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Medical systems worldwide are being faced with a growing need to understandmechanisms behind the pathogenesis of heart failure
(HF) that is considered as a leading cause of morbidity and mortality around the world. Elevated levels of inflammatory mediators
have been identified in patients with HF, which are primarily manifestations of innate immune responses mediated by pattern
recognition receptors (PRRs). Toll-like receptors (TLRs), which belong to PRRs, are subjected to the release of pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to generate innate immune
responses. More and more emerging data indicate that TLR signaling pathway molecules are involved in the progression of HF.
Herein, we present new data with regard to the activation of TLRs in the failing heart, focusing on TLR2, TLR3, TLR4, and
TLR9, and suggest the potential use of TLRs in target therapy.

1. Introduction

Heart failure (HF) is a complex clinical syndrome and occurs
during structural or functional impairment of ventricular
filling or ejection of blood in the heart that fails to pump suf-
ficiently to maintain blood flow that meets the body’s needs.
HF is a leading cause of morbidity and mortality worldwide,
and it increasingly affects millions of people [1, 2]. There are
three types of HF, the left-sided HF, right-sided HF, and con-
gestive HF, according to the classification of the American
Heart Association. There are two kinds of left-sided HF:
one is systolic HF, which means that the left ventricle loses
its ability to contract normally causing the inability of the
heart to pump with enough force to push enough blood into
circulation; the other is diastolic HF, which means that the
left ventricle loses its ability to relax normally causing the
inability of the heart to be properly filled with blood during
the resting period between each beat. Right-sided HF usually

occurs when the right ventricle loses its ability to be filled
with or to inject blood properly. Congestive HF describes
the condition that when blood flowing out of the heart is
slower than normal, blood returning to the heart through
the veins backs up, causing congestion in the body’s tissues,
including the arms, legs, ankles, feet, and lungs.

HF is caused by many conditions that damage the
heart muscle. Ischemic heart disease (IHD) is the number
one leading cause of HF according to epidemiological studies.
In clinical trials, HF has been ascribed to IHD in about
70% of patients [3]. Other common causes are involved in
the progression of HF, including dilated cardiomyopathy
(DCM), cardiomyopathy of an unknown cause, hyperten-
sion, atrial fibrillation, infection, excess alcohol use, meta-
bolic syndrome, atherosclerotic disease, myocarditis, and
cardiomyopathy due to inflammation [1, 4].

Growing evidence supports that inflammation has been
implicated in the pathogenesis of HF [4, 5]. Inflammation
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of the heart may cause HF in about 10% of cases of initially
unexplained cardiomyopathy [6, 7]. A variety of infectious
organisms, as well as toxins and medications, most often
postviral in origin, may cause myocarditis. The link between
HF and inflammation was first recognized in 1990 by Levine
et al., who reported elevated levels of tumor necrosis factor α
(TNFα) in patients with HF with reduced ejection fraction
[8]. Numerous studies have demonstrated that patients with
HF exhibited raised circulating levels of other inflammatory
cytokines, such as interleukin- (IL-) 1β and IL-6, and several
chemokines, including monocyte chemoattractant peptide-
(MCP-) 1, IL-8, macrophage inflammatory protein- (MIP-)
1α, and galectin-3 [9–14]. These data suggest that increased
systemic levels of inflammatory cytokines in patients with
HF may reflect important pathogenic mechanisms. The sys-
temic metabolic disorders induce subcellular component
abnormalities, such as oxidative stress, mitochondrial dys-
function, endoplasmic reticulum (ER) stress, and impaired
calcium handling, leading to impaired myocardial relaxation
[15]. In addition to myocardium itself, several tissues and
cells, including leukocytes, platelets, tissue macrophages,
and endothelial cells, can contribute to this inflammation.
In the advanced stage, increased subcellular component
abnormalities, inflammatory cell infiltration, neurohumoral
activation, and their vicious cycle induce cardiomyocyte
injury and death and cardiac fibrosis, resulting in impair-
ment of both diastolic and systolic functions, leading to HF
[15, 16]. In addition, these inflammatory mediators may
serve as relevant markers of disease severity and HF progno-
sis [17–21]. Importantly, the association between HF and
markers of inflammation was observed for both reduced
and preserved ejection fraction cohorts [22].

In short, inflammation plays a critical role in myocardial
ischemia and the development of HF. More and more evi-
dence is emerging to explore the function of Toll-like recep-
tors (TLRs) in inflammation-caused HF. In this review, we
will focus on the roles of TLRs in the progression of HF,
updating recent findings.

2. Pattern Recognition Receptors (PRRs)

Inflammatory signaling in cardiomyocytes usually occurs as
an early response to myocardial injury. Innate immune acti-
vation is a key pathogenic mechanism in HF. Mann’s study
showed the close correlation between innate immunity and
HF. Gene arrays from explanted hearts from patients with
ischemic cardiomyopathy (ICM), idiopathic DCM, viral
cardiomyopathy, and nonfailing hearts show the different
expressions of innate immune genes in the failing heart
compared to nonfailing hearts, and elevated levels of
inflammatory mediators have been identified in patients
with a failing heart; this observation indicates the possibil-
ity of activation of the innate immune system in failing
hearts [11, 23].

Cardiac innate immune responses, which are essential for
homeostatic responses and tissue repair, are initiated by
germline-encoded PRRs, which include TLRs, retinoic acid-
inducible gene-I-like receptors, nucleotide-oligomerization
domain-like receptors (NLRs), C-type lectin receptors

(CLRs), and absent-in-melanoma 2 receptors [24, 25]. The
strategy of PRR recognition is based on the detection of con-
stitutive and conserved pathogen-associated molecular pat-
terns (PAMPs), which include bacterial carbohydrates,
nucleic acids, bacterial peptides, peptidoglycans, lipoteichoic
acids, N-formylmethionine, lipoproteins, fungal glucans, and
chitin. PRRs can also recognize endogenous stress signals
called damage-associated molecular patterns (DAMPs),
including uric acids, extracellular ATP and other compounds
[26]. Recently, it has become clear that cardiac PRRs also rec-
ognize the molecular patterns of endogenous host material
released by dying or injured myocardial cells [11]. Cells that
die by accidental necrosis, necroptosis, or secondary apopto-
sis release their cytosolic contents into the extracellular space,
thereby initiating inflammatory responses through engage-
ment of an ensemble of extracellular or intracellular PRRs.

3. The TLR Signaling Pathway

TLRs belong to PRRs, which are involved in the inflamma-
tory responses during HF [27]. To date, 13 TLRs have been
identified in mammals, with 10 in humans and 12 found in
mice; TLRs are type I transmembrane glycoproteins com-
prising extracellular, transmembrane, and intracellular
domains [28, 29]. TLRs are classified into two main groups
according to their subcellular localization; TLR1, TLR2,
TLR4, TLR5, TLR6, and TLR11 are expressed on the plasma
membrane, whereas TLR3, TLR7, TLR8, and TLR9 are found
in endosomes [30, 31].

TLRs usually function as dimers for PAMP detection.
Individual TLRs differentially recruit members of a set of
Toll/IL-1 receptor (TIR) domain-containing adaptors [32].
Five TIR domain-containing adaptors have been identified,
namely, myeloid differentiation factor 88 (Myd88), Myd88
adaptor-like protein, TIR domain-containing adaptor pro-
tein inducing interferon (IFN)-β-mediated transcription fac-
tor (TRIF), TRIF-related adaptor molecule (TRAM), and a
sterile α- and armadillo motif-containing protein [33, 34].
Based on specific adaptors recruited to TLRs, TLR sig-
naling can be divided into two general pathways, namely,
the Myd88-dependent and Myd88-independent pathways.
Except for TLR3, all TLRs interact with the adaptor protein
Myd88. TLR3 uses TRIF as the adaptor protein belonging
to Myd88-independent pathways, whereas TLR4 triggers
both the Myd88-dependent and Myd88-independent path-
ways [35]. These signaling pathways activate numerous tran-
scription factors, such as nuclear factor-κB (NF-κB) and
interferon (IFN) regulatory factors (IRFs), and subsequently
induce the production of proinflammatory cytokines and
IFNs, respectively [36].

The Myd88-dependent pathway is initiated via Myd88
after TLR activation [37]. Afterwards, the death domain of
Myd88 recruits IL-1 receptor-associated kinase 4 (IRAK4)
and activates one of other IRAK family members, that is,
IRAK1 or IRAK2. Then, IRAKs dissociate from the My88-
IRAK complex and activate TNF receptor-associated factor
6 (TRAF6), which interacts with transforming growth fac-
tor-β-activated kinase 1 (TAK1), TAK1-binding protein 1
(TAB1), and TAB2 [33]. TAK1 then activates the complex
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of inhibitory κB (IκB) kinase α (IKKα)/IKKβ/IKKγ and
induces IκB phosphorylation. Phosphorylated IκB dissociates
from the complex and activates the transcription factor NF-
κB. The activated NF-κB translocates into the nucleus and
induces the expression of various proinflammatory cyto-
kines. In addition to the activation of the IKK complex,
TAK1 can activate the mitogen-activated protein kinase

(MAPK) signaling pathway, including the extracellular
signal-regulated kinase pathway, c-Jun N-terminal kinase
pathway, and p38 pathway. The MAPK signaling pathway
can activate the transcription factor activator protein-1
(AP-1). Activation of NF-κB and AP-1 contributes to the
expression of proinflammatory cytokines, such as IL-6,
IL-1, and TNFα (Figure 1).
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Figure 1: Activation of TLRs in heart cells by PAMPs and DAMPs during heart failure. Heart cells express a variety of TLRs, mainly, TLR2,
TLR3, TLR4, and TLR9. DAMP and PAMP molecules, which include endotoxin, HSP60, HMGB1, ROS, TNC, lipoproteins, virus RNA, and
mtDNA, are involved in HF. Lipoproteins have been reported to activate TLR2. Endotoxin, HSP60, HMGB1, ROS, and TNC have been
demonstrated to activate TLR4. dsRNA can be recognized by TLR3. TLR9 can recognize mtDNA to induce immune responses. There are
two pathways for TLR signaling, including the Myd88-dependent and Myd88-independent signaling pathways. TLR2 and TLR9 utilize the
Myd88-dependent pathway. TLR3 uses the Myd88-independent pathway. TLR4 employs both Myd88 and TRIF as adaptor proteins. Note
that TLR3 and TLR9 are predominately located within endosomes. In the Myd88-dependent signaling pathway, stimulation of TLR
triggers association of My88, which in turn recruits the IRAK family, and subsequently, TRAF6 is also recruited to the receptor complex
by associating with phosphorylated IRAKs. Ubiquitylation of TRAF6 induces the activation of TAK1, which phosphorylates both MAPK
kinases and the IKK complex consisting of IKK-α, IKK-β, and IKK-γ. The IKK complex then phosphorylates IκB, which is then
ubiquitylated and subsequently degraded. This result allows NF-κB to translocate to the nucleus and induce the expression of its target
genes. TRIF play an essential role in the Myd88-independent pathway through TLR3 and TLR4. TRIF interacts with TRAF6, which
activates TBK1 and IKK-ε for phosphorylation of the transcription factor IRFs. TRIF can also promote NF-κB activation. TRIF recruits
TRAF6 and activates TAK1, which in turn activates the NF-κB and MAPK pathways. These signaling pathways result in the expression of
cytokines. Inflammation induces cell injury and death, resulting in cardiac dysfunction and HF progression.
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Also known as the TRIF-dependent pathway, the
Myd88-independent pathway can lead to activation of IRFs
and NF-κB. This pathway is initiated by TRIF and TRAM.
TRAM is a particular adaptor connecting TLR and TRIF.
After recruitment, TRIF interacts with TRAF6, which acti-
vates TRAF family member-associated NF-κB activator-
binding kinase 1 (TBK1) and IKK-ε for phosphorylation
of IRFs. Activated IRFs translocate into the nucleus to
induce the production of IFNs. In another type of signaling,
TRIF can promote NF-κB activation. TRIF recruits TRAF6
and activates TAK1, which in turn activates NF-κB and
MAPK pathways. Activation of NF-κB and AP-1 contrib-
utes to the expression of proinflammatory cytokines,
whereas the activation of IRF3 contributes to the expression
of interferon (Figure 1).

4. TLR Signaling and HF

Recently, increasing evidence indicated involvement of
innate immune activation mediated by myocardial TLRs in
HF [12]. TLRs are expressed in various types of heart cells,
including endothelial cells, smooth muscle cells, and cardio-
myocytes [38]. Relative expression levels for TLR mRNAs
in the human heart follow the order TLR4>TLR2>
TLR3>TLR5>TLR1>TLR6>TLR7>TLR8>TLR9>TLR10
[11, 39]. These TLRs not only present different expressions
but also perform different functions in the development of
HF. Next, we will discuss several important TLRs, including
TLR2, TLR3, TLR4, and TLR9, which are associated with
HF (Figure 1, Table 1).

4.1. TLR2. TLR2 is located on the cell surface, and along with
TLR1 or TLR6, it recognizes a wide variety of PAMPs,
including lipoproteins, peptidoglycans, lipoteichoic acids,
zymosan, mannan, and mucin [37]. A clinical study shows
that there is a possible immunological role for lipoproteins
in chronic HF [40].

TLR2 plays a central role in the pathogenesis of diverse
heart disorders and is upregulated in doxorubicin-reduced
DCM and HF [41]. An early report showed that TLR2 was
expressed in cardiomyocytes, was a participant in responses
of these cells to oxidative stress, and was a major contributor

to the pathogenesis of cardiac dysfunction [42]. Vascular
endothelial cells also express high levels of TLR2 on stimula-
tion of inflammatory cytokines, suggesting that TLR2 can
also contribute to endothelial cell-related inflammation
[43]. In the therapeutic study, Ma et al. demonstrated
that blockage of TLR2 reduced mortality and attenuated
doxorubicin-induced cardiac dysfunction and inhibition of
TLR2 showed a potential role for the treatment of DCM [41].

In a mouse model, TLR2 was involved in cardiac remod-
eling after myocardial infarction (MI), and preservation of
cardiac function, increased survival rate, and attenuation of
myocardial fibrosis after MI in TLR2 KOmice were observed
[44]. Adverse ventricular remodeling following cardiac
injury is a key determinant of HF. Other TLR2 studies were
accompanied with TLR4. Activation of TLR2 and TLR4
worsened ischemic injury to the heart and brain of animal
models of MI and stroke [45]. A study pointed out that
TLR2 and TLR4 influence autonomic regulation of heart rate,
and mice lacking TLR2 or TLR4 exhibited reduced basal
heart rate [46].

Moreover, increased expression and signaling by TLR2
have been found to contribute to the activation of innate
immunity in injured myocardium, indicating that TLR2 can
promote myocardial inflammation in HF [44]; however,
another study indicated that TLR2 expressions in patients
with chronic HF are similar compared with that in the con-
trol group [47]. In conclusion, evidence is shown that inhibi-
tion of TLR2 reduces the progression of HF (Table 1).

In terms of inhibiting TLR2 signaling, antibodies are
designed. T2.5 is one of the anti-TLR2 antibodies with ther-
apeutic potential. Moreover, T2.5 was found to prevent
angiotensin II-induced cardiac fibrosis through suppressing
macrophage recruitment and inflammation in the heart [48].

4.2. TLR3. TLR3 is localized in endosomes and recognizes
viral double-stranded RNA (dsRNA), small interfering
RNA, and self-RNA that is derived from damaged cells [49].

Few studies have discussed virus-caused inflammation
related to TLR3 in HF. Enterovirus-induced myocardial
injury can lead to severe HF. TLR3 plays an important role
in the initiation of innate antiviral responses. Hardarson
et al. [50] reported that TLR3 KO mice were more

Table 1

TLR Expression Related pathogenesis of HF Therapy direction

TLR2 Second highest
Doxorubicin-induced DCM; MI; contribute to
myocardial inflammation; similar expression

in patients with chronic HF

Inhibition of TLR2 is beneficial for the
progression of HF; blocking molecular

T2.5 antibody

TLR3 Third highest
Protected virus-induced myocardial injury; MI;

contribute to myocardial inflammation
Unclear

TLR4 The highest

Bacteria-induced myocardial injury; virus-induced
myocardial injury; contribute to myocardial inflammation;

doxorubicin-induced DCM; MI; myocardial
ischemia-reperfusion injury; higher expression in

patients with chronic HF

Inhibition of TLR4 is beneficial
for the progression of HF; blocking

molecular such as the statin
family, eritoran, RP105, and ghrelin

TLR9 The lowest
Bacteria-induced myocardial injury; myocarditis;
DCM; contribute to myocardial inflammation;
diastolic HF; elevated mtDNA in HF patients

Inhibition of TLR9 is beneficial for
the progression of HF; pretreatment

with synthetic TLR9 ligand
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susceptible for encephalomyocarditis virus infection and
featured a higher viral load in the heart and that TLR3 was
involved in mediating protection against virus-induced
myocardial injury.

Another research byWang et al. reported that TLR3-defi-
cient neonatal hearts exhibited impaired cardiac functions
and larger infarct size after MI compared to control, which
indicated that TLR3 is also related with HF [51]. Similarly,
Chen et al. reported that TLR3 signaling was involved in
MI and extracellular RNA released during myocardial
ischemia-reperfusion (I/R) injury, which may contribute to
myocardial inflammation [52].

TLR3 primarily protects the heart against viral infection;
however, TLR3 also mediates inflammatory effects that may
exacerbate heart damage (Table 1).

4.3. TLR4. All known human TLRs have been detected in the
heart and most importantly, TLR4, whose levels are the high-
est compared with other TLRs in the heart [23]. TLR4 plays a
critical role in myocardial inflammation, including myocar-
ditis, MI, myocardial I/R injury, HF, aortic valve diseases,
atherosclerosis, and hypertension [27, 53].

TLR4 is located at the plasma membrane, where it
responds to its ligands and triggers a series of inflammatory
signaling pathways [54]. TLR4 is activated by lipopolysac-
charide (LPS), with the cofactors, such as cluster of dif-
ferentiation 14, myeloid differentiation factor 2 (MD2),
and lipopolysaccharide- (LPS-) binding protein [55, 56].
Increased levels of bacterial LPS have been demonstrated in
HF [57]. Endotoxin is an LPS constituent of the outer mem-
brane of most Gram-negative bacteria. The endotoxin can
bind to TLR4/MD2 complexes, which cause subsequent
inflammation, and has been implicated in the development
and progression of atherosclerosis and subsequent coronary
artery disease and HF [58]. Another report also showed that
the cardiac function in TLR4-deficient mice was not affected
following septic shock or myocardial ischemia [59].

TLR4 can also recognize exogenous ligands, such as
the fusion proteins from respiratory syncytial virus and
glycerophosphatidylinositol anchors from parasites [31].
In a mouse model, Riad et al. [60] reported that coxsack-
ievirus infection with TRIF-deficient mice can lead to the
induction of severe HF and 100% mortality, displaying
TLR4-dependent suppression of antiviral cytokine IFN-β.
By contrast, coxsackievirus infection increased the cardiac
levels of IL-1β and IL-18 in WT mice but not in TLR4-
deficient ones, and TLR4 deletion may protect these animals
from HF [61]. From a perspective, it is likely that the role
of TLR4 is indistinct with regard to protecting the heart
against viruses.

Some endogenous ligands, such as heat shock protein
(HSP), high-mobility group box 1 (HMGB1), reactive oxygen
species (ROS), and extracellular matrix components, can be
recognized by TLR4 [31, 62]. Some of these ligands are asso-
ciated with HF. HSP60 is doubly expressed in end-stage HF
and presents abnormal trafficking to the cell surface, which
may be an early trigger for myocyte loss and the progression
of HF [63]. HMGB1 has been established as an important
mediator of myocardial inflammation and is associated with

the progression of HF. The study of Volz et al. [64] showed
that HMGB1 plasma concentration was elevated in HF and
correlated with disease severity in patients with HF. ROS
can modify membrane components and can cause the release
of factors that interact with and activate TLR4 to induce car-
diomyocyte apoptosis and HF [10, 65]. Tenascins represent a
family of four multimeric extracellular matrix glycoproteins
[66]. Serum level of tenascin C (TNC) correlates with the
severity of HF [67]. Maqbool et al. [68] reported that TNC
can stimulate TLR4 to upregulate the expression of IL-6, con-
tributing to the worsening and progression of HF.

Doxorubicin-induced systemic inflammation is driven
by upregulation of TLR4 and endotoxin leakage [69].
TLR4 is upregulated in doxorubicin-induced DCM and
HF like TLR2. But unlike the role of TLR2, Ma et al.
showed that TLR4 played a distinct function in the progres-
sion of doxorubicin-induced DCM and blockage of TLR4-
exacerbated cardiac dysfunction and fibrosis by amplifying
inflammation [41].

Liu et al. [70] pointed that the expression, ligand-binding
capacity, and proinflammatory function of TLR4 were upreg-
ulated in the cardiomyocytes isolated from the long-termMI,
promoting inflammation and exacerbating HF. TLR4 not
only is expressed in cardiomyocytes but is also a major fea-
ture of activated monocytes and substantially increases in
response to DAMPs. Similar to TLR2, TLR4 was expressed
at high levels in vascular endothelial cells; this finding suggests
contribution of endothelial cell-related inflammation [43].
Peripheral monocytosis may affect the development of HF
after acute MI (AMI). Activated TLR4 in monocytes plays
an important role in the synthesis of proinflammatory cyto-
kines. Activation of TLR4 through Cardiomyocytic inflamma-
tory reaction was associated with HF after AMI [26].

TLR4 also has a proinflammatory role in murine myo-
cardial I/R injury. In one study, TLR4-deficient mice sus-
tained smaller infarctions and exhibited less inflammation
after myocardial I/R injury [71]. Another study showed
that inhibition of TLR4 in an in situ murine model signifi-
cantly reduced I/R injury and markers of inflammatory
response [72].

Studies have shown that TLR4 expression increases in the
hearts of patients with advanced HF [73, 74]. Other studies
indicated that unstimulated monocyte TLR4 expression was
significantly higher in patients with chronic HF compared
to controls and upregulation of monocyte TLR4 may con-
tribute to pathophysiology of chronic HF [47]. TLR4 is asso-
ciated with deleterious inflammatory effects that exacerbate
heart damage, and inhibition of TLR4 reduces the progres-
sion of HF (Table 1).

Pharmacological blocking of TLR4 by different mole-
cules is influenced. Statins are among the early-developed
drugs with newly discovered inhibitory activity on TLR4
signaling. Among the statin family, fluvastatin, simvastatin,
and atorvastatin, all have shown potent inhibitory activity on
TLR4 and subsequent inflammatory pathways to reduce
inflammation in vascular systems [48]. Another molecule
eritoran, the antagonist of TLR4, is very helpful. Inhibition
of TLR4 with eritoran can attenuate myocardial ischemia-
reperfusion injury [75] and the development of cardiac
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hypertrophy [76]. There is a new finding of radioprotective
105 kDa protein RP105, which is a regulator of TLR4 and
critical therapeutic target, which can protect against I/R
injury via suppressing TLR4 signaling pathways in a rat
model [77, 78]. Ghrelin is another candidate for suppres-
sion of TLR4 signaling and has protective effects against
inflammation in a mouse model of myocardial I/R injury
via the TLR4 pathway [79].

4.4. TLR9. TLR9 was first identified as a TLR-recognizing
cytosine-phosphate-guanine (CpG) which repeats within
microbial DNA and is expressed in the myocardium [80,
81]. TLR9 mainly signals through the Myd88-dependent
pathway and stimulates NF-κB and downstream signaling.
Emerging evidence has shown the involvement of TLR9
in HF.

Stimulation with bacterial DNA or CpG-rich DNA can
induce myocardial inflammation and reduce cardiomyo-
cyte contractility through TLR9 [82]. Another research
on a mouse model with polymicrobial sepsis indicated that
TLR9 KO mice showed significant reduction in cardiac
inflammation and sustained heart function, indicating that
TLR9 promotes cardiac inflammation and HF during poly-
microbial sepsis [83].

Mitochondrial DNA (mtDNA) is similar to bacterial
DNA and may contain high contents of CpG that activates
TLR9 [84, 85]. Recent data has demonstrated that mtDNA
was a DAMP that activated TLR9 [86–88]. Extracellular
mtDNA activates NF-κB via TLR9 and can induce cell death
of cardiomyocytes [89]. Pathophysiological significance of
TLR9 in HF has been studied. Oka et al. [86] studied that
the mtDNA that escaped from autophagy cell autonomously
leads to TLR9-mediated inflammatory responses in cardio-
myocytes and can induce myocarditis and DCM. DNase II
is an acid DNase found in lysosomes and plays an important
role in preventing pressure overload-induced HF. Inhibition
or ablation of TLR9 attenuated the development of cardio-
myopathy in DNase II-deficient mice. TLR9 KOmice showed
improved pressure overload-induced cardiac dysfunction
and inflammation [86]. On the contrary, Velten et al. [90]
indicated that pretreatment with synthetic TLR9 ligand
1668-thioate attenuated cardiac hypertrophy following pres-
sure overload and delayed the cardiac function loss, which
resulted in a prolonged preservation of left ventricular func-
tion. A similar study showed another synthetic agonist of
TLR9 that activated the phosphoinositide 3-kinase/protein
kinase B signaling pathway and attenuated pathological car-
diac hypertrophy and HF [91]. All these data have shown
that altered TLR9 signaling influences the progression of
HF although the results reflect some differences in experi-
mental models.

Other studies showed that TLR9 plays an important role
in diastolic HF. The sacro/endoplasmic reticulum Ca2+

ATPase (SERCA) is the nodal protein that governs active
diastolic function [92]. Cardiomyocyte-specific deletion of
SERCA2a leads to diastolic HF [93]. Dhondup et al. [94]
reported that in a mouse model with diastolic HF caused by
cardiomyocyte-specific deletion of SERCA2a, sustained acti-
vation of TLR9 caused cardiac and systemic inflammation

and deterioration of SERCA2a depletion-mediated diastolic
HF. In another diastolic HF mouse model induced by
cardiomyocyte-specific deletion of SERCA2a, TLR9 deple-
tion in those models reduced the survival rate compared with
that of the SERCA2a KO control mice; this finding indicates
the salutary role of TLR9 in some subsets of HF [95]. These
studies suggest a link between systemic TLR9 activation
and diastolic HF.

In a clinical study, Ye et al. [96] discovered increased
plasma-derived exosomes in patients with chronic HF
compared with healthy controls and demonstrated that
plasma-derived exosomes carry mtDNA, which can trigger
an inflammatory response via the TLR9-mediated NF-κB
pathway. Another study showed elevated plasma levels of
mtDNA from patients with HF, and this condition was asso-
ciated with increased mortality [97]. Interestingly, TLR9 is
only expressed to a small amount in the human heart com-
pared with other TLRs [11, 39] but does seem to play an
important role in HF. This is a little contradiction. Actually,
mitochondria are recognized as a key player in cardiomyo-
cyte cell death after myocardial infarction and cardiomy-
opathies. TLR9 is very important for the recognition of
mtDNA in mitochondria, and that may be the key point.
These findings indicate that the TLR9 signaling pathway
is involved in inflammatory responses and the pathogenesis
of HF (Table 1).

4.5. The Downstream Molecular Pathway of TLR Signaling.
TLR signaling pathway downstream molecules are involved
in the HF progression. Myd88 is central to the signaling of
most of the TLRs and receptors of the IL-1 family. One study
pointed out that Myd88 deletion can protect mice from the
progression of acute myocarditis to end-stage HF [98]. Other
two studies showed that Myd88-mediated inflammatory
signaling leads to CaMKII oxidation, cardiac hypertrophy,
and death after MI and blockade of Myd88 with ST2825 or
IMG2005 prevents left ventricular dilation and hypertrophy
after acute MI [99, 100]. Myd88 could recruit the IRAK
family member IRAK4, and deletion of IRAK4 has favor-
able effects on survival and left ventricular remodeling
after MI [101]. Negative regulation of inflammatory signaling
involves activation of distinct pathways in various cell
types involved in cardiac repair. IRAK-M exerts its anti-
inflammatory actions by inhibiting TLR/IRAK-1-depen-
dent signaling in macrophages. Genetic IRAK-M loss was
associated with accentuated inflammation and increased
dilative remodeling following infarction [102, 103]. The
IKK and its downstream target, NF-κB, are regulators of
inflammation and are activated in cardiac disorders [104,
105]. Maier et al.’s study showed that cardiomyocyte-
specific IKK/NF-κB activation induced reversible inflamma-
tory cardiomyopathy and HF [106]. Frantz et al.’s study
pointed out that deletion of the NF-κB subunit p50 in
mouse improved early survival and reduces left ventricular
dilatation after MI; these findings indicate that NF-κB may
therefore be an attractive target for HF treatment [107].
The chemokine MCP-1, a downstream molecule of TLR
signaling, has been considered as one of the biomarkers
of HF [108].
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5. Other PRRs and HF

NLRs act as cytosolic sensors to intracellular PAMPs and
DAMPs. The human NLR family includes 22 members, most
of which share a conserved tripartite structure consisting of
an N-terminal caspase recruitment domain (CARD) or pyrin
domain, a central nucleotide-binding domain with NTPase
activity, and a C-terminal leucine-rich repeat domain that
mediates ligand sensing [109]. NLRP3 belongs to the NLR
family, together with apoptosis-associated speck-like protein
containing a CARD protein, and forms the NLRP3 inflam-
masome. This inflammasome represents a complex of intra-
cellular interaction proteins that trigger maturation of
proinflammatory cytokines IL-1β and IL-18 by caspase-1 to
initiate the inflammatory responses [110, 111]. The NLRP3
inflammasome signaling effector, caspase-1, is upregulated
in murine and human failing hearts [112]. NLRP3 KO in
cardiac-specific calcineurin transgenic mice resulted in
DCM, reduced proinflammatory cytokine maturation and
cardiac inflammation, and improved systolic performance
[110]. TLR signaling is important for inflammasome prim-
ing, and without priming, NLRP3 activation may be insuffi-
cient for inducing cardiac dysfunction [113, 114]. NLRP3
inhibition has been shown to be protective for cardiac
function after ischemic injury (AMI) and nonischemic
injury (doxorubicin treatment) in mice [115]. Downstream
proinflammatory cytokine IL-18 is being considered as a
therapeutic target in acute MI and HF [116]. The Canaki-
numab Anti-inflammatory Thrombosis Outcomes Study
(CANTOS) trial, using a blocker of IL-1β, has shown good
results for the anti-inflammatory therapies in AMI and HF
[117]. All these data show that NLRP3 inflammasome sig-
nals play an important role in modulating inflammation that
affects HF progression. Another NLR protein, NLR family
CARD domain-containing protein 4 (NLRC4), has been
observed in heart diseases, and this study showed that
NLRC4 inflammasome was hyperactivated by mitochondrial
DNA in cardiomyocytes in a type 2 diabetes mouse model
after MI [118].

CLRs are calcium-dependent carbohydrate-binding
receptors that contain one or more C-type lectin-like
domains. CLRs form a large family that recognizes a diverse
array of structurally unrelated molecules. CLRs and CLR-
related signaling molecules are constitutively expressed in
human and murine hearts [119]. Expressions of CLRs and
CLR-related signaling molecules in a healthy heart support
the possible expression of CLRs in cardiomyocytes; however,
additional work is needed to fully define the functions of
these proteins.

6. Conclusion and Prospective

Inflammation has been widely accepted to play an important
role in the physiological and pathological mechanisms of car-
diac function and dysfunction. Inflammation is required for
host defense against damage and tissue repair. However,
excessive chronic myocardial inflammation is reported to
induce severe damage to the myocardium and cause HF.
The role of the innate immune system in the pathogenesis

of heart diseases has been an area of particular focus; target-
ing innate immune molecules in experimental models can
variously attenuate disease progression and injury and pro-
mote healing [12].

In this review, we described some recent advances in
our understanding of the role of TLR receptors in HF.
The provided data linking TLR signaling to HF is still
being accumulated at the time of writing. TLR signaling
pathway modulates much broader regulation of inflamma-
tory mediators and acts as an important upstream mecha-
nism for activating inflammatory signaling. Hence, target of
TLR singnaling molecular in HF may offer a reliable thera-
peutic approach. Accordingly, various therapeutic agents
for inhibiting TLR signaling have been developed to control
excessive inflammation [48].

However, few issues remain unanswered. For instance,
(1) the mechanism of TLR activation remains unelucidated.
More ligands must still be identified in the failing heart; (2)
regulation of TLRs in the failing heart also requires further
research. Better understanding of these questions will poten-
tially generate a novel therapy for preventing or slowing of
the development and progression of HF. Moreover, targeting
specific TLR pathways may supply smart strategies for
patients with HF. However, at present, our knowledge of
the role of TLR signaling is still too insufficient to support
the evaluation of this therapy in clinical trials. Although in
some models, the role of TLRs is to protect the heart, the
expression of TLRs within the heart is often associated with
inflammation that leads to increased cell apoptosis, cell
necrosis, and tissue damage. On the other side, whether
blocking these TLR receptors with antibodies or small mole-
cule inhibitors could prevent the development of a heart fail-
ure phenotype needs further identification in animal models.
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