint pathways, associated with centrosome amplification [50].
This feature can be found in pre-neoplasias and tumors from multiple cancer types, and
multiple compounds targeting centrosomal proteins have shown promising results [51].
Therefore, we studied centrosome amplification using a 20 genes signature (CA20) [52] that
is associated with unfavorable prognosis in multiple TCGA cohorts [53]. The last major
difference between C1 and C2 is associated with response to DNA damage and apoptosis
pathways. One iconic protein associated with these processes is the retinoblastoma protein,
encoded by the RB1 gene; therefore, we explored this pathway using a pan-cancer signature
(RB) with 182 genes that has been derived from in-vitro experiments and validated in
multiple cancer types from METABRIC and TCGA [54]. This signature is associated with
heterozygous loss and deletion of RB1, loss of CDKN2A, amplification of CCND1, and
amplification of CDK4, and is prognostic in ACC, LGG, KIRK, and SARC. Another iconic
protein associated with DNA damage response and apoptosis is p53, encoded by TP53;
therefore, we studied the TP53 pathway using a downstream transcriptomic signature
(TP53) consisting of four genes (CDC20, CENPA, KIF2C, and PLK1). This TP53 signature is
consistently up-regulated in TP53-mutated cancers and positively associated with increased
chromosomal instability [55].

For each of those signatures, a sample-based score was calculated in cohorts with at
least two samples in each class (C1 and C2), which accounts for a total of 56 cohorts: 32
from TCGA, 6 from GEO, and 18 from GDSC. The signature scores were calculated as
the average of the normalized expression of the signature genes (methods: Equation (2)),
except for the CA20 signature (methods: Equation (3)). To study the difference between
normal and tumor samples, we used the same approach explained during gene set and
gene expression analysis (Methods: Equation (1)).

In all cases, the scores were higher in C2 than in C1, with significant results (Wilcoxon
signed rank test with Benjamini and Hochberg correction for multiple comparisons,
p < 0.05) in 30 of the 32 TCGA cohorts (Figure 6), all 6 of the GEO (Figure 7) cohorts,
and at least 10 of the 18 GDSC cohorts (Figure 7). Additionally, and in line with pathway
and gene expression analysis, the C1 class was more similar to normal tissue (Figure 4c–f).
These results indicate that the C2 class is the more proliferative one, with increased chro-
mosomal instability, potentially higher rate of TP53 and RB1 alterations, worse prognosis,
and more different to normal tissue.

3.5. The C1/C2 Classification Is Associated with Tumor Differentiation and Embryonic Stem
Cell-Likeness

Bearing in mind that the C1 class is comprised entirely of luminal A tumors—which
are usually more differentiated than basal tumors in breast cancer [56]—and considering
that tumors with higher rates of proliferation, chromosomal instability, and mutations are
usually poorly differentiated [57], we suspected that the C2 class may be more dediffer-
entiated. To assess this, we studied nine genes (ZIC1, TCF7L1, KLF5, MYBL2, NFE2L3,
TEAD4, ILF3, HMGA1, and HMGB3), commonly found in embryonic stem cells, that
have been found to be overexpressed in poorly differentiated breast, bladder, and glioblas-
toma tumors [58]. As explained in previous sections, a signature score was calculated
for each sample in cohorts with at least two samples in each class (C1 and C2) (methods:
Equation (2)). As observed with the other signatures, the score was higher in the C2 class in
all cohorts, reaching statistical significance (Wilcoxon signed rank test with Benjamini and
Hochberg correction for multiple comparisons, p < 0.05) in 27/32 of the TCGA cohorts, 6/6
of the GEO cohorts, and 6/18 of the GDSC cohorts (Figure 8). These results suggest that
the C2 class has a more embryonic stem cell-like transcriptomic profile, which correlates
with poorer differentiation and worse prognosis [58].
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Figure 6. Proliferation, CA20, TP53, and RB signature scores for TCGA samples. The p-values were
obtained with the Wilcoxon signed rank-test.

3.6. The C1/C2 Classification Is Associated with Patients’ Survival

All the observed differences between the C1 and C2 classes suggest that the C2 class
may present a worse prognosis, therefore we explored the prognostic ability of the C1/C2
classification. We only used cohorts with at least 10 death events, and the performance
of the C1/C2 classification was compared to the performance of classifications based on
random sets of genes. The C1/C2 classification was prognostic in 7 of the 17 analyzed
cohorts (univariate Cox regressions, p < 0.05): LGG, LIHC, LUAD, PAAD, MESO, KIRC,
and BRCA, with the C2 class having a decreased survival (Figure 9), which is consistent
with the reports of the proliferation, CA20, TP53, and RB signatures [49,52–55]. The cohorts
where the C1/C2 classification seemed to be more associated with survival were also
the ones with lower scores for proliferation [59], CA20 (Figures 6 and 7), TP53 [55], and
RB [54] signatures. This phenomenon of proliferation being more prognostic in cancer
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types with lower indices of proliferation has been reported before for TCGA data [59].
However, that might be exclusive of this database, because a higher Ki67 score—a very well-
known pan-cancer proliferation marker with prognostic power [60]—is prognostic in more
proliferative cancer types like bladder [61], cervical [62], and ovarian [63] in non-TCGA
databases. Therefore, the C1/C2 classification might be prognostic in more cancer types
than the ones highlighted in our study. For LGG, LIHC, and MESO, the C1/C2 classification
performed better than 98% of the classifications based on random sets of genes, indicating
that this classification has a particularly good prognostic ability in those cohorts. For other
cohorts, like PAAD, even though the C1/C2 classification had a significant prognostic
power, there was a high proportion of random classifications that outperformed it. That
does not invalidate the biological meaning of the classification, but it suggests that, in those
cohorts, there is a very high number of genes associated with survival.

3.7. A Few Transcription Factors Could Cause Most of the Differences between C1 and
C2 Signatures

The analysis performed so far suggests that C1 and C2 present universal gene expres-
sion profiles that describe two general tumor profiles linked to prognosis and well-known
cancer processes. Given the consistency of the results across cohorts and the close relation-
ship between the deregulated pathways, we wondered whether key transcription factors
could be orchestrating the differences between these classes. To explore that, we used
iRegulon [64] to search for the main factors targeting the 95 core genes previously defined.
Nine transcription factors were identified (E2F4, SIN3A, E2F1, TFDP1, MYBL2, NFYB,
FOXM1, NFYA, and E2F2), each targeting at least 53 of the 95 core genes. Of particular
interest are E2F1 and FOXM1, because they control 75 and 57 of the 95 genes and are also
more expressed in C2 than in C1 in 30 and 33 cohorts, respectively. Additionally, together
they target 87 of the 95 core selected genes, suggesting that these two transcription factors
could be largely involved in the molecular differences observed between C1 and C2.

E2F1 and FOXM1 are two well-studied genes involved in cancer. The transcription
factor E2F1 is involved in DNA repair and replication in multiple cancer types [65] and an
“addiction” to this oncogene is often present [66]. The overexpression of E2F1 in cancer
cells can be associated with increased resistance to several chemotherapeutic drugs [67]
and antimetabolite drugs that target enzymes involved in DNA synthesis [66]. This tran-
scription factor is a druggable target that has been evaluated in melanoma [68] and ovarian
cancer [69], as well as in TP53 and RB1 defective tumors [70], and its downregulation has
shown anti-tumor properties in colorectal cancer [71]. Regarding FOXM1, this transcription
factor is a master regulator in cancer [72] that is regulated by E2F1 [70], and its overexpres-
sion is associated with an increased stem-like cell population and invasiveness in breast
cancer [73], which is consistent with the C2 class being more dedifferentiated. This gene
is also associated with resistance to radiation and chemotherapy, therefore inhibiting its
activity could increase the responsiveness of some patients [74], and it has been suggested
as a potential therapeutic target in solid tumors in general [75] and multiple myeloma [76].

3.8. Drug Sensitivity Patterns of C1 and C2 Classes

The differences between C1 and C2 in terms of proliferation and expression of E2F1
and FOXM1 transcription factors suggest that these two classes may respond differently to
therapy; therefore, we explored the association of the C1/C2 classification with drug or
compound sensitivity using two different approaches.
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Figure 7. Proliferation, CA20, TP53, and RB signature scores for GEO and GDSC samples. The
p-values were obtained with the Wilcoxon signed rank-test.

First, an enrichment analysis of the 95 core genes was performed over the drug signa-
ture database DSigDB [77] with Enrichr [78], which resulted in 255 drug sets differentially
enriched (Table S8). Given that the 95 core genes are consistently differentially expressed
between C1 and C2, these 255 drugs may have a different effect on those classes regard-
less of the cancer type. The top 3 enriched drugs were etoposide, monobenzone, and
trifluridine. Etoposide is a chemotherapy agent used in multiple cancer types [79], while
monobenzone combined with imiquimod induces antimelanoma immunity in cutaneous
metastases [80], and trifluridine is used in metastatic colorectal cancers that are refractory
to other therapies [81]. These results suggest potential repurposing of multiple drugs,
showing that a specific subpopulation of some cancer types may be affected by drugs
generally used on other cancer types.
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The second approach was a retrospective analysis of in-vitro assays performed in
a collection of cancer cell lines from the GDSC project. Only cohorts with at least two
cell lines in each class were analyzed, resulting in a total of 78 drugs (ANOVA, nominal
p < 0.01) with different IC50 values in C1 compared to C2 in non-breast cohorts (Figure 10).
The pathways targeted by these drugs are mostly involved in apoptosis regulation, cell-
cycle, chromatin histone acetylation/methylation, DNA replication, ERK MAPK signaling,
genome integrity, IGF1R signaling, PI3K/MTOR signaling, and RTK signaling (Table S9).
Some drugs showed a remarkable difference between classes, like parthenolide in ESCA
and LGG (Figure 10). Parthenolide has shown a wide range of biological activities with
low toxicity and interesting results as a single therapeutic agent and in multimodal thera-
pies [82]. Our study suggests that the C2 class in ESCA and LGG may be more susceptible
to this compound. Beyond the results of individual drugs, the most noteworthy result
was that, in general, one class consistently showed increased resistance to most drugs. For
example, in DLBC, GBM, LAML, LGG, NB, and THCA, the C2 class was overall more
susceptible to all the significant drugs (Figure 10).

Figure 8. Embryonic Stem Cell-likeness signature scores across all databases (TCGA, GEO, and
GDSC). The p-values were obtained with the Wilcoxon signed rank-test.
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Figure 9. Survival forest plot for TCGA cohorts with at least 10 death events. V-score represents the
proportion of random classifications (derived from randomly selected genes) that performed better
(in terms of p-value and hazard ratio) than the C1/C2 classification.

3.9. The Immune Infiltrate Prognostic Value Is Affected by the C1/C2 Classification

Increasing evidence from preclinical and clinical studies suggests that the outcome of
targeted therapeutics against key tumor growth and dissemination factors can be reinforced
using immunotherapy approaches in an effective “chemo-immunotherapy” strategy [83].
In this regard, the tumor immune infiltrate is currently under intense research because
of its growing prognostic and predictive implications. However, the association between
different immune components and survival is not yet fully understood, with numerous
cases of immune cell types with contradictory results or different effects according to the
varying characteristics of the tumor [84]. For example, the prognostic role of FoxP3(+) Tregs
is influenced by tumor site, stage, and molecular subtype [85]. Therefore, there is a need to
study the immune infiltrate in combination with other factors rather than as individual cell
types. To address this issue, we studied whether the prognostic meaning of the immune
infiltrate was affected by the C1/C2 classification.

In 28 cases we found evidence (Cox proportional hazards model and interaction terms
with p < 0.05) that the hazard ratio (between the low and high immune infiltrate groups) in
the C1 class was different than the hazard ratio in the C2 class (Table S10). For example, in
LUSC, biopsies with high CD8 T cells infiltrate showed an improved survival in the C1
class (log-rank test, p = 0.012), but a reduced survival in the C2 class (log-rank test, p = 0.033)
(Figure 11). Despite high CD8 T cells infiltrate usually being associated with increased
survival in multiple cancer types [84], here we identified a subpopulation (C2 class) of
LUSC samples with the opposite trend. This negative association between CD8 T infiltrate
and survival has also been observed in clear cell renal cancer and prostate cancer [84].
Interestingly, even though the C1/C2 classification was not directly associated with survival
in LUSC (Figure 11), this classification improved the prognostic ability of the CD8 T cells
infiltrate in that cohort (analysis of Deviance, p = 0.049). Moreover, the C1/C2 classification
improved the prognostic ability of the immune infiltrate in 55 cases from nine cohorts
(BRCA, ESCA, KIRC, LGG, LIHC, LUAD, LUSC, MESO, and PAAD), where the complete
Cox model (i.e., the model including the C1/C2 classification, the immune infiltrate, and
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their interaction) performed significantly better (analysis of Deviance, p < 0.05) than the
univariate model (i.e., the model with only the immune infiltrate as explanatory variable).
Therefore, our results suggest that cell-cycle markers, which are closely associated with the
C1/C2 classification, can improve the prognostic ability of immune markers. This has been
observed in non-small-cell lung carcinoma, where a classification based on proliferation and
PD-L1 expression was associated with survival in patients treated with immune checkpoint
inhibitors [86]. Overall, the prognostic meaning of cell types tended to differ between
classes (Figure 11), and considering the wide variety of emerging markers of response to
anti-PD-1 therapy—that even encompasses gut microbiome and body mass index [87]—our
results point to cell-cycle progression and checkpoints as interesting factors to study in
combination with other markers.

Figure 10. ln(IC50) by class for different cell lines. Only significant results (ANOVA, p < 0.01) for non-breast cancers
are shown.
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Figure 11. Kaplan-Meier plots for the immune infiltrate (high = hi, low = lo) and C1/C2 class in different TCGA cohorts.
p-values were obtained with the log-rank test of the complete models. The figure only includes cases where the complete
model was significant (Cox regression, log-rank test, p < 0.05), the interaction term (class—immune infiltrate) was significant
(Cox regression, p < 0.05) and the complete model performed better than the univariate model for the immune infiltrate
(analysis of Deviance, p < 0.05).

4. Discussion

Expression-based signatures that can effectively classify tumor samples independently
of their histology may reveal tissue-independent components of cancer that can push
forward our knowledge of the disease and help in the design of new therapies and clinical
trials. In this sense, molecular signatures originally devised and validated for a single
cancer type could provide useful information in a pan-cancer scenario.

This study was focused on the FDA approved breast cancer PAM50 signature paired
with an uncertainty assessment method. We subdivided each cancer type into two classes:
C1 comprising confidently assigned luminal A samples, and C2 comprising confidently
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assigned luminal B, Her2e, and Basal samples. This grouping of PAM50 subtypes emerged
from a pathway analysis performed on 18 TCGA non-breast cancer types, and it was
studied from multiple perspectives in 32 non-breast cohorts from TCGA, 6 cohorts from
GEO, and over 1000 cell line profiles from GDSC. This reduction in the number of groups
(from four subtypes to two classes) suggests that the genes that PAM50 uses to subdivide
the more proliferative tumors into luminal B, Her2-enriched and basal-like (ESR1- and
ERBB2-associated genes) [82] do not serve that same purpose in a pan-cancer context.
However, those genes can still play a role in the algorithm to distinguish the C1 and
C2 classes in at least some cancer types. Another observation is that the PAM50 algorithm
did not perform better (in terms of the proportion of confidently assigned samples) in cancer
types more related to breast cancer (like gynecological cancer types) than in seemingly
unrelated cancer types. This suggests that exploring the relevance of a tissue-specific
molecular signature in foreign tissues does not need to be limited to the tissues that are
known to be similar to the native one.

The molecular differences between the C1 and C2 classes were remarkably consistent
between methods and across cohorts from all different data sources. We identified 28 gene
sets and 95 core genes exacerbated in the C2 class, and two transcription factors (E2F1 and
FOXM1) that are known to affect prognosis and response to therapy in different cancer
types, and might be responsible for most of the differences between the two classes. The
C1/C2 classification was also closely associated with multiple molecular signatures that de-
scribe other well-known cancer processes such as centrosome amplification, retinoblastoma
protein pathway, and differentiation. Therefore, this study shows that a tissue-specific
molecular signature can be used in a pan-cancer context and reveal components of the
disease that have the same biological meaning regardless of the cancer type.

We additionally studied the prognostic relevance of the C1/C2 classification, finding
several cancer types where the C2 class had a significantly shorter survival. Even when not
directly prognostic on its own, the C1/C2 classification modulated the prognostic ability of
the immune infiltrate, revealing that in some cases the infiltrate of a particular cell type can
be either a favorable or unfavorable indicator, depending on the class under study. This
strengthens the growing idea that the immune infiltrate needs to be studied taking into
account other variables and shows pathways and genes that deserve further investigation.

The differences observed between C1 and C2 also had implications in compound
sensitivity. Gene set analysis predicted 255 compounds that could affect C1 and C2 dif-
ferentially, and 70 drugs showed differential activity in GDSC cell lines. The main aim
of performing such drug sensitivity analysis was to find pan-cancer patterns that could
be used as a proxy for cancer therapy selection based on C1 and C2 profiles. While we
could not find any clear sensitivity patterns when considering general mechanism of action
(MoA) of anticancer drugs, we did have some intriguing findings. As expected, most type
of cancers presented clear patterns of pan-resistance to therapies associated to C2 profiles
(i.e., COAD/READ, ESCA, HNSC, KIRC). However, some cancers (i.e., DLBC, LAML)
showed the opposite scenario: an increased sensitivity of C2 cells vs. C1 to several types of
drugs. In addition, such situation was observed for particular drugs in cancers with the
opposite pattern (i.e., parthenolide in ESCA). These findings suggest that these cancers
cells have acquired actionable vulnerabilities to certain anticancer agents that could be
exploited for successful treatment. Moreover, since C1 profiles are more similar to those of
normal tissue, these findings also suggest the acquisition of such vulnerabilities should
allow targeted treatment without major collateral effects on the normal cells of the patient.
Future prospective studies using ex-vivo drug sensitivity screenings with patient-derived
cells subjected to C1/C2 determination should help to validate these findings.

In summary, this study shows the use of a tissue-specific molecular signature as a
tumor-agnostic classification tool with the aid of a proper uncertainty assessment method,
resulting in consistent biological patterns. Our observations, added to the fact that PAM50
is an FDA approved signature for breast cancer, indicate that PAM50 could be repurposed
for other cancer types with potential clinical implications that encompass drug sensitivity
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and immune infiltrate. This opens the door to studying any molecular signature that
proved to be useful in a specific cancer type in other cancer types, which could result in a
better understanding of this disease, more therapeutic options that could be offered, and
improved patient stratification. A shiny app and R code to explore our findings in user-
defined expression data is available at https://github.com/Dario-Rocha/tumor.agnostic.git.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/1/45/s1, Table S1: TCGA study abbreviations, Table S2: GDSC cell lines classification into
TCGA cancer types, Table S3: C1/C2 PAM50 and C1/C2 classification in TCGA data, Table S4:
C1/C2 classification by sample, Table S5: C1 vs. C2 differentially enriched gene sets in TCGA cohorts,
Table S6: frequency of differentially expressed genes, Table S7: Enrichr pathway analysis results
for the 95 core genes, Table S8: Enrichr results for the DSigDB gene sets with the 95 core genes,
Table S9: Drug sensitivity analysis, Table S10: Survival models combining the C1/C2 classification
and immune infiltrate.
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