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Abstract: COVID-19 prediction models mostly consist of combined clinical features, laboratory
parameters, and, less often, chest X-ray (CXR) findings. Our main goal was to propose a prediction
model involving imaging methods, specifically ultrasound. This was a single-center, retrospective
cohort observational study of patients admitted to the University Hospital Split from November
2020 to May 2021. Imaging protocols were based on the assessment of 14 lung zones for both
lung ultrasound (LUS) and computed tomography (CT), correlated to a CXR score assessing 6 lung
zones. Prediction models for the necessity of mechanical ventilation (MV) or a lethal outcome were
developed by combining imaging, biometric, and biochemical parameters. A total of 255 patients
with COVID-19 pneumonia were included in the study. Four independent predictors were added
to the regression model for the necessity of MV: LUS score, day of the illness, leukocyte count, and
cardiovascular disease (χ2 = 29.16, p < 0.001). The model accurately classified 89.9% of cases. For the
lethal outcome, only two independent predictors contributed to the regression model: LUS score and
patient’s age (χ2 = 48.56, p < 0.001, 93.2% correctly classified). The predictive model identified four
key parameters at patient admission which could predict an adverse outcome.

Keywords: lung ultrasound; COVID-19; prognostic; pneumonia; CT; chest X-ray

1. Introduction

Since the end of 2019, the world has battled the growing coronavirus disease 2019
(COVID-19) epidemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), with more than 290 million confirmed cases worldwide [1]. The virus is designated
as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease is coro-
navirus disease 2019 (COVID-19). Although the understanding of COVID-19 is evolving,
there are still major issues concerning the immune response to SARS-CoV-2, COVID-19
diagnosis, management, prevention, and emerging new variants which make it obvious
that SARS-CoV-2 is here to stay and potentially becoming endemic [2,3].

Thoracic imaging, including chest X-ray (CXR) or computed tomography (CT), is
essential in the diagnosis of COVID-19 pneumonia. However, previous studies showed
that CXR was less sensitive in the detection of COVID-19 lung disease compared to CT,
with a reported baseline CXR sensitivity of 69% [4]. The sensitivity of CT is 83–100%,
considering the results of reverse transcription-polymerase chain reaction (RT-PCR) tests as
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the gold standard for diagnosis of COVID-19 [5]. High-resolution CT (HRCT) is the “gold”
standard imaging method to evaluate the severity of lung involvement in COVID-19 pa-
tients. Despite the above, CXR is still extensively being used in the diagnosis of COVID-19
pneumonia due to its wide availability and relative inexpensiveness. COVID-19 pneumonia
changes on CXR are typically ill-defined bilateral alveolar opacities of peripheral distri-
bution. Similarly, the most commonly reported HRCT findings of COVID-19 pneumonia
include airspace opacities (ground-glass and/or consolidation), typically subpleural and
multilobar involvement, sometimes associated with septal thickening [6].

In addition to the aforementioned imaging methods that use ionizing radiation, bed-
side lung ultrasonography (LUS) is a rapid, non-ionizing, repeatable, and reliable ex-
amination technique that is increasingly used by clinicians in the COVID-19 pandemic,
especially for hospitalized and critically ill patients reducing the need for transportation.
Growing evidence shows that LUS sensitivity is close to that of chest CT and is much
higher than that of CXR; its usefulness for the management of patients with COVID-19
pneumonia, from diagnosis to monitoring, follow-up, and even outcome prediction, is also
demonstrated [7–12].

The vast majority of patients with more severe symptoms of the disease have one
or more comorbidities, such as obesity and cardiovascular disease, with high mortality
among elderly patients [13]. Biochemical and hematological laboratory factors such as
lymphopenia, elevated serum ferritin, d-dimer, troponin, C-reactive protein, lactate de-
hydrogenase, and IL-6 are associated with severe disease, poor prognosis, and increased
mortality [14–16].

Identifying risk factors at hospital admission that can predict the clinical course of the
disease would help physicians to provide appropriate and timely therapeutic interventions.
The COVID-19 prediction models developed so far have mostly combined clinical features,
laboratory parameters, and, less often, CXR findings [17–20]. To the best of our knowledge,
none of the proposed combined prediction models involved lung ultrasound, and that was
the main goal of our work.

2. Materials and Methods
2.1. Study Design

This was a single-center, retrospective cohort observational study.

2.2. Inclusion and Exclusion Criteria

The study included a consecutive cohort of patients admitted with the diagnosis of
COVID-19 pneumonia in the University Hospital of Split, Croatia, from November 2020
to May 2021, before the COVID-19 vaccine was widely available. Inclusion criteria were
WHO diagnostic criteria for pneumonia COVID-19, SARS-CoV-2 infection confirmed by
PCR [1], and the existing LUS exam after admission. Exclusion criteria were pulmonary
edema associated with heart failure, severe lung emphysema, chronic interstitial lung
disease, severe hemodynamic instability and inability to change body position, severe chest
deformity, extensive subcutaneous emphysema, any other pulmonary diseases impeding
ultrasound image acquisition (i.e., significant pleural effusion, previous pneumonectomy),
and an inability to undergo LUS examination (Figure 1).

2.3. Outcomes

The study’s primary outcome was the definition of biometric (e.g., age), biochemical
(e.g., spO2, LDH), and radiological predictive factors (LUS, CXR, and CT scores) for the
necessity of mechanical ventilation (MV) in the treatment of pneumonia or a lethal outcome
for the patients.

The secondary outcomes were the comparisons of the reliability and applicability of
the three radiological scores assessed.
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Figure 1. Flowchart of the records included or excluded from the analysis. Legend: CT score—Com-
puterized tomography score; CXR score—chest X-ray score; LUS score—Lung ultrasound score. 
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Figure 1. Flowchart of the records included or excluded from the analysis. Legend: CT score—Computerized
tomography score; CXR score—chest X-ray score; LUS score—Lung ultrasound score.

2.4. Data Extraction

Patient demographics, comorbidities, symptoms, laboratory tests, imaging findings,
treatment modalities, disease severity, and mortality data were extracted from electronic
medical records.

2.5. Acquisition Protocol

Lung ultrasound examinations were performed by a trained sonographer (IS) on
admission to the hospital using ultrasound equipment (Toshiba Nemio XG Istyle, Tokyo,
Japan) with a 1–6 MHz convex transducer. The extent and severity of pulmonary infiltra-
tions were described by a numerically repeatable LUS (Lung Ultrasound Score) coefficient
proposed for COVID-19 pneumonia by Soldati et al. [21]. Fourteen areas (three posterior,
two lateral, and two anterior for each lung) were examined completely intercostally to
cover the widest possible area with a single scan. Changes were scored from 0 to 3. Zero
(0) is a regular finding, the existence of a regular and not thickened pleural line, with a
sliding sign and the presence of A-lines; 1: denotes an irregular pleural line with some B
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lines suggesting some loss of aeration; 2: suggests a severe loss of aeration by a broken
pleural line and small-to-large consolidated areas with associated areas of white below the
consolidated area; 3: is attributed if the scanned area shows large dense consolidations
which signify a complete loss of aeration called “white lung” (Table 1). For each patient,
the stated scores in all 14 zones were added up (ranging from 0 to 42) to obtain the total
LUS score [21]. According to the part of the lung they are positioned in, the 14 areas were
grouped in apical, middle, and basal for further statistical analysis.

Table 1. Grading of LUS score, CT score, and CXR score.

Score/
Grade LUS Score CT Score CXR Score

0
regular finding: the existence of a regular and not

thickened pleural line, with the sliding sign, and the
presence of A-lines

no abnormalities no abnormalities

1 some loss of aeration: irregular pleural line with some
B lines

prevalent ground-glass opacities
(GGOs) interstitial infiltrates

2
severe loss of aeration: broken pleural line;

small-to-large, consolidated areas with associated areas
of white below the consolidated area

GGOs mixed with consolidations interstitial and alveolar infiltrates
(interstitial predominance)

3 complete loss of aeration: scanned area shows large
dense consolidations; “white lung” prevalent consolidations interstitial and alveolar infiltrates

(alveolar predominance)

Acronyms: CT—computerized tomography; CXR—Chest X-ray; LUS—lung ultrasound.

CT scans were acquired during hospitalization, as indicated by attending physicians,
thus for a limited number of patients. Scanning was acquired on 128 slice multi-slice CT
(Philips, Ingenuity Elite). Fourteen CT areas (three posterior, two lateral, and two anterior
for each lung) on non-contrast native scans corresponded to fourteen LUS areas. CT findings
in each area were classified as follows: 0—no abnormalities, 1—prevalent ground-glass
opacities (GGOs), 2—GGOs mixed with consolidations, and 3—prevalent consolidations
(Table 1) [22]. For each patient, these scores in all 14 areas were added up (ranging
from 0 to 42) to obtain a total CT score.

Chest X-rays were also acquired upon hospital admission, but the CXR score was
assessed retrospectively. For CXR scoring, we used the Brixia score [23]. Chest X rays
were divided into 3 zones per lung (upper, middle, and lower) in a total of 6 zones: the
upper zone extends above the inferior wall of the aortic arch; the mid-zone is the space
below the inferior wall of the aortic arch and above the inferior wall of the right inferior
pulmonary vein; the lower zone extends below the inferior wall of the right inferior
pulmonary vein [23]. Given that, we agreed that anatomically upper CXR zones (zone
1—left, 2—right) approximately corresponded to areas 6 (left) and 3 (right) on the LUS and
CT; middle CXR zones (3—left, 4—right) corresponded to areas 2, 10, 14 (left) and 5, 8, 12
(right) on the LUS and CT, and lower CXR zones (5—left and 6—right) corresponded to
areas 4, 9, 13 (left) and 1, 7, 11 (right) on the LUS and CT. CXR changes within each zone
were scored: 0—no abnormalities, 1—interstitial infiltrates, 2—interstitial and alveolar
infiltrates (interstitial predominance), and 3—interstitial and alveolar infiltrates (alveolar
predominance) see Table 1. For each patient, the stated scores in all 6 zones were added up
(ranging from 0 to 18) to obtain the total CXR score.

2.6. Bias

All patient records with an LUS exam were consecutively analyzed without exclusions
to minimize selection bias. The only reduction in sample numbers was due to the availabil-
ity of the other radiological scores, duplicate entries, or based on statistical tests (far out
values detection).

The radiological exams were performed by a single clinician (LUS score—IS; CXR
score—DBM; CT score—DBM), thus not as a two-person consensus. However, both au-
thors (IS, DBM) are highly experienced in their respective clinical fields. HRCT and LUS
exams were blinded and performed without knowledge of laboratory parameters, current
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treatment, and further involvement in the treatment of the patient. However, the decision
to mechanically ventilate the patient was up to the third party without knowledge (blinded)
of the LUS score. The CXR and CT scores were assessed upon writing this manuscript with
a clinician blinded to any of the observed predictors or clinical outcomes.

2.7. Study Size

This was a sample of consecutive patients collected during the 6-month pandemic
peak in Croatia, and the expected enrollment was over 240 cases. We expected the area
under the receiver operating curve to be above 0.7 with a ratio of positive outcome cases
around 1:10. To accommodate statistical power of 80%, this required a minimum sample of
190 patients.

2.8. Statistical Analysis

Descriptive statistics were performed: categorical data were presented by absolute and
relative frequencies; continuous data with normal distribution were presented as mean and
standard deviation (SE) when highly variable by the median and interquartile range (IQR).
The outliers and far-out values were detected by the Tukey method [24]. The normality
of the distribution of continuous variables was tested by the Shapiro–Wilk test. The t-test
was used to compare the means and the Mann–Whitney U test to compare the medians
between two groups, while the one-way Chi-square test was used to compare proportions
for dichotomous variables. Logistic regression analysis (univariate, multivariate—stepwise
method) was used to analyze independent factors associated with the necessity for mechan-
ical ventilation or lethal outcome. The continuous variables included in the models were
added to the combined model with their respective slope coefficients as follows: combined
score = β1 × var1 + β2 × var2 + β3 × var3 + . . . + βn × varn. The receiver operating curve
(ROC) was used to determine the optimal threshold, the area under the curve (AUC), speci-
ficity, and sensitivity of the tested parameters. Regression analysis was used to describe
the relationship between radiological scores. The type I error (alpha) was set to 0.05, and
the type II error (beta, statistical power) was set to 80%. The statistical software used for
analysis was MedCalc® Statistical Software version 19.6 (MedCalc Software Ltd., Ostend,
Belgium; https://www.medcalc.org, accessed on 15 July 2021).

2.9. Reporting

We reported the study in line with the STROBE reporting guideline for cohort studies;
the STROBE checklist is available in Supplementary File S1.

3. Results
3.1. Patients and Characteristics

We examined 299 patient records hospitalized in the University Hospital of Split due
to COVID-19 from November 2020 to May 2021. Eleven duplicate records or control LUS
were excluded, and the rest of the 288 eligible records of patients who underwent LUS
were analyzed (Figure 1). Out of 265 records of patients that had a chest X-ray, 10 were
excluded due to the dates between LUS and CXR exams being too far apart. Two records
out of 42 patients who underwent CT scans were excluded for the same reason. Finally,
255 cases with CXR and LUS and 40 with CT and LUS scores were analyzed.

Patient characteristics between groups not requiring and requiring MV differed only
when cardiovascular disease, hemiplegia, or leukemia were present as a negative prognostic
factor. Almost the same was noticed in the case of a death outcome (Table 2). Similarly,
factors for both the necessity for MV and fatal outcome were the age of the patients and
the day of the illness on admission (Table 2). Furthermore, a difference was found in
biochemical parameters such as elevated LDH in the group requiring MV, lower spO2,
and higher troponin among patients with a fatal outcome. Leukocyte counts were lower
in both mechanically ventilated and deceased patients, and respective LUS scores were
significantly higher (Table 2).

https://www.medcalc.org
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Table 2. Patient characteristics according to need for mechanical ventilation or death outcome.

No MV
n/N (%),

Median (IQR)

MV Required
n/N (%),

Median (IQR)
p *

No Death
n/N (%),

Median (IQR)

Death
n/N (%),

Median (IQR)
p *

Comorbidity/habit
Arterial hypertension 132/253 (52.2%) 14/28 (50.0%) 0.827 126/253 (49.8%) 20/28 (71.4%) 0.030

Cardiovascular disease 34/253 (13.4%) 8/28 (28.6%) 0.033 31/253 (12.3%) 11/28 (39.3%) 0.000
COPD 14/253 (5.5%) 1/28 (3.6%) 0.662 14/253 (5.5%) 1/28 (3.6%) 0.662

CVI or TIA 3/253 (1.2%) 0/28 (0.0%) 0.563 3/253 (1.2%) 0/28 (0.0%) 0.563
Dementia 3/253 (1.2%) 0/28 (0.0%) 0.563 1/253 (0.4%) 2/28 (7.1%) 0.001
Diabetes 50/253 (19.8%) 6/28 (21.4%) 0.835 50/253 (19.8%) 6/28 (21.4%) 0.835

Hemiplegia 0/253 (0.0%) 1/28 (3.6%) 0.003 0/253 (0.0%) 1/28 (3.6%) 0.003
Kidney failure 12/253 (4.7%) 1/28 (3.6%) 0.780 10/253 (4.0%) 3/28 (10.7%) 0.107

Leukemia 3/253 (1.2%) 2/28 (7.1%) 0.024 4/253 (1.6%) 1/28 (3.6%) 0.451
Liver failure 7/253 (2.8%) 0/28 (0.0%) 0.374 6/253 (2.4%) 1/28 (3.6%) 0.700
Lymphoma 7/253 (2.8%) 0/28 (0.0%) 0.374 6/253 (2.4%) 1/28 (3.6%) 0.700
Malignancy 25/253 (9.9%) 4/27 (14.8%) 0.425 22/253 (8.7%) 7/28 (25.0%) 0.008

Myocardial infarct 10/253 (4.0%) 3/28 (10.7%) 0.107 10/253 (4.0%) 3/28 (10.7%) 0.107
Peptic ulcer 2/253 (0.8%) 1/28 (3.6%) 0.175 2/253 (0.8%) 1/28 (3.6%) 0.175

Peripheral vascular disease 10/253 (4.0%) 1/28 (3.6%) 0.922 9/253 (3.6%) 2/28 (7.1%) 0.354
Rheumatological disease 8/253 (3.2%) 0/28 (0.0%) 0.341 8/253 (3.2%) 0/28 (0.0%) 0.341

Smoker 33/243 (13.6%) 4/27 (14.8%) 0.860 34/246 (13.8%) 3/24 (12.5%) 0.858

Biometrics
Female gender 68/252 (27.0%) 10/28 (35.7%) 0.952 66/252 (26.2%) 12/28 (42.9%) 0.063

Age (years) 62 (55–70) 69 (62–75) 0.004 62 (54–68) 75 (69–82) 0.000
Weight (kg) 91 (84–103) 94 (82–103) 0.627 91 (84–103) 92 (80–97) 0.388
Height (cm) 180 (173–186) 175 (170–186) 0.356 179 (173–187) 176 (168–180) 0.181

BMI (kg/m2) 28.3 (26.1–30.9) 29.4 (27.8–33.1) 0.088 28.4 (26.1–31.1) 28.7 (26.9–32.9) 0.803
Day of the illness 9 (6–12) 6 (5–8) 0.002 9 (6–12) 7 (4–10) 0.035

Biochemical parameters
CRP (mg/L) 76.3 (47.8–136.8) 98 (67.8–146.6) 0.101 79.9 (49.3–136.8) 95.8 (61.4–146.6) 0.416

D–dimer (µg/L) 0.92 (0.61–1.49) 1.05 (0.61–2.20) 0.529 0.88 (0.60–1.48) 1.48 (0.72–2.66) 0.051
LDH (U/L) 351 (282–424) 434 (306–456) 0.043 355 (285–429) 366 (285–448) 0.545

Leukocyte count (109/L) 7.9 (5.7–10.8) 5.7 (4.5–8.7) 0.010 7.9 (5.7–10.6) 5.7 (4.4–10.5) 0.042
Lymphocytes (%) 13.0 (8.4–18.4) 16.3 (10.8–23.9) 0.103 13.0 (8.5–18.4) 16.3 (9.2–23.8) 0.272
Neutrophils (%) 81.2 (74.6–86.9) 75.8 (70.9–83.1) 0.117 81.2 (74.8–86.7) 75.8 (69.4–83.0) 0.123

pO2 (kPa) 7.30 (6.51–7.97) 7.27 (6.18–7.78) 0.599 7.30 (6.50–7.95) 7.20 (6.06–7.97) 0.506
spO2 (%) 91 (88–93) 89 (83–94) 0.151 91 (88–93) 88 (82–93) 0.022

hs-Troponin (ng/L) 9.45 (6.50–15.30) 10.9 (8.0–20.9) 0.216 9.25 (6.55–14.65) 14.6 (8.60–44.10) 0.012

Radiological scores
LUS score 25 (19–31) 31 (26–37) 0.001 25 (18–31) 32 (26–36) 0.000
CXR score 6 (4–10) 8 (6–10) 0.125 6 (4–10) 8 (6–12) 0.016
CT score 22.0 ± 8.0 29.0 ± 2.0 0.146 21.6 ± 7.9 29.0 ± 3.8 0.050

* for dichotomous variables (n/N) one-way classification Chi-squared test was used; for continuous variables without
normal distribution, Mann–Whitney U-test was used, and respective p-values stated. Acronyms: BMI—body mass
index; COPD—chronic obstructive pulmonary disease; CXR score—chest X-ray score; CT score—chest computerized
tomography score; IQR—interquartile range; LUS score—lung ultrasound score; MV = 1—mechanical ventilation
required, MV = 2—MV not required, death = 0—no death, death = 1—death outcome; SD—standard deviation;
TIA—transitory ischemic attack.

3.2. Predictors of Necessity for MV or a Lethal Outcome

When combined in stepwise multivariate analysis, both CXR and CT scores were
excluded from models for either MV or lethal outcome. Only the LUS score was retained in
both models as follows (univariate analysis details available in Supplementary File S2).

Four independent predictors gave a unique statistically significant contribution to the
regression model for the necessity of MV, and these are LUS score, day of the illness at
admission, leukocyte count, and presence of cardiovascular disease (χ2 = 29.16, p < 0.001).
The model accurately classified 89.9% of cases (Table 3, Figure 2A).
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Table 3. Stepwise multivariate logistic regression according to the necessity of MV or lethal outcome.

Variable Coefficient p Odds Ratio 95% CI Cutoff Sensitivity Specificity

Mechanical ventilation
LUS score 0.101 <0.001 1.11 1.04–1.17 >27 72.4% 60.8%

Day of illness −0.131 0.022 0.88 0.78–0.98 ≤7 72.4% 64.1%
Leukocyte count −0.160 0.021 0.85 0.74–0.98 ≤6.3 64.3% 66.7%

Cardiovascular disease present 1.019 0.041 2.77 1.04–7.35 positive 28.6% 86.6%

Correctly Classified AUC 95% CI Cutoff Sensitivity Specificity
Combined score 88.9% 0.807 0.755–0.851 >0.51 85.7% 66.4%

Death Coefficient p Odds Ratio 95% CI Cutoff Sensitivity Specificity
Age 0.153 <0.0001 1.17 1.10–1.24 >65 89.3% 65.4%

LUS score 0.088 0.005 1.09 1.03–1.16 >29 69.0% 72.2%

Correctly Classified AUC 95% CI Cutoff Sensitivity Specificity
Combined score 93.2% 0.859 0.814–0.901 >9.6 96.5% 57.9%

Acronyms: AUC—area under receiver operating curve; CI—confidence interval; CT score—chest computerized
tomography score; LUS score—lung ultrasound score; CXR score—chest X-ray score.
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Figure 2. Receiver operating curves of the combined scores. (A) Predicting the need for mechanical
ventilation. (B) Predicting the lethal outcome. Legend: AUC—Area under hierarchical receiving
operator curve.

For the lethal outcome, only two independent predictors gave a unique statistically sig-
nificant contribution to the regression model: LUS score and age of the patient (χ2 = 48.56,
p < 0.001). The model accurately classified 93.2% of cases (Table 3, Figure 2B).

3.3. Relationship between LUS and CXR Scores

The regression model between the CXR score and LUS score demonstrated a strong
trend (slope 0.160, 95%CI 0.109 to 0.212, p < 0.001); however, there was significant variability
around the regression line (R2 = 0.128; Supplementary Files S2 and S3).

Prediction models for MV based on LUS score (AUC = 0.693 ± 0.058) and CXR score
(AUC = 0.586 ± 0.054) showed no significant difference of 0.106, p = 0.136 (Figure 3A).
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Figure 3. Receiver operating curves. (A) LUS score vs. CXR score—prediction of mechanical
ventilation. (B) LUS score vs. CXR score—prediction of lethal outcome. (C) LUS score vs. CT
score—prediction of mechanical ventilation. (D) LUS score vs. CT score—prediction of lethal
outcome. Legend: AUC—Area under hierarchical receiving operator curve; CT score—Computerized
tomography score; CXR score—chest X-ray score; LUS score—Lung ultrasound score.

Additionally, models for death based on LUS score (AUC = 0.697 ± 0.064) and CXR
score (AUC = 0.645 ± 0.059) showed no significant difference of 0.052, p = 0.449 (Figure 3B).

3.4. Relationship between LUS and CT Scores

The regression model between the CT score and LUS score demonstrated a strong trend
(slope 0.502, 95%CI 0.292 to 0.711, p < 0.0001); however, there was significant variability
around the regression line (R2 = 0.396; Supplementary File S2).
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Prediction models for MV based on LUS score (AUC = 0.871 ± 0.090) and CT score
(AUC = 0.843 ± 0.077) showed no significant difference of 0.023, p = 0.819 (Figure 3C).

Additionally, models for death based on LUS score (AUC = 0.885 ± 0.057) and CT
score (AUC = 0.836 ± 0.080) showed no significant difference of 0.049, p = 0.582 (Figure 3D).

4. Discussion

The results of our study draw us to conclusions defining four independent predictors
regarding the regression model for the necessity of MV: LUS score, day of the illness at
admission, leukocyte count, and presence of cardiovascular disease. For the lethal outcome,
the two independent predictors were the LUS score and the age of the patient. Although
LUS’ predictive value was shown in several previous studies, as far as we know, it was not
combined with demographics, clinical data, and laboratory parameters, creating prediction
models for disease severity.

The average CXR score was not previously shown to be different between the group of
patients who needed MV and the group of patients who did not. Although it is a possible
prognostic factor for death in the univariate model, the CXR score was dropped from the
multivariate model as insignificant in favor of, for example, the patient’s age. Therefore,
we can conclude that the CXR score is inferior to the LUS score in the prediction of the need
for MV or death.

For both the CT score and the CXR score, we showed a significant correlation with the
LUS score by linear regression, although in both cases, there was significant variability. We
attributed this to subjectivity in the scoring system based on the decision of the clinician
interpreting the finding, the lower sensitivity and specificity of the CXR, and the time
interval between CT, LUS, and CXR acquisition, in comparison with other studies that used
shorter time delays among them [25]. On the other hand, the narrower CXR score scale
(0–18) allowed for a smaller distribution of the total score. It was expected that the relative
cutoff value (out of maximal score) would be higher in CXR than in the LUS score, which
did not prove to be exact. The cutoff CXR score for the prediction of MV was already at
28% of the maximum score, while for the fatal outcome, it was at 38% and was therefore
clinically completely irrelevant for these critical outcomes for the remaining upper ~60% of
the score scale. We believe that based on plain CXR, very little can be described, such as
the gentle difference of changes in the lung parenchyma essential for the outcomes. The
non-specificity of CXR is a possible reason for the relatively low cutoff values obtained.

On the other hand, a much better correlation between LUS score and CT score, with
significantly less variability and equal width of the scoring scale, speaks in favor of LUS as
an excellent method of choice in monitoring patients with pneumonia; this was confirmed in
other studies as well [25,26]. Despite this, previously published studies of predictive models
involving radiological imaging have exceptionally included ultrasound more commonly
than CT or chest CXR. Huang J. et al. suggested a diagnostic model obtained to distinguish
between moderate and severe/critical COVID-19 using CT as a part of the diagnostic
procedure. Their model included CT imaging in all patients and even those with mild
symptoms [27]. Although CT is the gold standard, of course, the widespread use of such
a model, especially in times of intense epidemics, is not possible. The Dutch COVID-19
risk model presented by Schalekamp et al. used similar demographic and laboratory
parameters combined with the chest CXR score, which, unlike ours, used four zones in
determining the CXR score. As in our study, patients who developed critical illness had
leukopenia and higher lactate dehydrogenase levels more often. Contrary to our results, no
significant difference was found for the duration of symptoms, although the proportion of
patients with a symptom duration of more than 7 days was slightly smaller among those
with critical disease [27]. As previously reported, age was a strong predictor of a lethal
outcome in our population as well [28].

Multiple studies reported a significant association between elevated leukocyte counts
and decreased lymphocyte counts among patients with severe cases of COVID-19 compared
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with those with mild cases [15,29]. However, in our study population, a decreased leukocyte
count was predictive of more severe disease.

Various biochemical markers were researched for their predictive usefulness, for
example, LDH, CRP, and D-dimer [30–32]. In our study, patients who needed MV had
significantly higher LDH values, although LDH did not appear to have predictive power
in regression analysis. CRP and D-dimer were not significantly higher in the MV or
deceased groups.

In our study, a lower day of illness at hospital admission showed to be a predictive
factor for disease severity (MV), as it might suggest a more rapidly evolving and progressive
disease in these patients. Similar results concerning onset to hospitalization time were
found as a part of the risk nomogram established to predict the incidence of severe or
critical COVID-19 in elderly patients in the study by Zeng et al. [20].

The percentage of smokers in the hospitalized population was significantly lower
than in the overall population of Croatia, regarding which there is still controversy in
the available literature, but most studies still link smoking to a higher risk of severe
COVID-19 [32–35].

The proportion of patients who ended up on MV or died was similar to our previous
study [11]. Only the therapeutic options in the patients changed, so we believe that the
lower predictability of the LUS score in this study could be related to a modified corticos-
teroid therapy that the patients received (methylprednisolone 1 mg/kg vs. dexamethasone
6 mg used previously), which might have affected the clinical course and mortality of
this disease.

4.1. Strengths

Our study was conducted on a large sample of hospitalized patients, and data were
analyzed without exclusion by clinical characteristics using only statistically relevant and
transparent figures.

4.2. Limitations

As mentioned in the bias section of the methods, we did not do a double, independent
check of the radiological scores, and this could be a limiting factor. Although we demon-
strated a strong association between the LUS score and the CT score, the sample for the CT
score was relatively small and did not reach the test strength of 80%.

5. Conclusions

The predictive model obtained in our study identified four key parameters at the
patient admission to the hospital, LUS score, day of the illness, leukocyte count, and
presence of cardiovascular disease, that can predict an adverse COVID outcome. Hopefully,
it will help physicians provide appropriate and timely therapeutic interventions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/xxx/s1, Supplementary File S1—STROBE checklist, Supplementary File S2—Univariate
regression of predictors for mechanical ventilation or death, Supplementary File S3—Scatter diagram
and regression line between LUS score and CXR score.
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